
Searching With Web Services
Doug Hennig

Web Services make it easy to access functions on other computers. Several Web sites now provide

a Web Service to search their archives for text. However, every Web Service has a different interface

and returns results in a different format. This month, Doug shows how to create a wrapper to

provide a consistent way to search for the same text from many Web Services.

Web Services are going to change the way applications are deployed. Rather than monolithic apps sitting on

workstations or servers, functionality is going to be pushed out to Web servers. For example, an order entry

application could submit a shipping order to UPS via one Web Service, and track the status of the shipment

with another Web Service. Although you could do that before using the UPS Web site, you had to do

HTML scraping to make the results understandable to the application. With Web Services, it’s like calling a

function on your local machine, except the function actually sits on someone else’s server somewhere on the

Internet. While security and availability are currently concerns, I believe these problems will be solved over

the long run.

 One of the cool things about VFP 7 is that it makes it easy to create your own Web Services. First, you

have to install the Microsoft SOAP Toolkit, which comes on the VFP 7 CD. Then, you simply create a

COM DLL (mark one of the classes in your project as OLEPUBLIC and build a DLL) and invoke the Web

Services Wizard (available from the Tools, Wizards menu item). The wizard will generate the files

necessary to deploy the Web Service, including a WSDL file that describes the interface of your class. It’ll

even create an IIS virtual directory and configure it for you. And when you rebuild your DLL after making

changes, a project hook will automatically update the Web Service files. It doesn’t get much easier than

that! For details on creating your own Web Services, see Whil Hentzen’s articles in the February and March

2002 issues of FoxTalk.

 So far, the majority of the publicly available VFP-based Web Services are search engines for Web sites

that contain content related to VFP:

 ProFox (http://www.leafe.com): Ed Leafe’s email-based message board for FoxPro developers. The

WSDL file is located at http://www.leafe.com/profoxws.wsdl.

 FoxWiki (http://fox.wikis.com): Steven Black created this incredible resource, which provides

thousands of documents on every conceivable subject. Information about the Web Service is available

at http://fox.wikis.com/wc.dll?Wiki~WikiWebServices and you can find the WSDL file at

http://fox.wikis.com/wikiwebservice.wsdl.

 Universal Thread (http://www.universalthread.com): This forum, created by Michel Fournier, is where

thousands of VFP developers hang out every day, sharing ideas and files. For documentation on the

Web Service, see http://www.universalthread.com/WebService.asp; the WSDL file is located at

http://www.universalthread.com/universalthread.wsdl.

 In addition to these VFP-related sites, Google recently released a Web Service to search anywhere on

the Internet. Their implementation is limited and kind of goofy; thanks to Hector Correa for posting some

sample code on the FoxWiki showing how to access it in VFP

(http://fox.wikis.com/wc.dll?Wiki~GoogleWebServiceUsingVFP~VFP). If you want to use the Google

Web Service, you have to sign up for the service (there’s no charge) and download the WSDL file (part of

the documentation and samples found at http://www.google.com/apis)

 Some Web Services are easier to use than others. For example, searching the FoxWiki for all

references to “Stonefield” is easy:

loWS = newobject('WSClient', ;

 home() + 'FFC_WebServices.vcx')

loSearch = loWS.SetupClient('http://fox.wikis.com/' + ;

 'wikiwebservice.wsdl', '', '')

lcXML = loSearch.GetTextSearch('Stonefield')

xmltocursor(lcXML)

browse

http://fox.wikis.com/wc.dll?Wiki~GoogleWebServiceUsingVFP~VFP

 This code uses the WSClient class that comes with VFP and provides a wrapper for the

MSSOAP.SOAPClient COM object, which provides access to a Web Service. The SetupClient method

expects to be passed the URL for a WSDL file, and it create a “proxy” object, one that has the same

interface as the Web Service so you can do what looks like local calls. However, behind the scenes, when

you call a method of the proxy object, the call is packaged up into a SOAP wrapper, which is passed to the

Web Service. (For more details on how Web Services work behind the scenes, search the MSDN Web site

(http://msdn.microsoft.com) for “SOAP” or “Web Services”.) In this case, we’re calling the GetTextSearch

method of the Web Service on the FoxWiki Web site, the return value of which is a VFP cursor packaged

as XML. So, we can use XMLTOCURSOR() to convert it back to a cursor and browse the results.

