
But It Works For Me!
Doug Hennig

Figuring out why a user is getting different results than you are can be a frustrating, time-

consuming task. This month, Doug looks at a way of instrumenting your application so you can

quickly determine what is being executed and how long it’s taking.

Recently, I got an email from a customer, complaining that a particular process in our application was

“taking forever” (it actually turned out to be 30 seconds, showing that time is definitely relative). Of course,

on my system, that process only took two seconds, which led to my favorite answer to support questions:

“That’s weird, it works for me.”

 There can be a lot of reasons why a process on a customer’s system takes much longer than it does on

yours: data size, hardware issues, network performance, server performance, existence of anti-virus

software, etc. Because it’s very time-consuming to look at all of the variables, especially ones outside my

control, I decided to instrument the application so I can determine what is happening when and how long

various tasks take.

 What is “instrumenting”? It means to log the execution of various points (“milestones”) in your

application. In the September 1997 issue of FoxTalk, Rod Paddock wrote an article (“Instrumenting FoxPro

Applications”) on instrumenting applications, albeit to determine which parts of the application are being

used and which aren’t. (You can read this article online at

http://www.pinnaclepublishing.com/FT/FTmag.nsf/Index/3563D5B0F068BBAA852568E800769C91?open

document.)

 VFP actually comes with a built-in instrumenting tool: the SET COVERAGE command. This

command creates a log file showing information about every statement that’s executed. Here’s an example:

0.018225,sfdataengine,sfdataengine.executesqlselect,

 24,d:\tools\sfreports\sfreports.vct,8

0.000144,sflogger,sflogger.logmilestone,

 2,d:\tools\sfcommon\sflogger.vct,9

 This shows the execution of two lines of code. The first value on each line is the number of seconds the

statement took to execute, the second is the name of the class, the third is the procedure or method (in the

case of a class, it shows Class.Method), the fourth is the line number, the fifth is the name of the file

containing the class or procedure, and the last is the stack level. So, we can see that the first statement,

which was on line 24 of SFDataEngine.ExecuteSQLSelect, took 0.018225 seconds, and the second, which

was on line 2 of SFLogger.LogMilestone, took 0.000144 seconds.

 Of course, you wouldn’t want to look at the raw data in the log file and try to figure out what’s going

on. There’s too much data (a log file for even a brief run of your application can have thousands of lines),

making it hard to see the forest for the trees. Fortunately, starting with version 6, VFP comes with a tool

called the Coverage Profiler that can analyze the data in the log file and tell you what portions of the

application were run and which weren’t, how many times each line of code was executed, and how long it

took.

 While it’s a great tool for pinpointing bottlenecks in your code and determining which code you’ve

tested, I decided not to use this feature when trying to track down the cause of my problem. There were a

couple of reasons for this decision. First, the log file is too finely-grained. I wasn’t interested in how fast

each line of code executed at this point; I only wanted to know how long each method took. Second, and

more importantly, SET COVERAGE is ignored in a runtime environment, so it wouldn’t help me track

down the problem at my customer’s office.

 So, I implemented my own code instrumentation. Like SET COVERAGE, I decided to output the

results to a text file rather than a DBF, because it’s easy to email and I can open it in my email client

without having to save it to disk if I don’t want to. I started putting STRTOFILE() statements into various

places in my code, but quickly realized that a helper class would be a better way to go.

SFLogger

The class I use for instrumenting an application is SFLogger, contained in SFLogger.VCX. SFLogger is a

subclass of SFCustom, my base Custom class contained in SFCtrls.VCX. SFLogger has four custom

properties: cLogFile, which contains the name of the file to log to; lLoggingEnabled, which is .T. if logging

should occur; tLastMilestone, a protected property containing the DateTime of the last milestone; and

aStartTime, a protected array containing the starting times of various processes.

 At the start of your application, instantiate SFLogger into a globally visible container, such as a

PRIVATE or PUBLIC variable or a property of an application object. Set the cLogFile property to the

name of the log file and the lLoggingEnabled property to .T. to enable logging. Since you don’t normally

want logging enabled (you only want to turn it on to track down a problem, then turn it off again), one easy

way to do this is to check the existence of a file that normally doesn’t exist. For example, I use code like the

following:

oLogger = newobject('SFLogger', 'SFLogger.vcx')

oLogger.cLogFile = 'DIAGNOSTIC.TXT'

oLogger.lLoggingEnabled = file('LOG.TXT')

If I want to enable logging, I simply create a file called LOG.TXT and run the application, then look at the

log results in DIAGNOSTIC.TXT. When I’m done logging, I delete LOG.TXT.

 To log that you’re at a certain place in the code, call the LogMilestone method, passing it a message

with information about the milestone. Here’s the code for that method:

lparameters tcMilestone

local lcMessage

with This

 if .lLoggingEnabled

 lcMessage = .GetHeaderMessage() + tcMilestone

 .LogToFile(lcMessage)

 endif .lLoggingEnabled

endwith

 GetHeaderMessage is a protected method that returns the header text to use in the log file for the

milestone. (ccCRLF is a constant defined as CHR(13) + CHR(10), a carriage return and linefeed.)

local ltTimeStamp, ;

 lcMessage

ltTimeStamp = datetime()

lcMessage = '===>' + ttoc(ltTimeStamp) + ;

 iif(empty(This.tLastMilestone), '', ;

 ' (' + transform(ltTimeStamp - This.tLastMilestone) + ;

 ' seconds since previous milestone)') + ccCRLF

This.tLastMilestone = ltTimeStamp

return lcMessage

 LogToFile does the actual work of writing to the log file, appending the new text to any existing text in

the file.

lparameters tcMessage

strtofile(tcMessage + ccCRLF + ccCRLF, This.cLogFile, ;

 .T.)

