
Keep Y’er Paws Off My Stuff 
Doug Hennig 

 
Need to prevent unauthorized access to your FoxPro data? Cryptor from Xitech provides an easy 

way to encrypt files and leave them encrypted on disk, even while you access them as normal tables 

in your application. 

 

A common question on VFP online forums is how to protect data from unauthorized users. There are 

several alternatives: 

 Upsizing to a database engine that natively provides security such as SQL Server or Oracle. While 

this may be a good long-term strategy (or not, depending on your viewpoint), it may mean a major 

redesign of your application. 

 Encrypting the data in a table. Although you could roll your own encryption and decryption 

routines, a better choice would be to use the crypto functions built into Windows; although they 

can be complicated to use, VFP comes with a wrapper class in the FoxPro Foundation Classes 

(_CryptAPI in _Crypt.VCX) to make them more approachable. However, this approach is difficult 

to add to an application, because everything that touches the table must decrypt data when reading 

it and encrypt it when writing it. 

 Encrypting a table on disk, decrypting it when your application opens it, and decrypting it again 

when you’re done with it. Like the previous alternative, this one is complicated by the fact that 

everything accessing the table must perform these tasks. It also leaves the table open to 

unauthorized access while it’s open in your application since it resides in an unencrypted state 

during that time, plus has issues with multi-user concurrency. 

 Fortunately, there’s a better solution: Cryptor from Xitech. This library provides functions to encrypt 

and decrypt strings and files, and even better, can leave the files encrypted on disk even while your 

application accesses them. 

 

Installing Cryptor 
You can download an evaluation version of Cryptor from http://www.xitech-europe.co.uk. The main file is 

XICRCORE.DLL; this has the functions that provide Cryptor’s services. There are also several FLL files 

for VFP developers that provide a wrapper for functions in XICRCORE. However, because they’re version 

specific (for example, C40FOX70.FLL is for VFP 7), mean at least one more file to ship with your 

application, and using XICRCORE functions isn’t difficult, they really aren’t necessary in my opinion. 

Cryptor also comes with a help file and support files for use with Delphi, C++, and Visual Basic. 

 

Using Cryptor 
Because Cryptor functions are contained in a DLL, you have to declare them before you can use them. 

Here’s some code (adapted from TESTAPI.PRG in this month’s downloads) that declares the functions 

we’ll use in XICRCORE.DLL: 

lcDLL = 'XICrCore.DLL' 

declare integer CRYIni_Initialize      in XICrCore.DLL ; 

  integer LoadMode 

declare integer CRYIni_UnInitialize    in XICrCore.DLL 

declare integer CRYUtl_EncodeString    in XICrCore.DLL ; 

  string strSrc, string @ strDest, integer dwLength, ; 

  string strPassword, integer dwMethod 

declare integer CRYUtl_DecodeString    in XICrCore.DLL ; 

  string strSrc, string @ strDest, integer dwLength, ; 

  string strPassword, integer dwMethod 

declare string  CRYUtl_GetErrorMessage in XICrCore.DLL ; 

  integer errorCode 

declare integer CRYUtl_Encode          in XICrCore.DLL ; 

  string strFilename, string strPassword, ; 

  string strBackupExt, integer bKeepBackup, ; 



  integer dwMethod 

declare integer CRYUtl_Decode          in XICrCore.DLL ; 

  string strFilename, string strPassword, ; 

  string strBackupExt, integer bKeepBackup, ; 

  integer dwMethod 

declare integer CRYMan_Register        in XICrCore.DLL ; 

  string strFilename, string strPassword, ; 

  integer dwFlags, integer dwMethod 

declare integer CRYMan_Unregister      in XICrCore.DLL ; 

  string strFilename 

 Before you can do anything with Cryptor, you have to initialize it using the CRYIni_Initialize function. 

