
The Mother of All TreeViews, Part 2
Doug Hennig

Last month, Doug presented a reusable class that encapsulates most of the desired behavior for a

TreeView control. He discussed controlling the appearance of the TreeView, loading the nodes in

the TreeView, and restoring the TreeView’s state. This month, he finishes the discussion of this

class and shows a form class that provides the features needed in any form that displays a

TreeView and the properties of the selected node.

Handling node selection
The NodeClick event of the TreeView fires when a node is selected. Since events should call methods, this

event calls the TreeNodeClick method of the container. TreeNodeClick just does a couple of things: it calls

SelectNode, which we’ll look at in a moment, and it saves the current Expanded state of the node and the

time the node was clicked into custom properties. That’s because TreeViews exhibit an annoying behavior:

if you double-click on a node to take some action (for example, if the TreeView shows table names and

double-clicking should open the selected table in a BROWSE window), the TreeView automatically

expands the node if it has any children. I don’t like that behavior, so TreeDblClick, which is called from the

TreeView’s DblClick event, simply restores the Expanded state of the node saved by TreeNodeClick.

 SelectNode has some interesting behavior. First, it can be called manually if you want to select a node

programmatically for some reason. Normally, SelectNode expects to be passed a reference to the node

being selected, but if you know the key value, you can pass that instead and SelectNode will figure out

which node you want. Next, it ensures the node is visible (any parents are expanded and the TreeView is

scrolled as necessary) and that only this node is selected (setting the Selected property of a node to .T.

doesn’t turn off the Selected property of any other node automatically). It then calls the

GetTypeAndIDFromNode method to obtain an object whose properties specify the type of node selected

and the ID of any underlying object (such as a record in a table), and sets the cCurrentNodeType and

cCurrentNodeID properties to these values. The properties can be used by any other methods so they can

adapt their behavior based on the type of node selected. Finally, SelectNode calls the abstract NodeClicked

method. Here’s the code for SelectNode:

lparameters toNode

local loNode, ;

 loObject

with This

* If we were passed a key or index rather than a node,

* try to find the proper node.

 do case

 case vartype(toNode) = 'O'

 loNode = toNode

 case type('.oTree.Nodes[toNode]') = 'O'

 loNode = .oTree.Nodes[toNode]

 otherwise

 return .F.

 endcase

* Ensure the node is visible and selected. Prevent two

* items from being selected by nulling the currently

* selected item before selecting this one.

 loNode.EnsureVisible()

 .oTree.SelectedItem = .NULL.

 loNode.Selected = .T.

* Set cCurrentNodeType and cCurrentNodeID to the type and

* ID of the selected node.

 loObject = .GetTypeAndIDFromNode(loNode)

 .cCurrentNodeType = loObject.Type

 .cCurrentNodeID = loObject.ID

* Call the NodeClicked method for any custom behavior.

 .NodeClicked()

endwith

 Because you’ll want additional behavior when a node is selected, such as updating some controls that

display information about the selected node, put any necessary code in the NodeClicked method of a

subclass or instance. In WebEditor.SCX, NodeClicked locates the appropriate record in the appropriate

table (based on cCurrentNodeType and cCurrentNodeID), sets lAllowDelete to indicate if the node can be

deleted (I’ll discuss this property later), and calls Thisform.Refresh so all the controls on the form can

refresh themselves.

 You must implement the GetTypeAndIDFromNode method in a subclass or instance of

SFTreeViewContainer. This method must set the Type and ID properties of an Empty object returned by

calling DODEFAULT() to the appropriate values for the selected node. For example, in WebEditor.SCX,

with the exception of the “Pages” and “Components” header nodes, the first letter of a node’s Key property

is the node type and the rest is the ID of the record the node represents. So, GetTypeAndIDFromNode just

parses the Key property of the selected node to get the proper values.

lparameters toNode

local loObject, ;

 lcKey, ;

 lcType

loObject = dodefault(toNode)

lcKey = toNode.Key

lcType = left(lcKey, 1)

if inlist(lcType, ccPAGE_KEY, ccCOMPONENT_KEY, ;

 ccPAGE_COMPONENT_KEY)

 loObject.Type = lcType

 loObject.ID = val(substr(lcKey, 2))

else

 loObject.Type = lcKey

endif inlist(lcType ...

return loObject

Supporting drag and drop
SFTreeViewContainer can be both a source and a target for OLE drag and drop operations. You may wish

to drag one node to another, drag from somewhere else to the TreeView, or drag a node from the TreeView

to somewhere else. The various OLE drag and drop events of the TreeView, such as OLEDragOver and

OLEDragDrop, call methods of the container to do the actual work. These methods do whatever is

necessary and call hook methods where you can customize the behavior. Because SFTreeViewContainer

does all the work, you don’t have to know much about how OLE drag and drop works; you simply code

tasks like whether a drag operation can start and what happens when something is dropped on a node.