 ProFox is just as easy, but note the different method name and parameters (it requires a date range),

and the results are formatted differently:

loWS = newobject('WSClient', ;

 home() + 'FFC_WebServices.vcx')

loSearch = loWS.SetupClient('http://www.leafe.com/' + ;

 'profoxws.wsdl', '', '')

lcXML = loSearch.SearchTextLinks('Stonefield, ;

 {^2002-01-01}, date(), .F.)

xmltocursor(lcXML)

browse

 Both the Universal Thread and Google are considerably more complex. The Universal Thread requires

you to login and it returns a unique ID value that you must pass on each method call. However, you don’t

pass it as a parameter: it must be embedded in the SOAP header (see the documentation for this Web

Service for details). Google doesn’t require a login; you pass a unique ID assigned to you when you sign up

for the service on every method call. However, it returns an array of results that you have to dig the content

out of, so you can’t just use a simple XMLTOCURSOR() call.

 Because every service is different, both in terms of how you call it and what the results look like,

researching the solution to a problem by searching multiple services can be a pain. To make it easier, I

created a wrapper for this.

Data-Driving the Searches
I originally created a hard-coded wrapper program to do Web Service searching, but once I added code to

search more than one Web Service, I realized that it would be better to data-drive the process. In other

words, a table contains information about each of the Web Services to search and some generic code

processes that table. This way, adding another Web Service to the search is as simple as adding a new

record to the table.

 Because each Web Service has a different way to call it and returns different results, I decided to put

the specific code needed for each Web Service into a memo field in the table. This code is executed using

the new EXECSCRIPT() function in VFP 7.

 The table that defines the Web Services to search and how to access them is called WSSEARCH.DBF;

its structure is shown in Table 1.

Field Name Type/Size Description
ORDER N(2, 0) The order in which to process the records.
ACTIVE L .T. if this Web Service should be searched (you can set it to .F. to temporarily
disable searching a Web Service that you know is unavailable).
NAME C(30) The descriptive name of the Web Service.
WSDL M The URL for the Web Service’s WSDL file.
SEARCH M The code to call the Web Service’s search method. This code is passed the Web
Service proxy object, the search string, the start and end dates, and the contents of the USERNAME and PASSWORD
fields. It should return either an empty string or the results in an XML string that will create a cursor with TITLE, URL, and
CONTENTS columns.
USERNAME C(10) The user name to access the Web Service.
PASSWORD C(10) The password.

Table 1. The structure of the WSSEARCH table.

 Here’s an example of a WSSEARCH record. The FoxWiki Web Services record has

http://fox.wikis.com/wikiwebservice.wsdl for WSDL, blank values in USERNAME and PASSWORD, and

the following code in SEARCH:

lparameters toWS, tcSearch, tdBegin, tdEnd, tcUserName, ;

 tcPassword

local lcXML

lcXML = toWS.GetTextSearch(tcSearch)

if not empty(lcXML)

 xmltocursor(lcXML, '_WikiResults')

 if reccount() = 0

 lcXML = ''

 else

 select NAME as TITLE, LINK as URL, '' as CONTENTS ;

 from _WikiResults into cursor _Results

 cursortoxml('_Results', 'lcXML', 1, 0, 0, '1')

 use in _Results

 endif reccount() = 0

 use in _WikiResults

endif not empty(lcXML)

return lcXML

 This code calls the GetTextSearch method of the Web Service, passing it the text to search for. Note

that the start and end dates and the user name and password aren’t used by this code, since the FoxWiki

Web Service doesn’t need anything except the search string. If the return value from GetTextSearch isn’t

empty, the code uses XMLTOCURSOR() to convert the results into a cursor, and if we have any results,

uses a SQL SELECT command to create a cursor of the desired structure (TITLE for the title of the

document, URL for the URL of the document, and CONTENTS for the contents of the document) and

CURSORTOXML() to convert it back to an XML string. It then returns either the updated XML or an

empty string if the search failed.

The WSSearch Class
The WSSearch class, defined in WSSEARCH.PRG, is based on the Session base class. It has three custom

properties: cErrorMessage, which contains an error message if something went wrong (such as we couldn’t

initialize the MSSoap object), cProcessingMessage, which contains a string indicating the progress of the

search, and aResults, an array property that contains the results of the search. The Init method opens the

WSSEARCH table, the Destroy method closes it, and the Error method simply sets cErrorMessage to

MESSAGE() so we can capture the error message.

 The Search method does all the work. It expects to be passed three parameters: the search string and the

beginning and ending dates for the search. It places the results of each Web Service search in a row in

aResults and returns the number of rows in the array. The first column of aResults contains the Web Service

name, the second contains .T. if the search succeeded, and the third contains the XML returned from the

Web Service if it succeeded or the text of the error message if it failed (such as the Web Service not being

available).

