
The Mother of All TreeViews
Doug Hennig

If you’ve ever had to work with a TreeView control, you’ll appreciate Doug Hennig’s article this

month: it provides a class that encapsulates all of the quirky behavior of a TreeView so you don’t

have to worry about it. You need only implement a few methods to get a fully-functional control that

provides the features your users need.

Last month, we looked at a set of classes that allow you to generate a Web page as a collection of reusable

HTML components. However, as I quickly discovered, populating the tables that drive the classes isn’t

much fun in BROWSE windows. This month and next month, we’ll look at a front-end UI for these tables

to make that task much easier.

 When I started thinking about what the editor tool should look like, I envisioned a form with a

TreeView control at the left (since the HTML content can be hierarchical) and a pageframe with one page

showing the properties of the selected node and another showing a preview of the HTML using an

embedded Web browser control. Figure 1 shows the finished product, WebEditor.SCX.

Figure 1. WebEditor.SCX provides an easy-to-use interface for editing the Web content tables.

 I then groaned because I’ve created similar forms before and they’re a ton of work. The reason is

because the TreeView is both a very rich control, so there are lots of properties, events, and methods

(PEMs) to worry about, and a fairly ornery control. Here are just some of the gotchas about working with a

TreeView:

 Loading nodes is fairly slow, so if there are a lot of them, it’s better to load only the top-level or

root nodes, and then load the child nodes on demand the first time a root node is expanded. This

requires a bit of work: you have to add “dummy” child nodes or else the + won’t appear, and when

the node is expanded, you have to see if the first child is the “dummy” node, and if so, remove it

and add the child nodes.

 Removing the “dummy” node and adding child nodes can cause a lot of screen update. For VFP

forms, we set LockScreen to .T. to prevent the screen from being updated until we’re ready, but the

TreeView doesn’t respect the setting of LockScreen and doesn’t have its own equivalent property.

Instead, you have to call a Windows API function to lock and unlock the TreeView.

 The coordinate system for TreeViews is twips (1/1440
th

 of an inch) rather than pixels, so you have

to convert pixels to twips before calling TreeView methods that expect coordinate parameters.

Again, this involves using Windows API functions.

 Right-clicking or dragging from a node doesn’t make it the selected node, so code that displays a

menu for the current node or supports node dragging must manually figure out which node the user

clicked on.

 You may want the user to be able to double-click on a node to take some action, such as bringing

up a dialog to edit the underlying record for the node. Unfortunately, double-clicking a node

automatically causes it to expand or collapse if it has children.

 If you support drag and drop, the TreeView doesn’t automatically scroll up or down when you

drag into the top or bottom edges, nor does it automatically highlight the node the mouse is over to

give visual feedback to the user. You have to handle these things yourself.

 Having created forms before that had to deal with all of these quirks and coordinate TreeView node

clicks with the rest of the form, I decided it was time once and for all to create a reusable component that

would encapsulate all the behavior I wanted in one place. So, step one in creating the Web components

editor was to create the reusable TreeView class.

 SFTreeViewContainer, defined in SFTreeView.VCX, is a subclass of SFContainer (my base class

Container located in SFCtrls.VCX). It contains both a TreeView and an ImageList control, the latter being

the source of images for the TreeView. Most TreeView events call methods of the container for several

reasons, including that good design dictates that events should call methods and it’s easier to get at the

PEMs of the container than to drill down into the TreeView in the Class Designer. I considered using the

new VFP 8 BINDEVENTS() function so I didn’t have to put any code at all into the TreeView events, but

some TreeView events, such as BeforeLabelEdit, receive their parameters by reference, which

BINDEVENTS() doesn’t support.

TreeView appearance
I set the properties of the TreeView control visually using the TreeCtrl Properties window as shown in

Figure 2. If you want to use different settings in a subclass, such as using 0 for Appearance so the TreeView

appears flat rather than 3-D, you’ll need to change them in code; for some reason, changing the properties

of the TreeView in a subclass doesn’t seem to work. So, in the Init method of a subclass of

SFTreeViewContainer, use DODEFAULT() followed by code that changes the properties of the TreeView

as desired.

Figure 2. The properties of the TreeView control are set visually.

