
Consuming XML Web Services in

VFP 8
Doug Hennig

XML Web services are becoming very important for application development, and VFP 8 makes it

easier than ever to use them. This month, Doug explores consuming XML Web services in VFP

applications, including how to use the new XML Web Service Builder to bind controls to XML Web

services results with very little code.

Microsoft’s vision of software development strongly embraces XML Web services. A Web service is

nothing more than a component that sits on a Web server somewhere. A client calls a function of the

component, using SOAP (Simple Object Access Protocol) as the transport mechanism for the function call,

parameters, and return value, and does something with the results, which are usually in the form of XML.

The reason Web services are becoming more important for application development is they can form the

building blocks of distributed applications.

 In my June 2002 FoxTalk article “Searching With Web Services”, I discussed using Web services in

VFP 7 to provide a means of searching various Web sites for information. This month, we’ll revisit this

topic, but using the new tools that come with VFP 8. We won’t discuss the plumbing involved in Web

services, such as SOAP, WSDL, and UDDI. There are numerous white papers available, including many on

the MSDN Web site (http://msdn.microsoft.com), that go into great detail on that topic.

Registering a Web service
The first step to using a Web service is to register it with VFP. Although this isn’t strictly necessary, it’s

easier to work with a Web services if you do. To register a Web service, launch the XML Web Services

Registration dialog (shown in Figure 1) by clicking on the Web Services button in the Types page of the

IntelliSense Manager (this was the only way to launch this dialog in VFP 7), clicking on the Register link in

the My XML Web Services category of the new Toolbox, choosing the Register an XML Web Service link

in the XML Web Services pane of the new Task Pane Manager, or selecting the New button in the XML

Web Services Manager, which is also available from the XML Web Services pane of the Task Pane

Manager.

Figure 1. Use the XML Web Services Registration dialog to register a Web service in VFP.

 Enter the URL, including the http:// prefix, for the WSDL of the Web service you want to register, and

click on the Register button. If you don’t know the URL, click on the UDDI Search button. In the UDDI

Search dialog, type a name and click the Search button. The combo box is populated with a list of matching

Web services from the UDDI database and the edit box below it shows information about the selected Web

service.

http://msdn.microsoft.com/

 For the examples in this article, we’ll work with the Web service that provides searching on the

FoxWiki (a great FoxPro resource created by Steven Black, http://fox.wikis.com), so register the following

WSDL file: http://fox.wikis.com/wikiwebservice.wsdl.

Using Web services in VFP 8
The way you use registered Web services in VFP 8 is totally different than it was in VFP 7. Rather than

selecting a Web service from IntelliSense when you type LOCAL SomeVariable AS, you drag a Web

service from the Toolbox to either a code window, which generates code, or a container (such as a form) in

the Form or Class Designers, which adds an object to the container. Let’s look at both of these mechanisms.

Using Web services programmatically
Here’s the code generated when you drag the FoxWiki Web service from the Toolbox to a code window:

LOCAL lowikiwebservice AS "MSSOAP.SoapClient30"

LOCAL lowikiwebservice AS "XML Web Service"

* Do not remove or alter following line. It is used to support IntelliSense for

* your XML Web service.

*__VFPWSDef__: lowikiwebservice = http://fox.wikis.com/wikiwebservice.wsdl ,

* wikiwebservice , wikiwebserviceSoapPort

LOCAL loException, lcErrorMsg, loWSHandler

TRY

 loWSHandler = NEWOBJECT("WSHandler", IIF(VERSION(2) = 0, "", ;

 HOME() + "FFC\") + "_ws3client.vcx")

 lowikiwebservice = loWSHandler.SetupClient(;

 "http://fox.wikis.com/wikiwebservice.wsdl", "wikiwebservice", ;

 "wikiwebserviceSoapPort")

* Call your XML Web service here. ex: leResult = lowikiwebservice.SomeMethod()

CATCH TO loException

 lcErrorMsg = "Error: " + TRANSFORM(loException.Errorno) + " - " + ;

 loException.Message

 DO CASE

 CASE VARTYPE(lowikiwebservice)#"O"

 * Handle SOAP error connecting to web service

 CASE !EMPTY(lowikiwebservice.FaultCode)

 * Handle SOAP error calling method

 lcErrorMsg = lcErrorMsg + CHR(13) + lowikiwebservice.Detail

 OTHERWISE

 * Handle other error

 ENDCASE

 * Use for debugging purposes

 MESSAGEBOX(lcErrorMsg)

FINALLY

ENDTRY

 This code uses the new structured error handling in VFP 8 (see my January 2003 article, “CATCH Me

If You Can”, for details on this wonderful new feature) so it handles errors gracefully. Also, if you used

Web services in VFP 7, you’ll notice this code uses a different class, WSHandler in _WS3Client.VCX

rather than WSClient in _WebServices.VCX, to act as the Web service proxy.

