
Custom UI Controls:
Splitter
Doug Hennig

Adding a splitter control to your forms gives
them a more professional behavior and allows
your users to decide the relative sizes of resizable
controls.

Over the next few issues, I’m going to discuss
some custom UI controls I frequently use in my
forms. We’ll start with a splitter control.

Splitter control
Splitters are interesting controls: they may or may
not have a visual appearance themselves, but they
allow you to change the relative size between two
or more other controls by adjusting the size of one
at the expense of the other. Splitters appear in lots
of places in Windows applications; for example,
in Windows Explorer, you can adjust the relative
sizes of the left and right panes using a splitter.
Splitters can be horizontal (they adjust objects to
the left and right) or vertical (they adjust objects
above and below), and you can have both types of
splitter on the same form.

Splitters are useful when you have multiple
resizable controls. For example, Figure 1 shows a
sample form (TestSplitter.SCX) with three edit-
boxes. If the Anchor property of these controls is
set, VFP automatically resizes them when the user
resizes the form. The problem, though, is that
there are competing resizing interests: the two
editboxes on the left side of the form should both
become taller as the form gets taller, and all three
should get wider as the form gets wider. Setting
Anchor of all three controls to 15 (resize vertically
and horizontally) causes the controls to overlap as
the form is resized. Although the Anchor property
supports values that resize the control relatively
rather than absolutely, I’ve never been happy
with the results. Instead, what we’ll do is set
Anchor so there’s no competition for resizing (the
upper left editbox gets wider and taller, the
bottom left editbox gets only wider, and the right
editbox only gets taller) and let the user decide
the relative sizes of the control using splitters.

The sample form shown has two splitters: a
vertical one between the two editboxes at the left

and a horizontal one between those editboxes and
the one at the right. Dragging the vertical splitter
up or down changes the heights of the editboxes
above and below it. Dragging the horizontal
splitter left or right changes the widths of all three
editboxes.

Figure 1. The vertical splitter is visible with a “gripper” but the
horizontal splitter is invisible.

There are two styles in which the splitter can
appear: visible with a “gripper” or invisible. The
vertical splitter appears as a grey bar with four
dots in the middle (the gripper) while the hori-
zontal one has no visual appearance other than
the shape of the mouse pointer changes to an
“east-west” arrow when it’s over the control.
Although the visible splitter is more “discover-
able,” I feel it also detracts from the appearance of
the form. You can decide which style you want
simply by setting a property of the splitter control
to .T. or .F.

I first wrote about a splitter control in the July
1999 issue of FoxTalk (“Splitting Up is Hard to
Do”). That control was fairly complex: it used a
couple of collaborating objects and OLE Drag and
Drop. The code in the splitter I’m presenting in
this article is much simpler yet the control has
more capabilities than the older one. Thanks to

Matt Slay for creating the gripper control and
adjusting the code to use this control in the
splitter.

SFSplitter
The classes that make up the splitter control are
defined in SFSplitter.VCX. The main class,
SFSplitter, is actually an abstract class; you’ll use
either the SFSplitterH or SFSplitterV subclasses,
depending on whether you want a horizontal or
vertical splitter.

SFSplitter is based on Container. It contains
an instance of the Gripper class, discussed later.
SFSplitter has changes to the following properties:

 BackColor: 192,192,192 (grey). BackColor is
only used if the lShowGripper property, dis-
cussed later, is .T.

 BackStyle: 0-Transparent. This makes the
splitter invisible at run time. If you set
lShowGripper to .T., the Init method sets this
property to 1-Opaque so the BackColor
shows.

 BorderColor: 255,0,0 (red) and BorderWidth:
2. These are only used so the splitter has a
visual appearance at design time. The Init
method changes BorderWidth to 0 so there’s
no border at run time.

SFSplitter has six custom properties:

 lShowGripper: set this to .T. to make the
splitter visible and display the gripper.

 nDots: set this to the number of dots (up to 5)
you want in the gripper.

 cObject1Name: the name of the object (it can
be a comma-delimited list if there’s more than
one object) to the left of a horizontal splitter or
above a vertical one.

 cObject2Name: the name of the object (again,
use a comma-delimited list for multiple
objects) to the right of a horizontal splitter or
below a vertical one.

 nObject1MinSize: the minimum size for the
object(s) named in cObject1Name.

 nObject2MinSize: the minimum size for the
object(s) named in cObject2Name.

The Init method of SFSplitter sets up the
control so it has the correct run time appearance.

with This

* Set BorderWidth to 0 so it doesn't appear at

* run time.

 .BorderWidth = 0

* If we're showing a gripper image (thanks to

* Matt Slay for the gripper controls), set

* BackStyle so we can see the color and set up

* the gripper.

 if .lShowGripper

 .BackStyle = 1

 .SetupGripper()

 endif .lShowGripper

* Call AdjustMinimum to adjust the form so it

* can't be sized too small.