This function must be passed a parameter indicating the “load mode” (the Cryptor help file explains which 

values to use and why); in the following and other code in this article, 

CRYPTOR_LOADMODE_NORMAL and other upper-cased things are constants defined in 

SFCRYPTOR.H. Like most other Cryptor functions, CRYIni_Initialize returns a numeric value indicating 

whether it succeeded (0, or the constant CRYPTOR_ERR_SUCCESS) or, if not, what the error code is. In 

this code, we’ll accept either CRYPTOR_ERR_SUCCESS or 

CRYPTOR_ERR_ALREADY_INITIALIZED (indicating that Cryptor has already been initialized) as 

meaning success. 

lnStatus = CRYIni_Initialize(CRYPTOR_LOADMODE_NORMAL) 

if not inlist(lnStatus, CRYPTOR_ERR_SUCCESS, ; 

  CRYPTOR_ERR_ALREADY_INITIALIZED) 

  messagebox('Could not initialize Cryptor: status ' + ; 

    'code ' + transform(lnStatus)) 

  return 

endif not inlist(lnStatus ... 

 Once you’re finished using Cryptor, you should uninitialize it: 

lnStatus = CRYIni_UnInitialize() 

 Encrypting a string is easy: simply call the CRYUtl_EncodeString function, passing it the string to 

encrypt, a string (passed by reference) to store the encrypted value into, the length of the string, the 

password to use for encryption, and the method of encryption to use. Cryptor provides several levels of 

encryption; the help file only briefly mentions the differences in these levels, likely for trade secret reasons. 

If the encryption process fails, you can call CRYUtl_GetErrorMessage to get the text of the error message 

(although the help file states that CRYUtl_EncodeString should always return 

CRYPTOR_ERR_SUCCESS). Here’s an example using level 2 encryption: 

lcString    = 'MyString' 

lnLen       = len(lcString) 

lcEncrypted = space(lnLen) 

lcPassword  = 'FoxRocks!' 

lnMethod    = ENCODER_LEVEL2 

lnStatus    = CRYUtl_EncodeString(lcString, ; 

 @lcEncrypted, lnLen, lcPassword, lnMethod) 

if lnStatus = CRYPTOR_ERR_SUCCESS 

  messagebox(lcString + ' encrypts using method ' + ; 

    transform(lnMethod) + ' and password ' + ; 

    lcPassword + ' to ' + lcEncrypted) 

else 

  messagebox('Could not encrypt string: ' + ; 

    CRYUtl_GetErrorMessage(lnStatus)) 

endif lnStatus = CRYPTOR_ERR_SUCCESS 

 Decrypting is just as easy, and uses almost identical code. Here, we’ll simply decrypt the string 

previously encrypted to make sure we can get it back again. 

lcString = space(lnLen) 

lnStatus = CRYUtl_DecodeString(lcEncrypted, ; 

  @lcString, lnLen, lcPassword, lnMethod) 



if lnStatus = CRYPTOR_ERR_SUCCESS 

  messagebox('The encrypted string decrypts back to ' + ; 

    lcString) 

else 

  messagebox('Could not decrypt string: ' + ; 

    CRYUtl_GetErrorMessage(lnStatus)) 

endif lnStatus = CRYPTOR_ERR_SUCCESS 

 In addition to strings, you can also encrypt and decrypt entire files using the CRYUtl_Encode and 

CRYUtl_Decode functions. Pass these functions the fully-qualified name of the file, the password to use, 

the extension to use for a backup file Cryptor creates during the process (.NULL. means use the default 

CBK extension), 0 to delete the backup after completion or 1 to retain it, and the encryption method to use. 

Here’s an example that encrypts a table, tries to open it (which should fail because it’s no longer 

recognizable as a VFP table), then decrypts it and tries to open it again (which should succeed). 

create table TEST (FIELD1 C(10), MEMO1 M) 

index on FIELD1 tag FIELD1 

insert into TEST values ('A', 'My memo') 

use 

lcFile   = fullpath('TEST.DBF') 

lnStatus = CRYUtl_Encode(lcFile, lcPassword, .NULL., 0, ; 

  lnMethod) 

if lnStatus = CRYPTOR_ERR_SUCCESS 

  messagebox('We should get an error when trying to ' + ; 

    "USE the table because it's encrypted. Choose " + ; 

    'Ignore so we can continue.') 

  use TEST 

  lnStatus = CRYUtl_Decode(fullpath('TEST.DBF'), ; 

    lcPassword, .NULL., 0, lnMethod) 

  if lnStatus = CRYPTOR_ERR_SUCCESS 

    use TEST 

    if used('TEST') 

      messagebox('The table was successfully decrypted.') 