 The images used for the TreeView come from the ImageList control in the container. As with the

TreeView, loading images into the ImageList visually in a subclass doesn’t seem to work, so the Init method

of SFTreeViewContainer calls the abstract LoadImages method. In a subclass, call the Add method of the

ListImages collection of the ImageList object to add images. Note that you have to use the VFP

LOADPICTURE() function to pass a reference to a loaded image object to the Add method.

 Here’s the code in the LoadImages method of the SFTreeViewContainer object in WebEditor.SCX. It

sets the ImageHeight and ImageWidth properties of the ImageList to the values needed for the images being

loaded, then loads PAGE.GIF as image 1 with a key of “Page” and COMPONENT.GIF as image 2 with a

key of “Component”.

with This.oImageList

 .ImageHeight = 16

 .ImageWidth = 16

 .ListImages.Add(1, 'Page', ;

 loadpicture('PAGE.GIF'))

 .ListImages.Add(2, 'Component', ;

 loadpicture('COMPONENT.GIF'))

endwith

Loading the TreeView
There are four custom properties of SFTreeViewContainer associated with loading the TreeView with the

proper nodes:

 lLoadTreeViewAtStartup: if this property is .T. (the default), the container’s Init method calls the

LoadTree method to load the TreeView. If it’s .F., you’ll have to manually call LoadTree when

you want the TreeView loaded. This might be necessary if the Init of the form the container resides

in must do some work before the TreeView is loaded.

 lAutoLoadChildren: if this property is .T., all nodes in the entire TreeView are loaded. This is fine

if there aren’t very many, but can cause a serious performance issue otherwise; it might take so

long to load the TreeView that the user thinks the application has crashed. In that case, set

lAutoLoadChildren to .F. (the default setting). The container will only load the top-level nodes (or

more, depending on other settings described later). Any loaded node that has child nodes will have

a “Loading…” dummy node added under it rather than the real child nodes so the + will appear for

the node, indicating it can be expanded. When a node is expanded for the first time, the

TreeExpand method of the container (called from the Expand method of the TreeView) removes

the dummy node and adds the real child nodes.

 nAutoExpand: this property indicates to what level the nodes of the TreeView are automatically

expanded when the TreeView is loaded. The default is 0, meaning none of the nodes are expanded

(although, as you’ll see later, restoring the TreeView to its last viewed state will override this for

some nodes). Setting it to 1 means that the top-level nodes should be expanded; this means that

even if lAutoLoadChildren is .F., the container will load the immediate children (but not the

children’s children) of the top-level nodes. Setting it to 2 means the immediate children of the top-

level nodes should be expanded (causing their immediate children to be loaded), and so forth.

 lUsePathAsKey: if this property is .F., you’ll assign unique key values to nodes in the TreeView. If

it’s .T. (the default), you don’t have to worry about keys; the container will use the path of the

node (similar to the path of a file) as its key.

 The LoadTree method does the main work of loading the TreeView. For space reasons, this code isn’t

shown here, but here’s how it works. It starts by calling the LockTreeView method to lock the TreeView

control (using a Windows API function) so updates aren’t displayed as they’re performed. Next, any

existing nodes that are currently expanded are saved into the aExpandedNodes array property and the key

for the currently selected node is saved in the cLastNode property; this allows you to call LoadTree a

second time to refresh the contents (for example, if the TreeView displays records from a table that other

users on a network may also be editing) and have the expanded state of each node and the currently selected

node restored. LoadTree then loads the top-level nodes by calling the GetRootNodes method, passing it a

Collection object. GetRootNodes is an abstract method that you must implement in a subclass to fill the

collection with objects containing information about the top-level nodes; I’ll discuss this further later.

LoadTree then calls LoadNode for each object in the collection to load it into the TreeView. Any formerly

expanded nodes are re-expanded and the former selected node is reselected (if these nodes still exist).

Finally, LoadTree calls LockTreeView again to unlock the TreeView.

 You must fill in code in the GetRootNodes method of a subclass or instance of SFTreeViewContainer

to fill the collection with objects containing information about the top-level nodes. To create such an object,

call the CreateNodeObject method; it simply creates an Empty object and adds the following properties:

 Key: the key for the node in the TreeView. This is automatically set to SYS(2015) but you should

change it to a unique value if the lUsePathAsKey property is .F.

