
A Generic Import Utility, Part 1
Doug Hennig

Data entry forms aren’t the only way your users want to put data into their applications. Often,

important data is stored in other applications, so you need a way to import that data into your

application. This article, part 1 of a two-part series, presents a generic import utility you can add to

your applications to provide import capabilities from a variety of data sources.

I’ve written custom file import routines a hundred times. Sometimes I need to import a text file into a

customer table, other times it’s an Excel file into an invoices table. Getting tired of doing the same thing

over and over, I decided it was time to write a generic import utility.

In thinking about such a utility, I came up with the following requirements:

 Separate engine and user interface components. Sometimes I want to import without any user

interface, other times I want the user to specify the import settings. Also, it makes it easy to replace

the user interface if you want it to more closely resemble the rest of your application.

 Support for a wide variety of file types, include comma-delimited, fixed-length text files, Excel,

and even DBF files (especially handy for converting from an older application to a new one with

different data structures).

 Ability to specify which fields in the import file map to which fields in the table being imported

into, including data conversion functions.

 Support, via subclasses, for duplicate checking and other data validation.

In this issue’s article, we’ll look at the engine classes. We’ll examine the user interface classes in the

next issue.

Figure 1 shows the hierarchy of classes in the engine components. (In case you’re wondering, I created

this diagram using the Class Designer in Visual Studio 2005.) In this diagram, a line with an open arrow

indicates association (for example, instantiating SFMappingImportCollection into the oMapping property of

SFImport) while a line with a closed arrow indicates subclassing (SFImportFileSDF is a subclass of

SFImportFileText, which is a subclass of SFImportFile). A class indicated as “MustInherit” is an abstract

class, one that isn’t used directly, but must be subclassed.

Figure 1. Class diagram for the generic import utility engine classes.

SFImport

SFImport is the main import engine class. Like the other classes in this article, it’s defined in

SFImport.VCX. It’s a subclass of SFCustom, my Custom base class defined in SFCtrls.VCX. It has the

following custom public properties:

 cFilter: a filter to use against imported records. This is normally blank but you can set it to the

same expression you’d used in a SET FILTER TO command to limit which records are imported.

 cTableName: the name of the table to import records into.

 lCancelOnError: .T. if the import process should stop when an error occurs or a record is rejected.

 lContinue: .T. if we should continue processing. This property could be set to .F. when the user

presses Esc or clicks a Cancel button to stop the import.

 nDuplicateRecords: the number of duplicate records encountered.

 nFilteredRecords: the number of records not passing the filter.

 nImportRecords: the total number of records in the import file.

 nInvalidRecords: the number of invalid records encountered.

 nRecordsImported: the number of records imported.

 nRecordsProcessed: the number of import records processed.

 oImportFile: an object reference to an SFImportFile object; we’ll look at SFImportFile and its

descendents later.

 oMapping: an object reference to an SFImportMappingCollection object.

SFImport doesn’t have many public methods:

 Import: performs the import.

 LoadProfile: loads settings from a named profile.

 SaveProfile: saves the current settings to a named profile.

 StatusUpdate: a method provided so SFImport can have a StatusUpdate event.

Performing an import
To perform an import, instantiate SFImport and either set its properties appropriately for the import task or

load the settings for a previously saved import, called a profile, using the LoadProfile method.

Profiles are handy when you run the same import process several times; you don’t have to write the

many lines of code necessary to set up the SFImport object. Profiles are stored in individual tables; the

name of the table is the name of the profile.

Listing 1 is an example that shows both techniques. It imports from a fixed-length text file into a table

called Test.DBF. The first five characters of each record in the import file are imported into a field named

Field2 in Test and the second five characters are imported into Field1.

Listing 1. This example shows how to import a file by either setting up the import object
programmatically or using a profile.

lparameters tlLoadProfile

* Create a table we'll import records into.

close databases all

create table Test (Field1 C(5), Field2 C(5))

* Create the import object.

loImport = newobject('SFImport', 'SFImport.vcx')

* If we're loading a profile, do so.

if tlLoadProfile and file('profile.dbf')

 loImport.LoadProfile('profile')

* Set up the import object.

else

 loImport.cTableName = 'test.dbf'

* Create the import file object.

 loImport.oImportFile = newobject('SFImportFileSDF', ;

 'SFImport.vcx')

 loImport.oImportFile.cFileName = 'Import.txt'

* Load the import file definition.

 loField = loImport.oImportFile.oFields.Add()

 loField.nStartPos = 1

 loField.nFieldLen = 5

 loField = loImport.oImportFile.oFields.Add()

 loField.nStartPos = 6

 loField.nFieldLen = 5

* Load the mappings.

 loMap = loImport.oMapping.Add('Field1')

 loMap.uImportField = 2

 loMap = loImport.oMapping.Add('Field2')

 loMap.uImportField = 1

* Save the profile so we can use it next time.

 loImport.SaveProfile('profile')

endif tlLoadProfile ...

