
Email and File Transfer the
Fast (and Cheap!) Way
Doug Hennig

In the previous two issues, Doug discussed free
libraries generously provided by Craig Boyd to
compress and decompress files and encrypt and
decrypt strings and files. In this issue, he
discussed two more libraries that add MAPI email
and file upload and download capabilities to your
applications.

Emailing from VFP
Emailing from an application is a very common
thing to do these days. Maybe your users want to
automatically send invoices to their customers.
Perhaps the application should send you an email
when an error occurs. Regardless of the reasons,
how to send emails from a VFP application is a
commonly asked question in VFP forums.

Craig Boyd thoroughly explored various
means of emailing from VFP in a nine-part series
of blog posts; search his blog
(http://www.sweetpotatosoftware.com/spsblog)
for “email” to access these articles. In his articles,
he discusses open source solutions but there are
numerous commercial products available as well.

One problem you’ll encounter if you use
MAPI (Mail Application Programming Interface)
to email and you have Microsoft Outlook installed
is the dreaded Outlook security dialog shown in
Figure 1. The purpose of this dialog is to prevent
rogue applications from sending emails
containing malware from your account. Of course,
it also causes problems for legitimate applications
as well. Although there are a couple of solutions
for this issue, including Click Yes and
Redemption, in my opinion they’re kludges.

Once again, Craig Boyd comes to the rescue.
He created a library called VFPExMAPI.FLL that
provides an interface to Extended MAPI, a
mechanism for using MAPI clients like Outlook to
work with email. Craig’s library only concerns
itself with sending messages, not retrieving or
reading them. However, one of the cool things
about his library, besides the fact that it’s free,
easy to use, and has a small footprint (only 36K),
is that it avoids the Outlook security issue.

Figure 1. The dreaded Microsoft Outlook security dialog.

Here’s a list of blog entries Craig has posted
about VFPExMAPI.FLL. You can read them all if
you wish or jump to the first one for the most
current download and documentation.

 http://tinyurl.com/2wqdudm

 http://tinyurl.com/34oz9np

 http://tinyurl.com/38gou7z

Using VFPExMAPI.FLL
Like other libraries, the first thing to do is open it:
SET LIBRARY TO VFPExMAPI.FLL.

To create a plain text message, use
EMCreateMessage(cSubject, cBody, nImportance).
For nImportance, use 0 for Low Importance, 1 for
Normal Importance, and 2 for High Importance. If
you’d rather use HTML or RTF for the body, use
EMCreateMessageEx instead. Both of these
functions return .T. if they succeeded.

After creating the message, specify recipients
using EMAddRecipient(cEmailAddress, nType).
For nType, use 1 for To, 2 for CC, and 3 for BCC.
Another value, 0 for original, is supported but I
couldn’t figure out what that’s for. Call
EMAddRecipient once for each recipient. This
function returns .T. if it succeeded.

Use EMAddAttachment(cFile) to add an
attachment. cFile doesn’t have to be a full path; it
just has to be in the current directory or VFP path.
EMAddAttachment returns .T. if it succeeded.

http://www.sweetpotatosoftware.com/spsblog
http://tinyurl.com/2wqdudm
http://tinyurl.com/34oz9np
http://tinyurl.com/38gou7z

Finally, to send the message, call
EMSend(lSendImmediately). If you omit the
parameter or pass .F., the message sits in the
Outbox of their email program until the next time
a send and receive operation executes. Pass .T. to
send the message immediately. Note that this
doesn’t work for Microsoft Outlook 2002 and
2003; it acts like you passed .F. See
http://tinyurl.com/26j2fyp for details. EMSend
returns .T. if it succeeded.

Here’s an example that sends two plain text
messages: one with an attachment and one
without (please use your email address instead of
mine!):

#define MAPI_TO 1

#define IMPORTANCE_NORMAL 1

* Send a plain text message.

lcRecipient = 'dhennig@stonefield.com'

lcBody = "Here's a plain text email."

EMCreateMessage('Test message #1', lcBody, ;

 IMPORTANCE_NORMAL)

EMAddRecipient(lcRecipient, MAPI_TO)

llResult = EMSend()

 && don't send yet, just put it in the

 && Outbox

messagebox('Check the Outbox then click OK')

* Send a plain text message with an

* attachment.

lcBody = "Here's a plain text email " + ;

 "with an attachment."