 Here’s the first part of this method’s code. If any of the parameters are the wrong data type or empty, it

sets cErrorMessage appropriately and returns –1.

function Search(tcSearch, tdBegin, tdEnd)

local lnResults, ;

 lcName, ;

 loWS, ;

 loSearch, ;

 llOK, ;

 lcMessage, ;

 lcXML

with This

* Ensure we have valid parameters.

 if vartype(tcSearch) <> 'C' or empty(tcSearch)

 .cErrorMessage = 'Invalid search string'

 return -1

 endif vartype(tcSearch) <> 'C' ...

 if vartype(tdBegin) <> 'D' or empty(tdBegin)

 .cErrorMessage = 'Invalid starting date'

 return -1

 endif vartype(tdBegin) <> 'D' ...

 if vartype(tdEnd) <> 'D' or empty(tdEnd)

 .cErrorMessage = 'Invalid starting date'

 return -1

 endif vartype(tdEnd) <> 'D' ...

 Next, the code initializes a variable that contains the number of Web Services processed and starts a

SCAN loop that processes active records in the WSSEARCH table. For each Web Service record, Search

adds a new row to the aResults array and sets the cProcessingMessage property to indicate it’s trying to

access the Web Service.

 lnResults = 0

 scan for ACTIVE

* Add a new row to the array and set the processing

* message.

 .cErrorMessage = ''

 lcName = alltrim(NAME)

 lcCode = SEARCH

 lcUserName = alltrim(USERNAME)

 lcPassword = alltrim(PASSWORD)

 lnResults = lnResults + 1

 dimension .aResults[lnResults, 3]

 .aResults[lnResults, 1] = lcName

 .cProcessingMessage = 'Accessing ' + lcName

 Next, the code instantiates a subclass of WSClient (we’ll look at that subclass later) and calls the

SetupClient method to create the proxy object for the Web Service. If it failed (likely because you have no

Internet connection or the Web Service is currently unavailable), Search sets a flag and grabs the error

message from the WSClient object.

 loWS = createobject('WSClient3')

 loWS.cWSName = lcName

 loSearch = loWS.SetupClient(alltrim(WSDL), '', ;

 '')

 lcMessage = loWS.cErrorMessage

 llOK = vartype(loSearch) = 'O' and ;

 empty(lcMessage)

 If Search succeeded in create the Web Service proxy, it updates cProcessingMessage to indicate that

it’s searching the Web Service and calls the code contained in the SEARCH memo, passing it the proxy

object, the search string, the starting and ending dates, and the user name and password. The return value

from that code will either be XML containing the search results or empty if an error occurred or the search

failed, so Search places the result or error message into the array and flags whether the search was

successful or not.

 if llOK

 .cProcessingMessage = 'Searching ' + lcName

 lcXML = execscript(lcCode, loSearch, tcSearch, ;

 tdBegin, tdEnd, lcUserName, lcPassword)

 .aResults[lnResults, 2] = not empty(lcXML) and ;

 '<?xml' $ lcXML

 do case

 case not empty(lcXML)

 .aResults[lnResults, 3] = lcXML

 case not empty(.cErrorMessage)

 .aResults[lnResults, 3] = .cErrorMessage

 otherwise

 .aResults[lnResults, 3] = 'No results'

 endcase

 If Search couldn’t create the proxy object, an appropriate message is put into the third column of the

current array row.

 else

 .aResults[lnResults, 3] = lcMessage

 endif llOK

 Finally, when Search has processed all of the Web Services, it sets cProcessingMessage to “done”,

clears the error message (since any error messages will now be in aResults) and returns the number of rows

in aResults.

 endscan for ACTIVE

 .cProcessingMessage = 'Done'

 .cErrorMessage = ''

endwith

return lnResults

WSClient3
VFP comes with two classes that provide a wrapper for the Microsoft SOAP client object: WSClient and

WSClient2, both located in _WebServices.vcx in the FFC subdirectory of the VFP home directory.

WSClient is fine for interactive uses (from the Command window for example), but WSClient2 is a better

choice for applications because it doesn’t use MESSAGEBOX() to display warnings when there are

problems.

 I’ve discovered a couple of slight problems with WSClient2. First, if the proxy object can’t be created,

WSClient2 doesn’t store the error message because the ErrorAlert method, called from the Error method,

doesn’t do anything (it has an IF .F. statement that short-circuits the behavior of the method). Second,

SetupClient doesn’t properly clean up after itself; it changes the current work area and doesn’t restore it

afterward. Finally, CheckWSDBF, which is actually defined in WSClient and is called from several

methods, opens a table the class needs to record information in if it isn’t already open, but doesn’t select it

if it is. The methods that call it expect that the desired table is selected, and don’t work properly if not.