 Here are the various places you can control the behavior of drag and drop operations:

 TreeMouseDown, called from the MouseDown event of the TreeView, calls the CanStartDrag

method to determine if a drag operation can start. In SFTreeViewContainer, CanStartDrag always

returns .F. so no drag operation occurs by default. You can put some code into the CanStartDrag

method of a subclass that returns .T. if the selected node can be dragged. In WebEditor.SCX,

CanStartDrag returns .F. if a “header” node (the “Pages” and “Components” nodes) is selected or

.T. for any other node.

 TreeOLEDragStart, called from the OLEDragStart event of the TreeView when a drag operation is

started, calls the StartDrag method, passing it an OLE drag and drop data object. I don’t want to

get into the mechanics of OLE drag and drop in this article (see the VFP Help topic for details),

but StartDrag calls the SetData method of the data object to store some information about the node

being dragged (the source object). It concatenates cCurrentNodeType, a colon, and

cCurrentNodeID, so any method that wants to determines the type and ID of the source node

simply has to parse that out. If you want different information, override StartDrag in a subclass.

 TreeOLEDragOver, called from the OLEDragOver event of the TreeView when something is

dragged over it, highlights the node under the mouse (you’d think the TreeView would do this

automatically, but unfortunately not), scrolls the TreeView up or down if the mouse pointer is

close to the top or bottom edges of the TreeView (again, behavior you’d think would be

automatic). It then calls GetDragDropDataObject to get an object that has information about both

the source object and node under the mouse (we’ll look at this method in a moment), then calls the

abstract CanDrop method to determine if the current node can accept a drop from the source

object. In SFTreeViewContainer, CanDrop always returns .F. so nothing can be dropped on the

TreeView by default, but in a subclass, you’ll likely examine the properties of the object returned

by GetDragDropDataObject to see if the source object can be dropped on the node or not.

WebEditorTreeView.CanDrop returns .T. if a component node is dragged to a page node or a

container node within a page (this will add the component to the page or container), if a page

content node is dragged to another page content node (this will rearrange the order of the content

on the page), or if text is dragged to the “Components” node (this will create a new component

with the text as the content).

 TreeOLEDragDrop, called from the OLEDragDrop event of the TreeView when something is

dropped on it, calls the abstract HandleDragDrop method. In a subclass, you’ll code this method to

determine what happens. For example, WebEditor.SCX handles the cases mentioned in the

previous point by updating the appropriate table as necessary and calling LoadTree to reload the

TreeView with the updated information.

 TreeOLECompleteDrag, called from the OLECompleteDrag event of the TreeView once the drag

and drop operation is complete (whether the target was successfully dropped on a node or not),

doesn’t call a hook method but does turn off node highlighting that was turned on from

TreeOLEDragOver (again, you’d think this would be automatic).

 GetDragDropDataObject is used to fill an Empty object with properties about the source object and the

node under the Mouse. This object has four properties: DragType and DropType, which contain the type of

source and target objects, and DragKey and DropKey, which contain the ID values for the source and target

objects. This method is called from TreeOLEDragOver, which passes the resulting object to CanDrop, and

TreeOLEDragDrop, which passes the object to HandleDragDrop, so these methods can determine what to

do based on the source and target objects. The default behavior of GetDragDropDataObject is to fill

DropType and DropKey by calling the GetTypeAndIDFromNode method discussed earlier to get the type

and ID for the node under the mouse, and to fill DragType and DragKey by parsing the data in the OLE

data object. You can override this in a subclass if, for example, you need numeric rather than character key

values. That’s exactly what the code in this method in WebEditor.SCX does:

lparameters toNode, ;

 toData

local loObject

loObject = dodefault(toNode, toData)

loObject.DragKey = val(loObject.DragKey)

return loObject

 Whew! That’s a lot of behavior and code. Fortunately, to support drag and drop behavior, you just need

to implement the following methods: CanStartDrag to determine if the current node can be dragged,

CanDrop to determine if the node under the mouse will accept a drop from the source object, and

HandleDragDrop to perform the necessary tasks when the source object is dropped on a node. You may

also need to override GetDragDropDataObject and TreeOLECompleteDrag, depending on your needs.