 Text: the text to display for the node.

 Image: the name or number of an image in the ImageList control for this node.

 SelectedImage: the name or number of an image in the ImageList control to use when this node is

selected. You can leave this blank to use the same value as Image.

 Sorted: .T. if the node should be sorted.

 HasChildren: .T. if this node has any children.

You can override CreateNodeObject if you need additional properties. In that case, you should also

override GetNodeItemFromNode, which creates and fills the properties of a node item object from the

current TreeView node.

 GetRootNodes should create one object for each top-level node, fill in the properties, and add it to the

passed-in collection. Here’s the code in the SFTreeViewContainer object in WebEditor.SCX that creates

two top-level nodes: one, “Pages”, for pages defined in the PAGES table I discussed in last month’s article,

and the second, “Components”, for the Web components defined in the CONTENT table.

ccPAGE_HEADER_KEY and ccCOMPONENT_HEADER_KEY are constants defined in WebEditor.H,

the include file for this form.

lparameters toCollection

local loNodeItem

loNodeItem = This.CreateNodeObject()

go top in PAGES

with loNodeItem

 .Key = ccPAGE_HEADER_KEY

 .Text = 'Pages'

 .Image = 'Page'

 .Sorted = .T.

 .HasChildren = not eof('PAGES')

endwith

toCollection.Add(loNodeItem)

loNodeItem = This.CreateNodeObject()

go top in CONTENT

with loNodeItem

 .Key = ccCOMPONENT_HEADER_KEY

 .Text = 'Components'

 .Image = 'Component'

 .Sorted = .T.

 .HasChildren = not eof('CONTENT')

endwith

toCollection.Add(loNodeItem)

 You must also implement the GetChildNodes method. Like GetRootNodes, this method fills a

collection with node item objects. In this case, these objects represent the children of a node.

GetChildNodes is passed three parameters: the type and ID for the node whose children are needed and the

collection to fill.

 Here’s the code for GetChildNodes in the SFTreeViewContainer object in WebEditor.SCX. In the case

of the “Pages” root node, the records in the PAGES table are loaded into the collection, with

ccPAGE_KEY (another constant) and the ID as the value for Key. For the “Components” root node, the

records in the CONTENT table are loaded, using ccCOMPONENT_KEY and the ID for Key. For a

particular page node, the records in PAGECONTENT for the page that don’t have a parent record are

loaded; the reason records with PARENT filled in are ignored is because they will be loaded as children of

their parent records.

lparameters tcType, ;

 tcKey, ;

 toCollection

local loNodeItem, ;

 lcWhere

do case

* If this is the "Pages" node, fill the collection with

* the pages defined so far.

 case tcType = ccPAGE_HEADER_KEY

 select PAGES

 scan

 loNodeItem = This.CreateNodeObject()

 with loNodeItem

 .Key = ccPAGE_KEY + transform(ID)

 .Text = trim(PAGE)

 .Image = 'Page'

 .HasChildren = seek(PAGES.ID, 'PAGECONTENT', ;

 'PAGEID')

 endwith

 toCollection.Add(loNodeItem)

 endscan

* If this is the "Components" node, fill the collection

* with the components defined so far.

 case tcType = ccCOMPONENT_HEADER_KEY

 select CONTENT

 scan

 loNodeItem = This.CreateNodeObject()

 with loNodeItem

 .Key = ccCOMPONENT_KEY + transform(ID)

 .Text = trim(NAME)

 .Image = 'Component'

 endwith

 toCollection.Add(loNodeItem)

 endscan

* If this is a page node or a content node with children,

* load the content nodes.

 case tcType = ccPAGE_KEY or ;

 seek(tcKey, 'PAGECONTENT', 'PARENT')

 if tcType = ccPAGE_KEY

 lcWhere = 'PAGEID = tcKey and empty(PARENT)'

 else

 lcWhere = 'PARENT = tcKey'

 endif tcType = ccPAGE_KEY

 select PAGECONTENT.ID, ;

 PAGECONTENT.CLASS, ;