* Do the import.

llSuccess = loImport.Import()

if llSuccess

 messagebox(transform(loImport.nRecordsImported) + ;

 ' records of ' + transform(loImport.nImportRecords) + ;

 ' imported')

 select Test

 browse

else

 messagebox(loImport.cErrorMessage)

endif llSuccess

This sample starts by creating a table to import into; a real program would likely use an existing table,

but I wanted this demo to be self-contained. Next it instantiates an SFImport object. If the tlLoadProfile

parameter is .T. and Profile.DBF exists, LoadProfile loads the profile used last time the program was run.

Otherwise, the code sets the cTableName property to Test.DBF, since that’s the table we’ll import into.

SFImport collaborates with an object subclassed from SFImportFile, which we’ll look at later. This

object, which is instantiated into the oImportFile property, is responsible for managing the import file,

including opening and closing the file and reading in records. There are several subclasses available, each

of which deals with a different type of import file. The code in Listing 1 uses SFImportFileSDF, which

handles fixed-length text files, sometimes referred to as SDF (simple data format) files. The code sets the

cFileName property, which specifies the name of the import file, to Import.TXT.

The next block of code defines the structure of the import file. The oFields member of SFImportFile

contains a reference to an SFImportFieldCollection object, which is ultimately a subclass of Collection. The

Add method instantiates and returns an SFImportField object or one of its subclasses; in the case of

SFImportFileSDF, it’s actually an SFImportFieldText object. The code then sets properties of each

SFImportFieldText object, defining the starting position and length of each field in each record of the text

file.

Next, the code defines a mapping between the fields in the import file and the table being imported

into. The oMapping property contains a reference to an SFImportMappingCollection object, another

Collection-based class. This code specifies that Field1 in Test.DBF maps to the second field in the import

file and Field2 maps to the first one.

The sample program then saves the import settings to a profile called Profile, which you can use the

next time you run the program by passing .T. to the program, and calls the Import method to perform the

import. If the import process fails for some reason, Import returns .F. and cErrorMessage contains the

message of the error.

This program is pretty simple: it doesn’t deal with things like duplicate records or data conversion.

Let’s look at a more complex example.

Handling duplicates and data conversion
The code in Listing 2 uses a subclass of SFImport called TestImport that does duplicate checking. This

class overrides the IsDuplicate method, ensuring the record about to be added to the table doesn’t already

exist by trying to match on the contact name and zip code. If IsDuplicate returns .T., the record isn’t

imported. We’ll see where this method is called from later.

Listing 2. This more complex example handles data conversion and duplicate checking.

* Create a table we'll import records into.

close databases all

create table Customers (Contact C(40), Address C(40), ;

 City C(20), State C(2), ZipCode C(10))

* Create the import object and specify the table to import

* into.

loImport = createobject('TestImport')

loImport.cTableName = 'Customers.dbf'

* Create the import file object and specify the table to

* import from.

loImport.oImportFile = newobject('SFImportFileDBF', ;

 'SFImport.vcx')

loImport.oImportFile.cFileName = 'Names.dbf'

* Load the import file definition.

loField = loImport.oImportFile.GetFileStructure()

* Load the mappings.

loMap = loImport.oMapping.Add('Contact')

loMap.uImportField = 'NAME'

loMap.cExpression = 'proper(VALUE)'

loMap = loImport.oMapping.Add('Address')

loMap.uImportField = 'ADDRS1'

loMap.cExpression = 'proper(VALUE)'

loMap = loImport.oMapping.Add('City')

loMap.uImportField = 'CITY'

loMap.cExpression = 'proper(VALUE)'

loMap = loImport.oMapping.Add('State')

loMap.uImportField = 'SOURCE1'

loMap = loImport.oMapping.Add('ZipCode')

loMap.uImportField = 'POSTCODE'

* We only want customers in a certain range of zip codes.

loImport.cFilter = "between(Customers.ZipCode, " + ;

 "'10000', '39999')"

* Do the import and show the results.