 Here’s an example that calls LogMilestone:

oLogger.LogMilestone('SFDataEngine.PerformQuery: ' + ;

 'about to retrieve data')

This adds an entry to the log file that looks like this:

===>07/29/2003 12:45:56 PM (2 seconds since previous

milestone)

SFDataEngine.PerformQuery: about to retrieve data

 Note the number of seconds since the previous milestone. This helps determine how long a process

takes to run. However, if you have several milestones and want to track the total time of all of them, use the

StartProcess and LogElapsedMilestone methods. StartProcess simply records the starting time by adding it

to the end of the aStartTime array:

local lnItem

with This

 lnItem = iif(empty(.aStartTime[1]), 1, ;

 alen(.aStartTime) + 1)

 dimension .aStartTime[lnItem]

 .aStartTime[lnItem] = seconds()

endwith

 LogElapsedMilestone is similar to LogMilestone, but pops the last starting time off the bottom of

aStartTime and outputs the elapsed time for the milestone. It normally doesn’t add a header line to the log

file, since you may have logged the start of the process by calling LogMilestone. However, pass .T. for the

second parameter if you do want a header.

lparameters tcMilestone, ;

 tlIncludeHeader

local lnEnd, ;

 lnItems, ;

 lnStart, ;

 lcMessage

with This

 if .lLoggingEnabled

 lnEnd = seconds()

 lnItems = alen(.aStartTime)

 lnStart = .aStartTime[lnItems]

 if lnItems = 1

 dimension .aStartTime[1]

 .aStartTime[1] = 0

 else

 dimension .aStartTime[lnItems - 1]

 endif lnItems = 1

 lcMessage = iif(tlIncludeHeader, ;

 .GetHeaderMessage(), '') + tcMilestone + ;

 ccCRLF + 'Time to run: ' + ;

 transform(lnEnd - lnStart) + ' seconds'

 .LogToFile(lcMessage)

 endif .lLoggingEnabled

endwith

 Here’s an example that calls StartProcess to record the starting time and LogElapsedMilestone to log

the end of the process:

oLogger.LogMilestone('SFDataEngine.PerformQuery: ' + ;

 'about to retrieve data')

oLogger.StartProcess()

* some code here

oLogger.LogElapsedMilestone('Data retrieval ' + ;

 'complete: ' + transform(reccount()) + ;

 'records retrieved')

 Here’s the result in the log file:

===>07/29/2003 12:45:56 PM (2 seconds since previous

milestone)

SFDataEngine.PerformQuery: about to retrieve data

Data retrieval complete: 7396 records retrieved

Time to run: 0.020 seconds

Instrumenting your application

Now that we have a class to help us with instrumentation, how do we use it? In the case of my application, I

added calls to SFLogger methods in the most important parts of the application, places where something

could go wrong if environmental conditions aren’t right or where processing can be slow under some

conditions. That way, if a customer is having a problem, all I do is ask them to create a text file called

LOG.TXT, run the application, and email me DIAGNOSTIC.TXT.

 After adding instrumentation to my application, sending it to my customer, having them run the

application, and analyzing the resulting log file, I discovered the reason that process was taking so long on

their system: it was doing some unnecessary work, which doesn’t really affect the performance until you

have a large data set (they had over 300,000 records).

 Here are some other ideas for using SFLogger:

 If you’re worried about the effect of calls to SFLogger.LogMilestone on your application’s

performance, don’t be: it takes 0.018161 seconds on my system when logging is enabled and

0.000829 seconds when logging is disabled.

 Wondering why a SQL SELECT statement takes too long? Use SYS(3054) to show what VFP’s

doing behind the scenes:

sys(3054, 12, 'lcShowPlan')

oLogger.StartProcess()

* do SQL SELECT here

oLogger.LogElapsedMilestone('SQL SELECT statement:' + ;

 chr(13) + chr(10) + transform(reccount()) + ;

 ' records retrieved' + chr(13) + chr(10) + ;

 strtran(lcShowPlan, chr(13), chr(13) + chr(10)), .T.)

sys(3054, 0)

 Part of our application dynamically generates SQL SELECT statements. Sometimes, customers

will report to us that they aren’t getting the results they expect. By turning on logging and having

the log file include the SQL SELECT statement, the name of the database being queried, and other

important values, we usually discover that the user is pointing to the wrong database, that they

didn’t create their filter properly (for example, forgetting to use parentheses when mixing AND

and OR conditions), or even that they have small amounts of corrupted data.

Summary
Instrumenting my applications has allowed me to quickly discover why a user sees different results than I

do. Sometimes, I have to fix an obscure bug or fine-tune some code. Other times, I can point out that the

user hasn’t set something up correctly. Either way, this mechanism has saved me a lot of time and

frustration in providing support to my customers. I hope you find it as useful as I have.

Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the award-winning Stonefield

Database Toolkit (SDT) and Stonefield Query, author of the CursorAdapter and DataEnvironment builders that come

with VFP 8, and co-author of “What’s New in Visual FoxPro 8.0”, “What’s New in Visual FoxPro 7.0”, and “The

Hacker’s Guide to Visual FoxPro 7.0”, from Hentzenwerke Publishing. Doug has spoken at every Microsoft FoxPro

Developers Conference (DevCon) since 1997 and at user groups and developer conferences all over North America.

He is a Microsoft Most Valuable Professional (MVP) and Certified Professional (MCP). Web: www.stonefield.com

and www.stonefieldquery.com Email: dhennig@stonefield.com