      browse 

      use 

    endif used('TEST') 

  else 

    messagebox('Could not decrypt table: ' + ; 

      CRYUtl_GetErrorMessage(lnStatus)) 

  endif lnStatus = CRYPTOR_ERR_SUCCESS 

else 

  messagebox('Could not encrypt table: ' + ; 

    CRYUtl_GetErrorMessage(lnStatus)) 

endif lnStatus = CRYPTOR_ERR_SUCCESS 

 All of this is fine, but where Cryptor really shines is the ability to decrypt a file only in memory. With 

other mechanisms that encrypt a file, you have to decrypt it before you can use it. That means while it’s 

being used, it’s susceptible to prying eyes. With Cryptor’s CRYMan_Register function, you specify that 

certain files are to remain encrypted on disk but should be automatically decrypted in memory as they’re 

used in an application. Thus, you get protection from unauthorized access to the files because they’re never 

decrypted on disk. 

 To register one or more files with Cryptor, pass the CRYMan_Register function the name of file (you 

can use wild cards, such as MYTABLE.*, to register multiple files with one call), the password, 0 (this 

parameter isn’t used; it’s for backward compatibility with earlier versions of Cryptor), and the encryption 

method. This example assumes TEST.DBF, CDX, and FPT are encrypted, so it registers them with Cryptor 

so VFP can open the table. It then uses the CRYMan_Unregister function to unregister them; VFP will no 

longer be able to open the table. 
 

lcFile   = fullpath('TEST.*') 

lnStatus = CRYMan_Register(lcFile, lcPassword, 0, ; 

  lnMethod) 

if inlist(lnStatus, CRYPTOR_ERR_SUCCESS, ; 

  CRYPTOR_ERR_ALREADY_REGISTERED) 

  use TEST 



  if used('TEST') 

    messagebox('The table was decrypted in memory ' + ; 

      'so we can use it.') 

    browse 

    use 

  endif used('TEST') 

  lnStatus = CRYMan_Unregister(lcFile) 

  if lnStatus = CRYPTOR_ERR_SUCCESS 

    messagebox('We should get an error when trying ' + ; 

      "to USE the table because it's still " + ; 

      'encrypted. Choose Ignore so we can continue.') 

    use TEST 

  else 

    messagebox('Could not unregister table: ' + ; 

      CRYUtl_GetErrorMessage(lnStatus)) 

  endif lnStatus = CRYPTOR_ERR_SUCCESS 

else 

  messagebox('Could not register table: ' + ; 

    CRYUtl_GetErrorMessage(lnStatus)) 

endif inlist(lnStatus ... 

SFCryptor 
Although using Cryptor is easy, there are functions to declare, initialization and uninitialization to be done, 

the same parameters to pass to each method, and so forth. I created a wrapper class called SFCryptor, based 

on SFCustom (my Custom base class in SFCTRLS.VCX), that handles all the messy details. For example, 

here’s some code (adapted from TESTSFCRYPTOR.PRG) that encrypts and decrypts a string. Notice you 

don’t have to pass the password and encryption method with every call or do any initialization or other 

work. 

loCryptor = newobject('SFCryptor', 'SFCryptor.vcx') 

loCryptor.nEncryptionMethod = ENCODER_LEVEL2 

loCryptor.cPassword         = 'FoxRocks!' 

 

* Encrypt a string. 

 

lcString    = 'MyString' 

lcEncrypted = loCryptor.EncryptString(lcString) 

if not isnull(lcEncrypted) 

  messagebox(lcString + ' encrypts using method ' + ; 

    transform(loCryptor.nEncryptionMethod) + ; 

    ' and password ' + loCryptor.cPassword + ' to ' + ; 

    lcEncrypted) 

 

* Decrypt the same string. 

