
Horizontally Paginated Reports
Doug Hennig

Horizontally paginated reports allow you to print more columns for a given row that will fit on a

page. The report prints as many “horizontal” pages as needed. This technique has many

applications, including cross-tabulation reports. In this article, Doug shows how to create

horizontally paginated reports using the FoxPro Report Designer.

One of the reasons I liked spreadsheet programs from the moment I saw them was their ability to

automatically paginate their printed reports both horizontally and vertically. By “horizontally”, I mean if

your spreadsheet had more columns than could fit on a page, the spreadsheet program automatically printed

a page with the same rows as the previous page but with the next set of columns.

 Figure 1 represents a bird’s eye view of a horizontally paginated report. In this report, there are six

columns and six rows but only enough room on each page to print three columns and three rows. Thus, the

report consists of two horizontal and two vertical sets of pages, for a total of four physical pages. Although

it doesn’t matter whether pages are physically numbered horizontally or vertically, I tend to number them

horizontally. Thus page 2 is the one with rows A-C and columns 4-6.

Figure 1. Horizontally paginated report.

 I’ve come across the need to do this many times in FoxPro applications. Two scenarios I worked with

immediately come to mind; I’m sure you can think of lots of others.

 Data-driven columnar reports: Such a report allows the user to specify which fields to print as

columns for the report. For example, a stock market program might print the company name in the

first column and each field the user specified for the company in subsequent columns. This can

result in a case where there are more columns than will fit on a page, so the report needs to be

horizontally paginated.

 Cross-tabulation reports: I’ve created market analysis cross-tab reports where the user could

specify two variables (fields in a table of marketing data), one for the rows and one for the

columns. The report shows the sales for the intersection of each variable. For example, a cross-tab

of products by country shipped to would show product names in the first column, sales to

Argentina in the second column, sales to Austria in the third, and so on. Obviously, unless there are

only a few countries involved, it’s likely this report will need to be paginated horizontally.

 1 2 3 4 5 6

A x x x A x x x

B x x x B x x x

C x x x C x x x

 1 2 3 4 5 6

D x x x D x x x

E x x x E x x x

F x x x F x x x

 Although I’ve created horizontally paginated reports programmatically (with a lot of effort) in FoxPro

for DOS, this approach doesn’t give great results in Windows because report positioning is much more

difficult to do in Windows. As I’m sure you’ve discovered, you’re much better off using the FoxPro Report

Designer to create reports in FoxPro for Windows and Visual FoxPro. However, the Report Designer

doesn’t horizontally paginate reports. Even worse, while it can print multiple rows (one or more lines per

record), it expects you to pre-define the information for each row. Thus, you can’t have a variable number

of columns for a given report.

The Solution
A few months ago, the need to create reports with variable numbers of columns in Visual FoxPro forced me

to revisit the idea of doing horizontally paginated reports using the Report Designer. This article documents

the solution I came up with. While it’s a little complex, the good news is that it’s possible to create a

generic solution that can be applied in lots of different situations.

 First, some background. In order to create a horizontally paginated report, you need a source of data for

the rows, for the columns, and for the cells formed by the intersection of rows and columns. There could be

more than one piece of information in a cell; for example, you might have a sales value and the percentage

that value is of a row or column total. It’s obvious the report’s rows come from records in a table just as

they do for other types of reports. Columns come from fields in a table (not necessarily the current table),

such as product name and country name in the product sales by country example mentioned earlier. The

cells at the intersection of rows and columns could be a field or a user-defined function (UDF) that

calculates the appropriate value.

 Next, because it’s easier to understand horizontally paginated reports from a particular viewpoint, let’s

look at the use of these reports for cross-tabs. Although FoxPro comes with a program (GENXTAB.PRG in

FoxPro 2.x and VFPXTAB.PRG in VFP) that does cross-tabs, I prefer not to use it because it creates a table

with one record per cross-tab row (products in the case of the product-country cross-tab mentioned earlier)

and one field for each column in the cross-tab (country in this example), with the value of each field being

the cell value (the intersection of a given row and column). I prefer a cross-tab cursor with one record per

cell. This cursor has three fields: the value for the row (the product name), the value for the column (the

country name), and the value of the cell (the sales for that product in that country). A cross-tab cursor with

this structure is easy to create using a single SQL SELECT statement. For example, using the sample data

that comes with VFP, here’s a single (albeit long) command that creates a cross-tab cursor of product

names, country names, and quantity of each product shipped to each country:

select PRODUCTS.ENG_NAME, ;

 CUSTOMER.COUNTRY, ;

 sum(ORDITEMS.QUANTITY) ;

 from CUSTOMER, ;

 ORDERS, ;

 ORDITEMS, ;

 PRODUCTS ;

 where CUSTOMER.CUST_ID = ORDERS.CUST_ID and ;

 ORDERS.ORDER_ID = ORDITEMS.ORDER_ID and ;

 ORDITEMS.PRODUCT_ID = PRODUCTS.PRODUCT_ID ;

 group by 1, 2 ;

 into cursor XTAB

 The first field in this cursor is the row values (product names), the second is the column values (country

names), and the third is the cell values (number of products shipped to the country).