Supporting other behavior
TreeView controls have other behavior that SFTreeViewContainer supports and allows you to customize.

 If the LabelEdit property of the TreeView is set to 0, which it is in SFTreeViewContainer, the user

can change the Text property of a node by clicking on it and typing the new text. However, you

may not always want that to happen and you’ll certainly want to be notified once the user has

finished typing so you can save the change in the source data. The BeforeLabelEdit event of the

TreeView, which fires just before the user can begin typing, calls the TreeBeforeLabelEdit method

of the container, passing it a “cancel” parameter by reference. To prevent the user from editing the

current node, set the parameter’s value to .T. in a subclass; this is what TreeBeforeLabelEdit does

in SFTreeViewContainer, so editing is disabled by default. The AfterLabelEdit event of the

TreeView, fired when the user is done making changes, calls the abstract TreeAfterLabelEdit

method. In a subclass, implement what ever behavior you wish in this method.

 As I mentioned earlier, the DblClick event of the TreeView calls TreeDblClick. If you want

something to happen when the user double-clicks on a node, put code into this method in a

subclass. Don’t forget to use DODEFAULT() so the node’s Expanded state isn’t affected (or omit

that if you want double-clicking to expand a node).

 In addition to handling dragging operations, TreeMouseDown also handles a right-click on a node

by calling the ShowMenu method of the container to display a shortcut menu if one is defined. I

discussed using shortcut menus in my February 1999 column (“A Last Look at the FFC”).

SFTreeViewContainer doesn’t implement a shortcut menu; fill in the ShortcutMenu method (which

is called from ShowMenu) of a subclass if you wish.

 If you want to the user to be able to press the Delete key to remove the selected node, set the

lAllowDelete property to .T. and fill in code in the RemoveNode method. The TreeView’s

KeyDown method calls the TreeKeyDown method, which calls the RemoveNode method if the

Delete key was pressed and lAllowDelete is .T. In SFTreeViewContainer, RemoveNode simply

removes the selected node from the TreeView. However, in a subclass, you’ll likely want to take

other action, such as deleting a record from a table, in this method as well. You can even make this

behavior dynamic by setting lAllowDelete to .T. only for nodes that can be deleted. For example,

the NodeClicked method in WebEditor.SCX sets lAllowDelete to .F. for the “Pages” and

“Components” header nodes because we don’t want the user to delete those, and sets it to .T. for

all other nodes. RemoveNode deletes the appropriate record or records from the proper tables.

 If you want to the user to be able to press the Insert key to add a node, set the lAllowInsert

property to .T. and fill in code in the InsertNode method; this is handled the same way that the

Delete key is. InsertNode is abstract in SFTreeViewContainer, but in a subclass, you can

implement any behavior you wish. In WebEditor.SCX, InsertNode adds a new record to the

appropriate table, then calls LoadTree to reload the TreeView.

 If you set the Checkboxes property of the TreeView control in a subclass to .T., each node will

have a checkbox in front of it. The NodeChecked event is fired when the user checks or unchecks a

node. This event calls TreeNodeChecked, which is abstract in SFTreeViewContainer. Fill in

whatever code is necessary in this method in a subclass.

SFTreeViewForm
Now that we have a control that implements most of the behavior we’d ever need in a TreeView, what about

a form that’s hosts the TreeView and controls showing properties about the selected node? That’s what

SFTreeViewForm is for. Figure 1 shows this class in the Class Designer. As you can see, it contains more

than just an SFTreeViewContainer and a pageframe for properties; it also includes:

 a splitter control (the rectangular shape between the SFTreeViewContainer and pageframe; I

discussed this control in my July 1999 column, “Splitting Up is Hard to Do”) to adjust the relative

sizes of the TreeView and pageframe;

 a status bar control (I used Rick Strahl’s wwStatusBar control rather than the ActiveX version

because it looks better in Windows XP; see http://www.west-

wind.com/presentations/wwstatusbar/wwstatusbar.asp for an article and the source code) to display

information about the state of the form, such as whether it’s ready or currently loading the

TreeView;

 a timer to ensure the TreeView is redrawn properly when the form is resized at startup by calling

its DoVerb method (I have no idea why this is necessary, but it seems to do the trick); and

 an object to persist the form size and position (see my January 2000 article, “Persistence without

Perspiration”, for details on this object).