 Add the following three lines of code to the code generated by the Toolbox (just above the CATCH

statement), or run TestWikiWebService.PRG, included with this month’s Subscriber Downloads.

lcXML = loWikiWebService.GetTextSearch('Stonefield')

xmltocursor(lcXML)

browse

 This codes searches the FoxWiki for all occurrences of “Stonefield” (substitute your favorite search

string), and displays them in a browse window, complete with title and URL for the full text. Not bad for

three lines of code! But wait until you see what we can do with just two lines!

Using Web services visually
Dragging a Web service from the Toolbox to the Form or Class Designers adds an instance of the same

WSHandler class to the container and fills in several properties with information about the selected Web

service. The great thing about this class is that VFP provides a builder for it that allows you to configure the

object so it not only calls a particular method of the Web service, but also obtains any parameters needed

for the method in a variety of ways (such as prompting the user or from controls in the form) and binds the

results to other controls.

 Let’s build a form that allows us to search the FoxWiki and displays the results in a grid. Create a form

called WikiSearch.SCX. (This form is included with this month’s Subscriber Downloads if you want to see

the finished results.) Drop a label, a textbox, a command button, and a grid on it, laid out as shown in

Figure 6, and set the properties of these controls as shown in Table 1.

Control Property Value
Form AutoCenter .T.
 Caption Wiki Search
 DataSession 2-Private
Label Name lblSearch
 AutoSize .T.
 Caption Search for:
TextBox Name txtSearch
CommandButton Name cmdSearch
 Caption Search
 Default .T.
Grid Name grdResults
 ColumnCount 2
 DeleteMark .F.
 RecordMark .F.
 SplitBar .F.
 Column1.Header1.Caption Title
 Column2.Header1.Caption Link

Table 1. Set the properties of the controls in the form to these values.

 Bring up the Toolbox from the Tools menu or the VFP toolbar, click on the My XML Web Services

category, and drag the icon for the WikiWebService to the form. That will add a WSHandler object to the

form and automatically launch the XML Web Service Builder.

 The Operations page of the builder is automatically selected because the Web service to use has

already been defined in the object. (The Services page allows you to define which Web service you’re

calling.) The Operations page allows you to define the operations (which methods of the Web service are

called) and which clients (other controls) will consume the results of each operation. Figure 2 shows this

page.

Figure 2. The Operations page of the XML Web Service Builder allows you to define Web service
operations and clients of those operations.

 To define an operation, click on the Add button. There are several properties you can set for an

operation in the Operation Detail dialog (shown in Figure 3), including a friendly name and description. To

select the Web service method to call, choose it from the methods combo box; for this example, choose the

GetTextSearch method. If you turn on the Allow Web service calls to be cached offline option, WSHandler

will cache the results of a Web service call and use those results when the Web service isn’t available for a

future call.

Figure 3. Use the Operation Detail page to specify which method of the Web service to call and
what parameters to pass it.

 Use the Set parameter(s) combo box to specify how the values for the parameters passed to it are

obtained. The choices are Input values now, Programmatically set at run-time, and Prompt at run-time.

Programmatically set at run-time means you will set the value in code. Use Prompt at run-time if you want

VFP to display a dialog in which the user can enter the values; this probably is more useful for developer

tools rather than end-user applications. The term “Input values now” is somewhat misleading, since it

doesn’t necessarily mean you enter hard-coded values (although you certainly can do that). When you select

that choice, the Set button is enabled. Click on it to display the Parameter Values dialog (see Figure 4).

Figure 4. In the Parameter Values page, you specify the source of each parameter for the Web
service method.

 To specify a value for a parameter, select it in the Select parameter list, choose Value (expression) as

the parameter type, and enter the value into the edit box below this option. To indicate the value is an

expression that should be evaluated at runtime, precede it with “=”. To obtain the parameter value from

another control, choose Control/Property, put a checkmark in front of the appropriate control, and select the

property that holds the value from the combo box below the control list. For the WikiWebService, we’ll

bind the tcString parameter to the Value property of the txtSearch textbox. That way, the Web service will

automatically search for whatever we type into the textbox.

 To define a client for an operation, click on the Add button beside the Clients list in the Operations

page. Use the Client Detail dialog, shown in Figure 5, to specify which control in the container is the client

for the operation. You can then indicate which property of the control receives the result, and whether the

property is bound to a parameter or the return value of the Web service method.

Figure 5. The Client Detail page is used to specify where the results of the Web service operation
should go.

 If you turn on the Invoke at startup option, the operation executes when the container instantiates.