 .AdjustMinimum()

endwith

dodefault()

SetupGripper sets up the gripper control if it’s
being used:

with This

 .Gripper.Visible = .T.

 .Gripper.SetupGripper()

endwith

Like many other methods, AdjustMinimum is
abstract in this class because the behavior
depends on whether it’s a vertical or horizontal
splitter.

The splitter action starts when the user drags
the splitter; that is, when they move the mouse
while holding down the left button. MouseMove
takes care of this:

lparameters tnButton, ;

 tnShift, ;

 tnXCoord, ;

 tnYCoord

local lnPosition

with This

 if tnButton = 1 and .Enabled

 lnPosition = .GetPosition(tnXCoord, ;

 tnYCoord)

 .MoveSplitterToPosition(lnPosition)

 endif tnButton = 1 ...

endwith

GetPosition is abstract in this class.
MoveSplitterToPosition is responsible for moving
the splitter and the controls it’s associated with. If
you want to start the splitter at a certain spot (for
example, restoring the former position when the
user runs a form again), call MoveSplitter-
ToPosition manually.

lparameters tnPosition

local lnPosition, ;

 laObjects1[1], ;

 lnObjects1, ;

 lnI, ;

 loObject, ;

 laObjects2[1], ;

 lnObjects2, ;

 lnAnchor

with This

* Move the splitter to the specified position.

* Ensure it doesn't go too far, based on the

* nObject1MinSize and nObject2MinSize

* settings.

 lnPosition = tnPosition

 lnObjects1 = alines(laObjects1, ;

 .cObject1Name, 4, ',')

 for lnI = 1 to lnObjects1

 loObject = evaluate('.Parent.' + ;

 laObjects1[lnI])

 lnPosition = max(lnPosition, ;

 .GetObject1Size(loObject))

 next lnI

 lnObjects2 = alines(laObjects2, ;

 .cObject2Name, 4, ',')

 for lnI = 1 to lnObjects2

 loObject = evaluate('.Parent.' + ;

 laObjects2[lnI])

 lnPosition = min(lnPosition, ;

 .GetObject2Size(loObject))

 next lnI

 lnAnchor = .Anchor

 .Anchor = 0

 .SetPosition(lnPosition)

 .Anchor = lnAnchor

* Now move the objects as well.

 for lnI = 1 to lnObjects1

 loObject = evaluate('.Parent.' + ;

 laObjects1[lnI])

 with loObject

 lnAnchor = .Anchor

 .Anchor = 0

 This.MoveObject1(loObject)

 .Anchor = lnAnchor

 endwith

 next lnI

 for lnI = 1 to lnObjects2

 loObject = evaluate('.Parent.' + ;

 laObjects2[lnI])

 with loObject

 lnAnchor = .Anchor

 .Anchor = 0

 This.MoveObject2(loObject)

 .Anchor = lnAnchor

 endwith

 next lnI

* Since the object sizes have changed, we need

* to adjust the form as necessary.

 .AdjustMinimum()

* Call a hook method.

 .SplitterMoved()

endwith

Note what the code does with its own Anchor
property and that of the associated objects. If you
manually change the size or position of an object
that has Anchor set to a non-zero value, the next
time the form is resized, the objects moves and
resizes based on the original values. To prevent
this, the code saves the Anchor value, sets it to
zero, and restores it again after moving and
resizing objects.

All of the methods called from MoveSplitter-
ToPosition are abstract in this class.

SFSplitterH and SFSplitterV
The two classes you’ll actually use are
SFSplitterH, a horizontal splitter, and SFSplitterV,
a vertical one. The Height and Width of these
subclasses are set such that the splitter has the

appropriate shape. MousePointer contains 9-Size
WE and 7-Size NS, respectively, and Anchor is set
to 13 (resize vertically and bound to the right
edge) and 14 (resize horizontally and bound to the
bottom edge), respectively. Let’s look at the code
in SFSplitterH to see how it implements the
desired behavior. The code in SFSplitterV is
almost identical but generally uses Top instead of
Left and Height instead of Width.

GetPosition, which is called from Mouse-
Move, determines the new location of the splitter
based on the location of the mouse:

lparameters tnXCoord, ;

 tnYCoord

return tnXCoord + This.Left - ;

 objtoclient(This, 2)

GetObject1Size, called from MoveSplitterTo-
Position, determines the size of the specified
object on the left, taking into account its minimum
width.

lparameters toObject

return toObject.Left + This.nObject1MinSize

GetObject2Size is similar but for objects on the
right.

lparameters toObject

return toObject.Left + toObject.Width - ;

 This.nObject2MinSize - This.Width

SetPosition sets This.Left to the specified
position.