 

  lcString = loCryptor.DecryptString(lcEncrypted) 

  if not isnull(lcString) 

    messagebox('The encrypted string decrypts back ' + ; 

      'to ' + lcString) 

  else 

    messagebox(loCryptor.cErrorMessage) 

  endif lnStatus = CRYPTOR_ERR_SUCCESS 

else 

  messagebox(loCryptor.cErrorMessage) 

endif not isnull(lcEncryptedString) 

 The EncryptString and DecryptString methods are very simple: they just call the protected 

ProcessString method. Here’s the DecryptString method (EncryptString is identical except it passes 

“encrypt” to ProcessString). Notice that it can accept password and encryption method parameters; if you 

don’t pass them, the values in the cPassword and nEncryptionMethod properties are used. 

lparameters tcString, ; 

 tcPassword, ; 

 tnMethod 

return This.ProcessString(tcString, tcPassword, ; 

 tnMethod, 'decrypt') 



 ProcessString starts by ensuring a string was passed; it uses the new EVL() function added in VFP 8 to 

check the tcString parameter without having to worry about the data type (if you want to use this class with 

earlier versions of VFP, replace this statement with one that uses VARTYPE() to ensure a string was 

passed). It then sets up some variables needed, checks to ensure Cryptor has been initialized, and calls 

either the CRYUtl_DecodeString or CRYUtl_EncodeString functions, depending on what it’s supposed to 

do. If it succeeded, it returns the encrypted or decrypted string; otherwise, it sets the cErrorMessage 

property to an appropriate value and returns .NULL. 

lparameters tcString, ; 

  tcPassword, ; 

  tnMethod, ; 

  tcProcess 

local lcPassword, ; 

  lnMethod, ; 

  lnLen, ; 

  lcString, ; 

  lnStatus 

with This 

 

* Ensure a string was passed. 

 

  assert not empty(evl(tcString, '')) ; 

    message 'Must pass string' 

 

* Use the cPassword and nEncryptionMethod properties if 

* the parameters weren't passed. Create other variables 

* we need. 

 

  lcPassword = iif(empty(evl(tcPassword, '')), ; 

    .cPassword, tcPassword) 

  lnMethod   = iif(vartype(tnMethod) <> 'N', ; 

    .nEncryptionMethod, tnMethod) 

  lnLen      = len(tcString) 

  lcString   = space(lnLen) 

 

* If Cryptor is initialized, try to process the string. 

 

  if .InitializeCryptor() 

    if tcProcess = 'decrypt' 

      lnStatus = CRYUtl_DecodeString(tcString, ; 

        @lcString, lnLen, lcPassword, lnMethod) 

    else 

      lnStatus = CRYUtl_EncodeString(tcString, ; 

        @lcString, lnLen, lcPassword, lnMethod) 

    endif tcProcess = 'decrypt' 

    if lnStatus <> CRYPTOR_ERR_SUCCESS 

      .cErrorMessage = 'Could not ' + tcProcess + ; 

        ' string: ' + CRYUtl_GetErrorMessage(lnStatus) 

      lcString = .NULL. 

    endif lnStatus = CRYPTOR_ERR_SUCCESS 

  else 

    lcString = .NULL. 

  endif .InitializeCryptor() 

endwith 

return lcString 

 The InitializeCryptor method is called from all methods in SFCryptor that use Cryptor functions. This 

method performs the function declarations and initialization. There are two advantages in doing these tasks 

this way rather than in the Init method of the class: the tasks are only performed if actually required and 

some properties that tell SFCryptor how to work with Cryptor (cCryptorPath, which specifies the location 

of XICRCORE.DLL, and nLoadMode, which specifies the load mode to use) can be set programmatically 

after instantiating the class. 

local lcDLL, ; 

 llReturn 

with This 



 

* If we're not already initialized, see if we can find 

* XICrCore.dll. 

 

  if not .lInitialized 

    lcDLL    = fullpath('XICrCore.dll', ; 

      addbs(.cCryptorPath)) 

    llReturn = file(lcDLL) 

    if llReturn 

 

* Declare the functions that we'll use in XICrCore. 

 

      declare integer CRYIni_Initialize in (lcDLL) ; 

        integer LoadMode 

*** other function declarations omitted for brevity 

 

* Initialize Cryptor. 