Otherwise, you’ll have to invoke it manually. If the client object is a CursorAdapter and you turn on Invoke

at startup, you’re warned you should set the form’s BindControls property to False to prevent any problem

with controls bound to the CursorAdapter. WSHandler automatically sets BindControls to True after the

CursorAdapter has been filled with data from the Web service so data binding can occur.

 If you turn on the Always call Web service option, the client will always call the Web service method.

Otherwise, WSHandler will reuse the results when it detects multiple clients call the same operation at the

same time (such as when the container instantiates).

 WSHandler adds the property you specify in the Name of binding property option (the default is

“BindMe” but you can also choose any custom property or method of the client control) to the client control

at runtime if it doesn’t already exist. The property acts like a switch: WSHandler uses BINDEVENTS() (a

new function in VFP 8 that provides event binding between VFP objects) so it’s notified when the

property’s value changes. Setting its value to .T. causes the WSHandler object to call the Web service

method and put the results into the client control.

 If the Web service you want to call returns complex XML, such as objects serialized as XML,

ADO.NET DataSets, or VFP cursors converted to XML via CURSORTOXML(), click on the Complex

Types button. In the Complex Types dialog, click on the Query button to call the Web service method

immediately; the builder will then examine the return value and fill in the rest of the controls. For example,

if the Web service returns an ADO.NET DataSet, the Dataset option is selected, the Dataset tables combo

box is filled with the names of the tables in the DataSet, and the Table fields combo box shows the fields in

the selected table. (In the case of a grid client, Table fields is ignored and the grid is bound to the selected

table.) If the Web service returns an XML string that can be converted into a VFP cursor (as is the case with

the WikiWebService used in these examples), you’ll be informed of that and asked if you want to view the

cursor’s schema. If you choose Yes, the Dataset tables and Table fields combo boxes are filled in. The

Attach button is enabled if the client object is a CursorAdapter and you click on Query to query the Web

service. In that case, if you click on the Attach button and choose Yes in the subsequent dialog, the builder

will update the CursorSchema property of the CursorAdapter to match the schema of the selected table.

 For our example form, choose grdResults in the Client Detail page so the results will be displayed in a

grid. The WSHandler object will automatically convert the XML returned from the GetTextSearch method

of the Web service into a cursor and bind the grid to that cursor.

 That’s it for the builder, so choose OK in each open dialog until the builder is closed. The last thing we

have to do is tell the WSHandler object when to call the Web service. That should happen when we click on

the Search button, so put the following code into the Click method of that button:

Thisform.grdResults.BindMe = .T.

Thisform.grdResults.AutoFit()

 Setting the BindMe property of grdResults (remember, the WSHandler object will add this property to

the grid when the form is instantiated) to .T. starts the operation because that was the property specified in

the builder. The WSHandler object calls the GetTextSearch method of the FoxWiki Web service, passing it

the contents of the Value property of the txtSearch text box, creates a cursor from the returned XML, and

puts the name of that cursor into the RecordSource property of the grdResults grid. Calling the grid’s

AutoFit method ensures the grid columns are adjusted to fit the received data.

 Run the form, enter a search string, and click on the Search button. After a few seconds, the search

results are shown in a grid that auto-fits the columns to its contents and provides hyperlinks to the Wiki

articles; Ctrl-Click on the hyperlink to bring up the document in your browser. See Figure 6 for an example

of what this form looks like. Not bad for just two lines of code!

 Note: if you didn’t build this form from scratch but want to use the one provided with the Subscriber

Downloads, instead of running this form directly, run WikiSearch.PRG; it ensures the path to the

WSHandler object in WikiSearch.SCX is correct for your system.

Figure 6. WikiSearch.SCX searches the FoxWiki for a particular string and displays the results in
a grid.

Summary
XML Web services are easier to use than ever in VFP 8. The WSHandler class allows you to consume

XML Web services both programmatically and visually, including handling the wiring of form controls to a

Web service. Start considering what role XML Web services will take in your distributed applications.

Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the award-winning Stonefield

Database Toolkit (SDT) and Stonefield Query, author of the CursorAdapter and DataEnvironment builders that come

with VFP 8, and co-author of “What’s New in Visual FoxPro 8.0”, “What’s New in Visual FoxPro 7.0”, and “The

Hacker’s Guide to Visual FoxPro 7.0”, from Hentzenwerke Publishing. Doug has spoken at every Microsoft FoxPro

Developers Conference (DevCon) since 1997 and at user groups and developer conferences all over North America.

He is a Microsoft Most Valuable Professional (MVP) and Certified Professional (MCP). Web: www.stonefield.com

and www.stonefieldquery.com Email: dhennig@stonefield.com