 It also supports a toolbar if the cToolBarClass and cToolBarLibrary properties are filled in, and

resizing controls when the form is resized (see my June 2003 column, “Ahoy! Anchoring Made Easy”, for

details).

Figure 1. SFTreeViewForm provides all of the core features of a TreeView-based form.

 There isn’t a lot of code in this form; most of it is associated with setting up the persistence object,

splitter, status bar, and toolbar.

 When a node in the TreeView is selected, how do you display the properties for that node? I created a

subclass of SFContainer called SFPropertiesContainer. This container simply has code in Refresh that sets

the Visible property to .T. only if the custom cNodeType property matches the value of

Thisform.oTreeViewContainer.cCurrentNodeType, which, as we saw earlier, is set by the SelectNode

method when a node is selected. When the user selects a node and the form is refreshed, any

SFPropertiesContainer object on the form will become visible only if it supports the type of node selected.

 To create controls that display properties for the selected node, create one subclass of

SFPropertiesContainer for every type of node you’ll use, fill it with the appropriate controls, and set

cNodeType to the node type the container is used for. Then drop each of these subclasses on the first page

of the pageframe in an instance of SFTreeViewForm and ensure they overlap. When the user selects a node

and the form is refreshed, only one of the properties containers will be visible, so the properties for the

selected node will be displayed. In Figure 2, you can see that WebEditor.SCX, an instance of

SFTreeViewForm, looks kind of messy at design time because of the overlapping controls, but, as Figure 3

shows, only the proper properties container is displayed at runtime.

Figure 2. WebEditor.SCX looks messy in the Form Designer because of overlapping properties
containers.

Figure 3. Only the proper properties container is visible at runtime.

WebEditor.SCX
We’ve been discussing the features and code in WebEditor.SCX as we went along, but let’s finish by

discussing some additional things this form supports.

 First, it supports multiple Web sites; the toolbar (instantiated from WebEditorToolBar in

WebEditor.VCX) has New and Open buttons to create or open the Web component tables (PAGES.DBF,

CONTENT.DBF, and PAGECONTENT.DBF) in a particular directory. The Init method restores the last

selected directory (saved when the form was closed the last time it was used) from Settings.INI, which is

also used to persist the form’s size and position. The SaveSelectedNode and RestoreSelectedNode methods

of the SFTreeViewContainer object in this form save and restore the selected and expanded nodes to

another INI file, also called Settings, that’s located in the Web site directory (we discussed those methods

last month). Thus, running WebEditor.SCX automatically restores the form’s size and position, opens the

last used Web site, and restores the expanded and selected status of each node. In other words, it comes up

exactly as it was when it was closed.

 Second, the pageframe has two pages: one for the properties for the selected node and one that contains

an instance of PreviewControl (contained in WebEditor.VCX) to preview the HTML for the node using a

Web browser control. PreviewControl simply instantiates the appropriate class from SFHTML.VCX (which

we discussed two months ago in my article titled “Web Page Components”), sets its properties, call its

Render method to generate the HTML, and displays the HTML in the Web browser control. When you’re

on a page node, you can also generate an HTML file for the page by clicking on the Generate button in page

1 of the pageframe.

Summary
When I started working on an editor for the Web components tables, I was planning on just whipping up a

quick and dirty form to handle the tasks. However, I’m really glad I took to time to create the classes

discussed in the past two articles because I now have some reusable classes I can use to create any type of

similar form. I hope you also find uses for these classes.

Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the award-winning Stonefield

Database Toolkit (SDT) and Stonefield Query, author of the CursorAdapter and DataEnvironment builders that come

with VFP 8, and co-author of “What’s New in Visual FoxPro 8.0”, “What’s New in Visual FoxPro 7.0”, and “The

Hacker’s Guide to Visual FoxPro 7.0”, from Hentzenwerke Publishing. Doug has spoken at every Microsoft FoxPro

Developers Conference (DevCon) since 1997 and at user groups and developer conferences all over North America.

He is a Microsoft Most Valuable Professional (MVP) and Certified Professional (MCP). Web: www.stonefield.com

and www.stonefieldquery.com Email: dhennig@stonefield.com