llSuccess = loImport.Import()

if llSuccess

 messagebox('Records processed: ' + ;

 transform(loImport.nRecordsProcessed) + chr(13) + ;

 'Records imported: ' + ;

 transform(loImport.nRecordsImported) + chr(13) + ;

 'Duplicate records: ' + ;

 transform(loImport.nDuplicateRecords) + chr(13) + ;

 'Filtered records: ' + ;

 transform(loImport.nFilteredRecords) + chr(13) + ;

 'Invalid records: ' + ;

 transform(loImport.nInvalidRecords), ;

 0, 'Import Results')

 select Customers

 browse

else

 messagebox(loImport.cErrorMessage)

endif llSuccess

define class TestImport as SFImport of SFImport.vcx

 function IsDuplicate(toRecord)

 local lnSelect, ;

 loRecord, ;

 llDuplicate

 lnSelect = select()

 select (This.cAlias)

 locate for Contact = toRecord.Contact and ;

 ZipCode = toRecord.ZipCode

 llDuplicate = found()

 select (lnSelect)

 return llDuplicate

 endfunc

enddefine

This program starts by creating a Customers table and setting the cTableName property of a newly

instantiated TestImport object to that table. It then instantiates an SFImportFileDBF object because the file

we’ll import from, Names.DBF, is another table. Rather than coding the structure of the import file, the

code uses the GetFileStructure method of SFImportFileDBF to fill the oFields collection itself. It then sets

up the import mappings. Notice in this case, the mappings are set by field name rather than field number,

and that in some cases, an expression is specified for data conversion purposes. In these expressions,

VALUE is a placeholder for the actual value to convert; in this case, we’ll use PROPER() on the values.

This code also specifies a filter so only certain records are imported. It then calls the Import method and

displays the results, shown in Figure 2. Notice most records aren’t imported; they’re either filtered out or

are duplicates.

Figure 2. Running the second sample program gives these results.

SFImport: the code

Now that we’ve seen SFImport in action, let’s look at how it’s implemented.

Import, shown in Listing 3, is the key method in SFImport. This method is well-commented, so I won’t

describe it in detail here. Notice the use of the IsDuplicate, ValidateRecord, BeforeSaveRecord, and

AfterSaveRecord hook methods. These methods are blank in this class but could be filled in in a subclass to

implement whatever behavior you desire.

Listing 3. SFImport.Import is responsible for importing the records from a file into a table.

local llReturn, ;

 llAdded, ;

 llSuccess, ;

 loMap, ;

 luImport, ;

 luValue, ;

 lcField, ;

 lcFilter

with This

* Open the table we're importing into.

 do case

 case not .OpenTable()

 llReturn = .F.

* Open the import file.

 case not .oImportFile.OpenFile()

 .cErrorMessage = .oImportFile.cErrorMessage

 llReturn = .F.

* Zero the record counters and set nImportRecords to the

* total number of records in the import file.

 otherwise

 store 0 to .nRecordsImported, .nDuplicateRecords, ;

 .nFilteredRecords, .nInvalidRecords, ;

 .nRecordsProcessed

 .nImportRecords = .oImportFile.nRecords

* Import each record until we hit the end of the import file

* or we're forced to stop.

 llReturn = .T.

 .lContinue = .T.

 do while not .oImportFile.lEOF and .lContinue

* Create an object to hold the values for the fields in the

* current record. Process each field defined in the mapping

* collection. Get the current mapping definition and the

* value to put into that field from the import file.

 loRecord = createobject('Empty')

 for each loMap in .oMapping

 luImport = loMap.uImportField

 luValue = .oImportFile.GetField(luImport)

 luValue = .ConvertData(loMap, luValue)

 lcField = loMap.cFieldName

 addproperty(loRecord, lcField, luValue)

 next loMap

 lcFilter = strtran(.cFilter, .cAlias + '.', ;

 'loRecord.', -1, -1, 1)

 do case

* If this is a duplicate record, increment the duplicate

* records counter.

 case .IsDuplicate(loRecord)

 .nDuplicateRecords = .nDuplicateRecords + 1

* If there's a filter and the record doesn't match,

* increment the filtered out records counter.

 case not empty(lcFilter) and not evaluate(lcFilter)

 .nFilteredRecords = .nFilteredRecords + 1

 llSuccess = .T.