 Of course, the downside of this relatively simple SELECT is that it doesn’t show the complete picture:

it doesn’t include products that have never been sold nor countries in which no customer ever bought any

product. You need to do a outer join (using the new OUTER JOIN syntax in VFP 5 or using a UNION

SELECT clause in earlier version) with both CUSTOMER and PRODUCTS to include these 0-valued

records. See TESTHREP.PRG on the Developer Disk for a complete SELECT statement that includes these

records.

 Now that we’ve looked at the background issues, here’s the logic for printing a horizontally paginated

report:

 We’ll work with sets of vertical pages, each consisting of as many horizontal pages as necessary.

For example, in Figure 1, there are two vertical pages sets, each with two horizontal pages.

 Calculate the number of horizontal pages in each vertical page set by taking the total number of

columns to print and dividing it by the number of columns per page.

 At the start of the first horizontal page in a particular vertical page set, save the key value for the

current record being printed. We’ll need to return to this same record at the start of each horizontal

page in the current vertical page set.

 At the start of subsequent horizontal pages in the same vertical page set, SEEK the saved key value

so we can print more columns from the same records as the previous horizontal page.

 Because we may have more columns in the FRX than are needed for the last horizontal page in a

vertical page set, blanks should be printed for the column headings and cell values for unused

columns.

 At the end of a page, decide if we’re done with this vertical page set by checking if the current

horizontal page matches the number of horizontal pages in each vertical page set. If so, check if

there are any more records to print. If not, the report is done. If so, start the next vertical page set

at the next record.

 Because we may run out of records (we’re on the last vertical page set) before we’ve printed all the

horizontal pages, we need to ensure the report doesn’t stop until all horizontal pages have been

printed.

 OK, so how do we do all this with an FRX that doesn’t permit a variable number of columns? Using

UDFs, of course. We’ll create an FRX with a fixed number of columns (as many as we can jam across the

page) and several UDFs to do the hard work, each called as the expression in a field in the FRX (see

HPAGE.FRX on the Developer Disk for an example of an FRX with these UDF calls):

 NewPage() is the expression for a “dummy” field in the Page Header band. This UDF calculates

the horizontal page number (either incrementing the former one or setting it back to 1 if we just did

the last horizontal page in a vertical page set). It also either saves the key value for the current

record if this is the first horizontal page or SEEKs the saved key value if not.

 GetColumn() is the expression for each column header in the Page Header band because each

horizontal page has a different set of columns. This routine returns the text to print for the header

of a given column on a given horizontal page.

 GetCell() is the expression for each column in the Detail band. It returns the appropriate field from

the current record based on the column it appears in and the current horizontal page number.

 NewRow() is the expression for a “dummy” field at the right edge of the Detail band. It’s main job

is to position the table being printed in the report to the next record. While this may seem

unnecessary (the report automatically does a SKIP at the end of the Detail band), this is necessary

for cross-tab reports where the cross-tab cursor consists of one record for each cell in the report.

It’s also important because we may run out of records (we’re on the last vertical page set) before

we’ve printed all the horizontal pages. Left to its own devices, the FRX would sense that the report

is done, so we’d only get the first horizontal page for the last vertical page set.

 I created a “driver” program (provided on the Developer Disk) called XTABREP.PRG that works in

both FoxPro 2.x and VFP. XTABREP includes the UDFs listed above so everything is in one place. It

expects a cross-tab cursor in the current work area and accepts several parameters:

 the heading to print for the first column (for example, “Product Name”)

 the header to print on each page (such as “Product Sales by Country”)

 the output device (if it isn’t passed, “PREVIEW” is used)

 the left margin for the report (if it isn’t passed, 0 is used)

 In addition to the records in the cross-tab cursor, if we want row and column totals, we’ll need records

that have these totals. There’ll be one record for each row total (the first field contains the product name,

the second field is blank, and the third field is the total quantity for the specified product for all countries)

and one record for each column total (the first field is blank, the second field is the country name, and the

third field is the total quantity of all products for the specified country). XTABREP takes care of the work

of calculating row and column totals so the program calling it doesn’t have to bother.