MoveObject1, also called from MoveSplitter-
ToPosition, moves the specified left object.

lparameters toObject

with toObject

 .Move(.Left, .Top, This.Left - .Left, ;

 .Height)

endwith

MoveObject2 is a little more complicated but
still not a lot of code.

lparameters toObject

with toObject

 .Move(This.Left + This.Width, .Top, ;

 max(.Width + .Left - This.Left - ;

 This.Width, 0), .Height)

endwith

The last method called from MoveSplitter-
ToPosition, AdjustMinimum, adjusts the Min-
Width property of the form. After all, while the
splitter respects the settings of nObject1MinSize
and nObject2MinSize so the objects can’t be sized
too small, it wouldn’t make sense to allow the
user to size them too small by simply resizing the
form.

local laObjects[1], ;

 lnObjects, ;

 lnWidth, ;

 lnI, ;

 loObject

with This

 lnObjects = alines(laObjects, ;

 .cObject1Name, 4, ',')

 lnWidth = -1

 for lnI = 1 to lnObjects

 loObject = evaluate('.Parent.' + ;

 laObjects[lnI])

 lnWidth = max(lnWidth, loObject.Width)

 next lnI

 Thisform.MinWidth = max(Thisform.MinWidth, ;

 Thisform.Width - lnWidth + ;

 .nObject1MinSize

endwith

Gripper and GripperDot
After looking at my splitter classes, Matt Slay
decided he wanted one that had a visual
appearance, similar to the splitter in Outlook
between the Mail Folders section and the buttons
below it. After a couple of attempts involving
images, he created the Gripper and GripperDot
classes that use VFP Shape objects for the dots.

Gripper is a Container-based class that acts as
a container for the dots. It has five GripperDot
objects, although how many are actually dis-
played depends on the nDots property.

SetupGripper, called from SFSplitter.Init,
makes sure the container and the dots use the
same MousePointer value as the splitter and sets
up the container depending on whether it’s a
vertical or horizontal splitter.

local loDot

with This

* Get the number of dots to use.

 .nDots = .Parent.nDots

* Use the same MousePointer as the splitter,

* both for ourselves and each dot.

 .MousePointer = .Parent.MousePointer

 for each loDot in .Controls foxobject

 loDot.SetAll('MousePointer', ;

 .MousePointer)

 next loDot

* Adjust the gripper based on whether this is

* a vertical or horizontal splitter.

 if .Parent.Width > .Parent.Height

 .SetupForVerticalSplitter()

 else

 .SetupForHorizontalSplitter()

 endif .Parent.Width > .Parent.Height

endwith

SetupForVerticalSplitter and SetupForHoriz-
ontalSplitter are almost identical, the main
difference being replacing Top with Left and
Width with Height. They make sure the container
displays the desired number of dots and that
they’re laid out in the appropriate orientation.
Here’s the vertical version:

local lnDotWidth, ;

 lnI, ;

 loDot

with This

* Position the dots in a horizontal

* orientation for a vertical splitter.

 lnDotWidth = .GripperDot1.Width

 for lnI = 1 to 5

 loDot = evaluate('.GripperDot' + ;

 transform(lnI))

 loDot.Left = (lnDotWidth * lnI - 1) + 1

 loDot.Top = 2

 next lnI

* Adjust the container so it shows the correct

* number of dots.

 .Height = .nDots * lnDotWidth

 .Height = lnDotWidth + 1

* Center the container and set Anchor so it

* stays centered.

 .Top = (.Parent.Height - .Height)/2 - 1

 .Left = (.Parent.Width - .Width)/2

 .Anchor = 256

 endwith

MouseMove passes the drag operation up to
the splitter by calling This.Parent.MouseMove in
case the user started it on the container.

GripperDot is also based on Container. It has
three shapes with different colors to give a
shadowed appearance to each dot. As with
Gripper, the MouseMove method of each shape
and the container itself call the parent’s Mouse-
Move method to bubble the drag up to the
splitter.

Checking it out
Run the form shown in Figure 1, TestSplitter.SCX,
and try moving the splitters. Note that they only
move so far, to prevent the objects they’re
associated with from being sized too small. Also
note that as you adjust the relative sizes of the
editboxes, the MinWidth and MinHeight
properties of the form adjust, preventing you
from making the editboxes too small by resizing
the form.

Summary
A splitter control removes the need for you to
decide between competing resizing behaviors
between resizable controls and gives your users
the ability to decide for themselves the relative
sizes of the controls. Adding a splitter to a form is
as easy as dragging it to the form, setting a few
properties, and positioning it between resizable
controls. Thanks again to Matt Slay for enhancing
this control.

Doug Hennig is a partner with Stonefield Systems
Group Inc. and Stonefield Software Inc. He is the

author of the award-winning Stonefield Database
Toolkit (SDT); the award-winning Stonefield Query;
the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He has
been a Microsoft Most Valuable Professional (MVP)
since 1996. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://fox.wikis.com/wc.dll?Wiki~FoxProCommunity
LifetimeAchievementAward~VFP).