 

      lnStatus = CRYIni_Initialize(.nLoadMode) 

      if inlist(lnStatus, CRYPTOR_ERR_SUCCESS, ; 

        CRYPTOR_ERR_ALREADY_INITIALIZED) 

        .lInitialized = .T. 

      else 

        .cErrorMessage = 'Could not initialize ' + ; 

          'Cryptor: status code ' + transform(lnStatus) 

        llReturn = .F. 

      endif inlist(lnStatus ... 

    else 

      .cErrorMessage = 'XICrCore.dll was not found.' 

    endif llReturn 

  else 

    llReturn = .T. 

  endif not .lInitialized 

endwith 

return llReturn 

 There are also methods to encrypt and decrypt files (Encrypt and Decrypt) and register and unregister 

files (Register and Unregister); all of these methods simply call the protected ProcessFile method to do the 

actual work. Feel free to look at the code for these methods yourself. 

 The ReleaseMembers method, called when the SFCryptor object is destroyed, cleans up by 

unregistering all registered files, uninitializing Cryptor, and clearing all Cryptor functions. 

local lcFile, ; 

  lnFlags, ; 

  lnMethod, ; 

  lnCount, ; 

  lnFiles, ; 

  lnStatus, ; 

  laFiles[1], ; 

  lnI 

if This.lInitialized 

 

* Unregister all files. We have to gather a list of files 

* first, then unregister them, because you can't 

* unregister a file while a list operation is in 

* progress. 

 

  lcFile   = space(260) 

  lnFlags  = 0 

  lnMethod = 0 

  lnCount  = 0 

  lnFiles  = 0 

  lnStatus = CRYMan_List(CRYPTOR_REGLIST_FIRST, ; 

    @lcFile, @lnFlags, @lnMethod, @lnCount) 

  do while inlist(lnStatus, CRYPTOR_ERR_SUCCESS, ; 

    CRYPTOR_ERR_END_OF_LIST) 

    lnFiles = lnFiles + 1 

    dimension laFiles[lnFiles] 



    laFiles[lnFiles] = lcFile 

    lnStatus = CRYMan_List(CRYPTOR_REGLIST_NEXT, ; 

      @lcFile, @lnFlags, @lnMethod, @lnCount) 

  enddo while inlist(lnStatus ... 

  for lnI = 1 to lnFiles 

    lnStatus = CRYMan_Unregister(laFiles[lnI]) 

  next lnI 

 

* Uninitialize Cryptor. 

 

  CRYIni_UnInitialize() 

 

* Clear all functions. 

 

  clear dlls CRYIni_Initialize, CRYIni_UnInitialize, ; 

    CRYUtl_EncodeString, CRYUtl_DecodeString, ; 

    CRYUtl_GetErrorMessage, CRYUtl_Encode, ; 

    CRYUtl_Decode, CRYMan_Register, CRYMan_Unregister 

endif This.lInitialized 

 

* Carry on with the usual behavior. 

 

dodefault() 

Pricing and licensing 
Cryptor 4.0 is $299, which provides 50 runtime licenses. An additional 500 runtime licenses can be 

purchased for $199. An unlimited license is $499. As of this writing, you can’t order Cryptor directly from 

the Xitech web site. You can either email them a request to order Cryptor, or order it from one of their 

resellers, such as Hallogram (www.hallogram.com).  

 Since I started working with Cryptor, version 5.0 was released. I haven’t looked at it, but the Xitech 

web site has details on the new features. Most attractive is a COM interface, eliminating the need to declare 

functions in a DLL. No pricing or licensing information is available on the Xitech web site; they really need 

to do some improvements there. Cryptor 4.0 is still available, so my guess is that version 5.0 is more 

expensive. 

 

Summary 
Cryptor is a great solution for the problem of preventing unauthorized access to VFP data, and can also 

encrypt strings (such as passwords stored in an INI file or the Windows Registry). I’ve used it for nearly a 

year with great success. 

 
Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the award-winning Stonefield 

Database Toolkit (SDT) and Stonefield Query, author of the CursorAdapter and DataEnvironment builders that come 

with VFP 8, and co-author of “What’s New in Visual FoxPro 8.0”, “What’s New in Visual FoxPro 7.0”, and “The 

Hacker’s Guide to Visual FoxPro 7.0”, from Hentzenwerke Publishing. Doug has spoken at every Microsoft FoxPro 

Developers Conference (DevCon) since 1997 and at user groups and developer conferences all over North America. 

He is a Microsoft Most Valuable Professional (MVP) and Certified Professional (MCP). Web: www.stonefield.com 

and www.stonefieldquery.com Email: dhennig@stonefield.com 