 While I was testing XTABREP.PRG, I thought it’d be really nice to allow the user to specify the paper

size (such as letter or legal) and orientation (portrait or landscape). However, because these settings affect

the number of rows and columns that can fit on a page, I realized I’d need to create a different FRX for each

page size and orientation combination. Since I’d previously done a lot of work with creating FRX files

programmatically, it became obvious that the ideal solution is to generate a temporary FRX based on the

chosen settings and use it for the report. Creating an FRX programmatically is beyond the scope of this

article; see XTABREP.PRG if you’re interested in how it’s done.

 The code for XTABREP.PRG is below. This listing doesn’t include the CreateReport routine or any

subroutines it calls because of the length of the code. See the copy of XTABREP.PRG on the Developer

Disk for a complete listing.

parameters tcColumn, ;

 tcHeader, ;

 tcOutput, ;

 tnMargin

private lcOutput, ;

 lnMargin, ;

 lcField1, ;

 lcField2, ;

 lcField3, ;

 lcAlias, ;

 lnTotColumns, ;

 lnCurrSelect, ;

 lcTotals, ;

 lcXTab, ;

 lcIndex, ;

 lcKey, ;

 lcReport, ;

 lnWidth1, ;

 lnWidth2, ;

 lnCurrAscii

* These variables need to be defined as PRIVATE even

* in VFP because some subroutines use these values.

private pcHeader, ;

 pcColumn, ;

 paColumns, ;

 pnColsPerPage, ;

 pnTotalHPages, ;

 pcVertKey, ;

 plDoneVert, ;

 pnHPage

#define cnMAX_COL_WIDTH 20

#define ccTOTALS 'Totals'

* If the output device isn't specified, use "PREVIEW".

* Otherwise, use the appropriate output clause for

* REPORT FORM.

do case

 case type('tcOutput') <> 'C' or empty(tcOutput) or ;

 upper(tcOutput) = 'PREVIEW'

 lcOutput = 'PREVIEW'

 case upper(tcOutput) = 'PRINT'

 lcOutput = 'TO PRINT NOCONSOLE'

 otherwise

 lcOutput = 'TO FILE ' + tcOutput + ;

 iif('Visual' $ version(), ' ASCII', '') + ;

 ' NOCONSOLE'

endcase

* If the report header and first column heading aren't

* specified, use blank values instead. Use 0 for the

* left margin if it isn't specified.

pcHeader = iif(type('tcHeader') = 'C', tcHeader, '')

pcColumn = iif(type('tcColumn') = 'C', tcColumn, '')

lnMargin = iif(type('tnMargin') = 'N', tnMargin, 0)

* Create an array of headings to print in horizontal

* columns (ignore blank entries since they might be

* there because of records in the first column that

* didn't have any record for the second column in the

* source tables). Determine the total number of columns

* we'll be printing (it'll be the number of unique

* columns plus one for the "totals" column).

lcField1 = field(1)

lcField2 = field(2)

lcField3 = field(3)

lcAlias = alias()

select &lcField2 ;

 from (lcAlias) ;

 where not empty(&lcField2) ;

 into array paColumns ;

 group by 1

lnTotColumns = _tally + 1

dimension paColumns[lnTotColumns]

paColumns[lnTotColumns] = ccTOTALS

* Create a cursor from the cross-tab table because

* we'll be adding records (ignore records with a blank

* first field since they might be there because of

* records in the second column that didn't have any

* record for the first column in the source tables).

lnCurrSelect = select()

select 0

lcCursor = sys(2015)

lcXTab = sys(2015)

select &lcField1, ;

 &lcField2, ;

 &lcField3, ;

 '1' as SORT ;

 from (lcAlias) ;

 where not empty(&lcField1) ;

 into cursor (lcCursor)

use (dbf(lcCursor)) again alias (lcXTab) in 0

use in (lcCursor)

* Create totals records for the rows.

lcTotals = sys(2015)

select &lcField1, ;

 ccTOTALS as &lcField2, ;

 sum(&lcField3) as &lcField3, ;

 '1' as SORT ;

 from (lcAlias) ;

 where not empty(&lcField1) ;

 into cursor (lcTotals) ;

 group by 1, 2

select (lcXTab)

append from (dbf(lcTotals))

* Add a blank row that'll appear just above the totals

* row.

insert into (lcXTab) (SORT) values ('8')

* Create totals records for the columns.

select ccTOTALS as &lcField1, ;

 &lcField2, ;

 sum(&lcField3) as &lcField3, ;

 '9' as SORT ;

 from (lcXTab) ;

 into cursor (lcTotals) ;

 group by 1, 2

select (lcXTab)

append from (dbf(lcTotals))

use in (lcTotals)

* Index the table on the first two columns.

lcIndex = sys(3) + '.IDX'

lcKey = 'SORT+' + lcField1 + '+' + lcField2

index on &lcKey to (lcIndex) compact

* Create an FRX to use for the report. Define the

* number of horizontal columns per page and the total

* number of horizontal pages needed.