* If custom ValidateRecord() fails, increment the invalid

* records counter.

 case not .ValidateRecord(loRecord)

 .nInvalidRecords = .nInvalidRecords + 1

* So far, so good. Call the BeforeSaveRecord() hook method,

* then try to save the record. If we succeeded, call the

* AfterSaveRecord() hook method and increment the number of

* records imported.

 otherwise

 llSuccess = .BeforeSaveRecord(loRecord)

 llSuccess = llSuccess and .SaveRecord(loRecord)

 if llSuccess

 .AfterSaveRecord(loRecord)

 .nRecordsImported = .nRecordsImported + 1

 endif llSuccess

 endcase

* We'll continue processing records if we succeeded or we

* failed but lCancelOnError is .F. Move to the next record.

 .lContinue = (llSuccess or not .lCancelOnError) and ;

 .oImportFile.NextRecord()

 llReturn = .lContinue

* Increment the number of records processed and raise the

* StatusUpdate event.

 .nRecordsProcessed = .nRecordsProcessed + 1

 raiseevent(This, 'StatusUpdate')

 enddo while not .oImportFile.lEOF ...

* Close the import table.

 .oImportFile.CloseFile()

 endcase

endwith

return llReturn

Let’s discuss some of the methods called from Import. OpenTable is a relatively simple method. It

opens the table specified in cTableName and turns on table buffering so we can control when records are

written to the table. ConvertData, shown in Listing 4, applies any expression specified in the cExpression

property of the mapping object for the current field to the value read from the input table.

Listing 4. ConvertData performs any data conversion specified in the cExpression property of a
mapping object.

lparameters toMap, ;

 tuValue

local luValue, ;

 lcExpression, ;

 loException as Exception

luValue = tuValue

if not empty(toMap.cExpression)

 lcExpression = strtran(toMap.cExpression, 'VALUE', ;

 'luValue', -1, -1, 1)

 try

 luValue = evaluate(lcExpression)

 catch to loException

 This.cErrorMessage = loException.Message

 luValue = .NULL.

 endtry

endif not empty(toMap.cExpression)

return luValue

SaveRecord (Listing 5) uses INSERT INTO followed by TABLEUPDATE() to save the record in the

table. In a subclass, you could use something like SQLEXEC() if you need to update a SQL Server table

instead (in that case, you’d also override OpenTable to open a connection to the SQL Server database and

CloseTable to close the connection).

Listing 5. SaveRecord adds the record to the table.

lparameters toRecord

local llSuccess, ;

 laErrors[1], ;

 lnError

with This

 insert into (.cAlias) from name toRecord

 llSuccess = tableupdate(1, .F., .cAlias)

 if not llSuccess

 aerror(laErrors)

 lnError = laErrors[1]

 if lnError = cnERR_DUPLKEY

 .nDuplicateRecords = .nDuplicateRecords + 1

 else

 .nInvalidRecords = .nInvalidRecords + 1

 endif lnError = cnERR_DUPLKEY

 tablerevert(.F., .cAlias)

 endif not llSuccess

endwith

return llSuccess

SFImportFile
We’ve briefly seen how SFImport uses an instance of an SFImportFile subclass to deal with the import file.

Let’s look at this class and its subclasses in more detail.

Like SFImport, SFImportFile is based on SFCustom. As I mentioned earlier, its oFields property

contains a reference to a collection of SFImportField objects that describe the structure of the import file.

Because some types of files, specifically comma-separated (CSV) or SDF files, need additional properties

for fields, the cFieldClass and cFieldLibrary properties of SFImportFile specify the class to use for field

objects (currently either SFImportField or SFImportFieldText). cFileName contains the name of the import

file and cAlias contains the alias of a table the import file was read into. nRecords contains the number of

records in the import file and nRecno contains the current record number.

SFImportFile has methods to open the import file (OpenFile), move to the previous and next records

(PreviousRecord and NextRecord), fill the oFields collection with objects describing the structure of the

import file (GetFileStructure), and return the value of the specified field in the current record (GetField).

These methods are either very simple or empty in this class, so we won’t look at the code for this class.

SFImportFile isn’t used directly; instead, a subclass specific to a certain type of import file is used.

SFImport.VCX contains subclasses for CSV files (SFImportFileCSV), fixed-length text file

(SFImportFileSDF), VFP tables (SFImportFileDBF), and those file types using the IMPORT command,

such as Excel, Lotus 1-2-3, and so on (SFImportFileOther).

Let’s look at SFImportFileCSV to give you an idea of how it works. SFImportFileCSV is actually a

subclass of SFImportFileText (SFImportFileSDF is also a subclass of that class). The OpenFile method of

SFImportFileText, shown in Listing 6, creates a VFP cursor with the structure necessary to import the text

file (as specified in the oFields collection) and then reads the text file into the cursor. Since text files may

have one or more header records, the nStartRow property contains the starting row number for data records.