 CONTENT.NAME ;

 from PAGECONTENT ;

 left outer join CONTENT ;

 on PAGECONTENT.CONTENTID = CONTENT.ID ;

 into cursor _TEMP ;

 where &lcWhere ;

 order by PAGECONTENT.ORDER

 scan

 loNodeItem = This.CreateNodeObject()

 with loNodeItem

 .Key = ccPAGE_COMPONENT_KEY + ;

 transform(ID)

 .Text = trim(iif(empty(nvl(NAME, '')), ;

 CLASS, NAME))

 .Image = 'Component'

 .HasChildren = indexseek(ID, .F., ;

 'PAGECONTENT', 'PARENT')

 endwith

 toCollection.Add(loNodeItem)

 endscan

 use

* We have a bad node type, so do nothing (we don't

* actually need the OTHERWISE statement, but this way,

* I won't get heck from Andy Kramek <gd&rfAK>).

 otherwise

endcase

Restoring the TreeView state
When you run a form that uses SFTreeViewContainer a second time, you may expect it to appear the same

as it did last time: the node that was selected is still selected and all the nodes that were expanded are still

expanded. This is handled by the SaveSelectedNode and RestoreSelectedNode methods, which are called

from Destroy and Init, respectively. These methods are abstract in SFTreeViewContainer so it’s up to you

to implement them in a subclass or instance.

 SaveSelectedNode should save the value of the Key property of the selected node and each expanded

node. You can save them anywhere you wish: the Windows Registry, an INI file, a table, and so forth.

Here’s the SaveSelectedNode method in WebEditor.SCX; it saves the information to an INI file using

WriteINI.PRG, which is included with this month’s Subscriber Downloads. cWebSitePath is the location of

the currently open Web site files.

local lcFile, ;

 lnNode, ;

 lnHandle, ;

 loNode, ;

 lcContent, ;

 laLines[1], ;

 lnLines, ;

 lnI, ;

 lcLine

with This.oTree

 if vartype(.SelectedItem) = 'O'

 lcFile = Thisform.cWebSitePath + 'settings.ini'

 lnNode = 0

 if not file(lcFile)

 lnHandle = fcreate(lcFile)

 fclose(lnHandle)

 endif not file(lcFile)

 WriteINI(lcFile, 'Nodes', 'SelectedNode', ;

 .SelectedItem.Key)

 for each loNode in .Nodes

 if loNode.Expanded

 lnNode = lnNode + 1

 WriteINI(lcFile, 'Nodes', 'Expanded' + ;

 transform(lnNode), loNode.Key)

 endif loNode.Expanded

 next loNode

* Remove extra lines from the INI file in case there

* were more expanded nodes in the INI file the last

* time it was written to.

 lcContent = ''

 lnLines = alines(laLines, filetostr(lcFile))

 for lnI = 1 to lnLines

 lcLine = laLines[lnI]

 if lcLine <> 'Expanded' or ;

 val(strextract(lcLine,'Expanded','=')) <= lnNode

 lcContent = lcContent + lcLine + ccCRLF

 endif laLines[lnI] = 'Expanded' ...

 next lnI

 strtofile(lcContent, lcFile)

 endif vartype(.SelectedItem) = 'O'

endwith

 Similarly, RestoreSelectedNode should restore these items. We won’t look at the code in

WebEditor.SCX here; it simply uses ReadINI.PRG to restore cLastNode and aExpandedNodes from the

INI file.

Summary
That’s all we have room to cover this month. Next month, we’ll discuss handling node selection, drag and

drop, and other behavior, then look at a form class that ties SFTreeViewContainer to a pageframe of

properties for the selected node.

Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the award-winning Stonefield

Database Toolkit (SDT) and Stonefield Query, author of the CursorAdapter and DataEnvironment builders that come

with VFP 8, and co-author of “What’s New in Visual FoxPro 8.0”, “What’s New in Visual FoxPro 7.0”, and “The

Hacker’s Guide to Visual FoxPro 7.0”, from Hentzenwerke Publishing. Doug has spoken at every Microsoft FoxPro

Developers Conference (DevCon) since 1997 and at user groups and developer conferences all over North America.

He is a Microsoft Most Valuable Professional (MVP) and Certified Professional (MCP). Web: www.stonefield.com

and www.stonefieldquery.com Email: dhennig@stonefield.com