 To work around these issues, I created a subclass of WSClient2 called WSClient3, also defined in

WSSEARCH.PRG. The ErrorAlert method of WSClient3 stores the message passed to it by Error in a new

cErrorMessage property so anything using this class can determine what went wrong. The SetupClient

method saves the current work area, uses DODEFAULT() to do the usual behavior, and then restores the

work area. Finally, CheckWSDBF selects the appropriate table if it’s already open.

define class WSClient3 as WSClient2 of ;

 (home() + 'ffc_webservices.vcx')

 cErrorMessage = ''

 function ErrorAlert(tcMessage)

 This.cErrorMessage = tcMessage

 endfunc

 function SetupClient(tcURI, tcService, tcPort)

 local lnSelect, ;

 luReturn

 lnSelect = select()

 luReturn = dodefault(tcURI, tcService, tcPort)

 select (lnSelect)

 return luReturn

 endfunc

 function CheckWSDBF

 local llReturn

 if not empty(This.cWSAlias) and used(This.cWSAlias)

 select (This.cWSAlias)

 llReturn = .T.

 else

 llReturn = dodefault()

 endif not empty(This.cWSAlias) ...

 return llReturn

 endfunc

enddefine

Check it Out
To make it easy to call WSSearch, I created a simple front-end form for it. WSSEARCH.SCX has a text

box for the search string and DateTimePicker ActiveX controls for the starting and ending dates. When you

click on the Search button, it uses WSSearch to perform the searching and then converts the results to an

HTML document using the following code:

set textmerge on to Results.html noshow

\\<html>

\<head>

\<title>Web Services Search Results</title>

\</head>

\<body>

\<h1>Search Criteria</h1>

\Search for: <<lcSearchFor>>

\From: <<ldStart>>

\To: <<ldEnd>>

for lnI = 1 to lnResults

 \<h1><<alltrim(.oSearch.aResults[lnI, 1])>></h1>

 if .oSearch.aResults[lnI, 2]

 xmltocursor(.oSearch.aResults[lnI, 3], 'TEMP')

 \<table>

 \<tr><th>Title</th><th>Link</th>

 \\<th>Contents</th></tr>

 scan

 \<tr><td valign="top"><<alltrim(TITLE)>></td>

 \\<td valign="top"><a href="<<alltrim(URL)>>">

 \\<<alltrim(URL)>></td>

 lcContents = strtran(alltrim(CONTENTS), ccCRLF, ;

 '
')

 lcContents = strtran(lcContents, ccCR, '
')

 lcContents = strtran(lcContents, ccLF, '
')

 \\<td valign="top"><<lcContents>></td></tr>

 endscan

 use

 \</table>

 else

 \<p><<.oSearch.aResults[lnI, 3]>>

 endif .oSearch.aResults[lnI, 2]

next lnI

\</body>

\</html>

\

set textmerge to

 The resulting document has live links to each of the search result topics; Figure 1 shows the results of a

search for “EXECSCRIPT()”.

Figure 1. Search results.

 Of course, before you can actually use this, you’ll need to fill in your Universal Thread user name and

password and your Google user ID in the appropriate fields in WSSEARCH.DBF, and put a copy of

GoogleSearch.WSDL in the same directory as the other files for this month’s article.

 This form (and the class it uses) makes it easy to look for solutions to problems you’re sure other VFP

developers have solved or to search for information on new technologies (like how to use Web Services)

without having to manually go to each search engine’s Web site. I hope you find this as useful as I have!

Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the award-winning Stonefield

Database Toolkit (SDT) and Stonefield Query, co-author of “What’s New in Visual FoxPro 7.0” and “The Hacker’s

Guide to Visual FoxPro 7.0”, both from Hentzenwerke Publishing, and author of “The Visual FoxPro Data

Dictionary” in Pinnacle Publishing’s Pros Talk Visual FoxPro series. He was the technical editor of “The Hacker’s

Guide to Visual FoxPro 6.0” and “The Fundamentals”, both from Hentzenwerke Publishing. Doug has spoken at

every Microsoft FoxPro Developers Conference (DevCon) since 1997 and at user groups and developer conferences

all over North America. He is a Microsoft Most Valuable Professional (MVP) and Certified Professional (MCP). Web:

www.stonefield.com and www.stonefieldquery.com Email: dhennig@stonefield.com