lcReport = sys(3)

lnWidth1 = len(evaluate(lcField1))

calculate max(len(trim(&lcField2))) to lnWidth2

pnColsPerPage = CreateReport(lcReport, lnWidth1, ;

 min(lnWidth2, cnMAX_COL_WIDTH), lcOutput = 'TO FILE', ;

 iif(lnWidth2 > cnMAX_COL_WIDTH, 2, 1), lnMargin)

pnTotalHPages = ceiling(lnTotColumns/pnColsPerPage)

* Define some variables so they exist during the

* report. pcVertKey contains the key for the first

* record on this horizontal page, plDoneVert is a flag

* to indicate when we're done vertical pages, and

* pnHPage is the current horizontal page.

pcVertKey = ''

plDoneVert = .F.

pnHPage = 0

* Run the report.

#IF 'Visual' $ version()

lnCurrAscii = _asciicols

_asciicols = 160

#ENDIF

report form (lcReport) &lcOutput

* Clean up and exit.

#IF 'Visual' $ version()

_asciicols = lnCurrAscii

#ENDIF

use

select (lnCurrSelect)

erase (lcIndex)

erase (lcReport + '.FRX')

erase (lcReport + '.FRT')

function GetColumn

parameters tnColumn

private lnColumn

lnColumn = pnHPage * pnColsPerPage + tnColumn

return iif(lnColumn > alen(paColumns), '', ;

 paColumns[lnColumn])

function GetCell

parameters tnColumn

private lnColumn, ;

 luReturn, ;

 lnRecno, ;

 lcXTab1, ;

 lcXTab2

lnColumn = pnHPage * pnColsPerPage + tnColumn

* If there is no such column or we're done the vertical

* pages, return a blank value.

if lnColumn > alen(paColumns) or plDoneVert

 luReturn = ''

* Save the current record pointer and get the values

* for the current row and column.

else

 lnRecno = recno()

 lcXTab1 = evaluate(field(1))

 lcXTab2 = paColumns[lnColumn]

 do case

* Sort "8" means the blank row just before the totals

* row, so return a blank value.

 case SORT = '8'

 luReturn = ''

* Find the appropriate record in the cursor (either a

* totals or a regular record) and get the value of its

* "cell" field.

 case seek(iif(trim(lcXTab1) == ccTOTALS, '9', ;

 '1') + lcXTab1 + lcXTab2)

 luReturn = evaluate(field(3))

* We couldn't find an appropriate record, so use a 0

* and return to the former

* record.

 otherwise

 luReturn = 0

 go lnRecno

 endcase

endif lnColumn > alen(paColumns) ...

return luReturn

function NewPage

pnHPage = ((_pageno - 1) % pnTotalHPages)

plDoneVert = .F.

if pnHPage = 0

 pcVertKey = evaluate(key(val(sys(21))))

else

 seek pcVertKey

endif pnHPage = 0

return ''

function NewRow

private lcField, ;

 lcValue

lcField = field(1)

lcValue = evaluate(lcField)

scan while &lcField = lcValue

endscan while &lcField = lcValue

if eof() and pnHPage + 1 < pnTotalHPages

 plDoneVert = .T.

 seek pcVertKey

else

 skip -1

endif eof() ...

return ''

 Here’s an example (taken from TESTHREP.PRG on the Developer Disk) of calling XTABREP after

creating a cross-tab cursor using a SQL SELECT:

do XTABREP with 'Product', 'Product Sales by Country', ;

 'preview'

 This specifies that the heading for the first column is “Product”, the title to print on the top of every

page is “Product Sales by Country”, the report should be previewed rather than printed, and left margin is

the default of 0 because it isn’t passed as a parameter.

 If you want to see an example of how XTABREP can do its job, run TESTHREP in either FoxPro 2.x

or VFP. It uses a set of tables (included on the Developer Disks) taken from the VFP sample data but

converted to 2.x format so they can be opened under both FoxPro 2.x and VFP.

Conclusion
Horizontally paginated reports are a wonderful addition to nearly any application. Since cross-tabs are

really easy to do using the powerful features of the SQL SELECT command, you can quickly create a

dialog form asking the user to select two fields from a table, do the SQL SELECT, and call XTABREP to

do the rest of the work. Your users will love it!

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Sask., Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit for Visual FoxPro and

Stonefield Data Dictionary for FoxPro 2.x. He is also the author of “The Visual FoxPro Data Dictionary” in Pinnacle

Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at user groups and regional conferences all

over North America. He was a Microsoft Most Valuable Professional (MVP) for 1996. CompuServe 75156,2326.