CreateCursor is implemented in this class but AppendFromFile is blank because the mechanism to use

depends on whether we’re importing a CSV or SDF file (SFImportFileCSV uses APPEND FROM …

DELIMITED while SFImportFileSDF uses APPEND FROM … SDF).

Listing 6. SFImportFileText.OpenFile imports a text file into a VFP cursor.

lparameters tcFilter

local llReturn

with This

 llReturn = .CreateCursor()

 llReturn = llReturn and .AppendFromFile(tcFilter)

 if llReturn

 go top in (.cAlias)

 .lEOF = eof(.cAlias)

 if not .lEOF and .nStartRow > 0

 delete next .nStartRow

 skip

 endif not .lEOF ...

 .nRecords = reccount(.cAlias) - .nStartRow

 .nRecno = recno(.cAlias) - .nStartRow

 llReturn = .nRecords > 0

 if not llReturn

 .cErrorMessage = 'No records to import'

 endif not llReturn

 endif llReturn

endwith

return llReturn

The GetFileStructure method fills the oFields collection by deducing the structure of the import file. In

the case of SFImportFileCSV, the code counts the number of commas in the first row and uses that number

plus 1 as the number of fields. All fields are assumed to be C(254) with a name of FIELD<n>, but after

calling GetFileStructure to do most of the work, you could adjust the members of the field collection as

necessary to match the actual structure. Some of the code for this method (error handling and other support

code is omitted) is shown in Listing 7.

Listing 7. SFImportFileCSV.GetFileStructure fills the field collection from the structure of the
import file.

lnHandle = fopen(.cFileName)

if lnHandle >= 0

* Get the first line and see how many commas there are.

 lcText = fgets(lnHandle)

 lnFields = occurs(',', lcText) + 1

 .oFields.Clear()

 for lnI = 1 to lnFields

 if .nStartRow > 0

 lnStart = iif(lnI = 1, 1, at(',', lcText, lnI - 1) + 1)

 lnEnd = iif(lnI = lnFields, len(lcText), ;

 at(',', lcText, lnI) - 1)

 lcField = substr(lcText, lnStart, lnEnd - lnStart + 1)

 else

 lcField = 'FIELD' + padl(lnI, 3, '0')

 endif .nStartRow > 0

* Add the field to the fields collection.

 loField = .oFields.Add(lcField)

 loField.cFieldType = 'C'

 loField.nFieldLen = 254

 next lnI

 fclose(lnHandle)

* Other code here

endif lnHandle >= 0

Summary

The classes in SFImport.VCX provide a generic import utility. However, they require setting up

programmatically, which makes them a lot of work to use and prevents your users from being able to

configure them. In the next issue, we’ll look at an import wizard that provides a front end to these classes,

making it easy to add an import function to your applications.

Doug Hennig is a partner with Stonefield Systems Group Inc. and Stonefield Software Inc. He is the author of the

award-winning Stonefield Database Toolkit (SDT); the award-winning Stonefield Query; the MemberData Editor,

Anchor Editor, and CursorAdapter and DataEnvironment builders that come with Microsoft Visual FoxPro; and the

My namespace and updated Upsizing Wizard in Sedna. Doug is co-author of the “What’s New in Visual FoxPro”

series (the latest being “What’s New in Nine”) and “The Hacker’s Guide to Visual FoxPro 7.0.” He was the technical

editor of “The Hacker’s Guide to Visual FoxPro 6.0” and “The Fundamentals.” All of these books are from

Hentzenwerke Publishing (http://www.hentzenwerke.com). Doug wrote over 100 articles in 10 years for FoxTalk and

has written numerous articles in FoxPro Advisor and Advisor Guide. He has spoken at every Microsoft FoxPro

Developers Conference (DevCon) since 1997 and at user groups and developer conferences all over the world. He is

one of the administrators for the VFPX VFP community extensions Web site (http://www.codeplex.com/VFPX). He has

been a Microsoft Most Valuable Professional (MVP) since 1996. Doug was awarded the 2006 FoxPro Community

Lifetime Achievement Award (http://fox.wikis.com/wc.dll?Wiki~FoxProCommunityLifetimeAchievementAward~VFP).

Web: www.stonefield.com and www.stonefieldquery.com, Email: dhennig@stonefield.com, Blog:

http://doughennig.blogspot.com