EMCreateMessage('Test message #2', lcBody, ;

 IMPORTANCE_NORMAL)

EMAddRecipient(lcRecipient, MAPI_TO)

lcFile = 'Attachment1.txt'

strtofile('This is my attachment', lcFile)

EMAddAttachment(lcFile)

llResult = EMSend(.T.)

 && send both messages now

messagebox('Check the Outbox and the Inbox')

* Clean up.

erase (lcFile)

This example sends a message formatted as
HTML:

#define MAPI_TO 1

#define IMPORTANCE_HIGH 2

* Send an HTML message.

lcRecipient = 'dhennig@stonefield.com'

text to lcBody noshow

<html>

<body>

<p>Here's an HTML email.</p>

 Southwest

Fox is great!

 Check Craig Boyd's <a href=

"http://www.sweetpotatosoftware.com/SPSBlog/">

blog

<p>Sent from a VFP application</p>

</body>

</html>

endtext

EMCreateMessageEx('Test message #3', lcBody, ;

 IMPORTANCE_HIGH)

EMAddRecipient(lcRecipient, MAPI_TO)

llResult = EMSend()

 && don't send yet, just put it in the

 && Outbox

messagebox('Check the Outbox')

VFPExMAPI.FLL has a few other functions.
EMDisplay displays the user’s email editing
dialog (the same dialog that appears when you
create a message) and returns .T. if they sent the
message or .F. if they closed the dialog without
sending. EMBindEvent and EMUnbindEvent are
supposed to allow you to bind to email events,
such as messages arriving, but I got a “Function
argument value, type, or count is invalid” error
every time I tried to use it. Passing a string as a
second parameter to EMBindEvent prevented that
error but then caused VFP to crash when
Outklook received an email. Obviously, Craig’s
documentation is missing some information about
this function so until he updates the
documentation, you’re best avoiding it.

File transfer
Modern applications often need to transfer files to
and from web or FTP sites. For example, one
strategy for keeping an application up-to-date is:

 The application downloads a file from a web
site containing information about the latest
version, such as a version number.

 If the version of the running application is
earlier than the latest version, download an
installer for the new version, launch the
installer, and terminate the application.

Although there are numerous commercial
libraries that provide file upload and download
features, Craig Boyd’s VFPConnection library is
simple and even better, free. Here’s a list of blog
entries Craig has posted about
VFPConnection.FLL. You can read them all if you
wish or jump to the last one for the most current
download and documentation.

 http://tinyurl.com/3aamldr

 http://tinyurl.com/33w4dul

 http://tinyurl.com/333d4b5

Using VFPConnection.FLL
Before using VFPConnection functions, open the
library using SET LIBRARY TO
VFPConnection.FLL.

To download a file from an FTP site, use
FTPGet(cSourceURL, cDestinationFile [,
cProgressCallback [, cTraceCallback]]). If you

http://tinyurl.com/26j2fyp
http://tinyurl.com/3aamldr
http://tinyurl.com/33w4dul
http://tinyurl.com/333d4b5

need to specify a user name and password or
port, include them in cSourceURL using the
format username:password@ftpsite:port/filepath;
for example, “FTP://MyUserName:MyPassword
@MySite.com:21/MyFolder/SomeFile.txt.” I’ll
discuss the two callback parameters later.

According to Craig’s documentation, FTPGet
returns .T. if it succeeds or .F. if it fails. However,
my testing showed that it may return .T. even if it
fails. If the failure is due to a connection problem,
it returns .F. However, if some other problem
occurs, FTPGet creates the file anyway and
returns .T. The file contains HTML indicating the
problem. For example, attempting to retrieve a file
that doesn’t exist on the server results in a file
with this content (formatted here for readability):

<html>

<head>

<title>Error</title>

</head>

<body>

The system cannot find the file specified.

</body>

</html>

This complicates downloads a little: even if
FTPGet returns .T., you need to check the content
of the file to see if the download succeeded or not.

To download a file from a web site, use
HTTPGet; it accepts the same parameters and
returns the same results.

Here’s an example that downloads a ZIP file
and a web page from my web site:

lcWebSite = 'http://www.stonefield.com/'

lcFileToGet = 'TaskScheduler.zip'

lcPageToGet = 'techpap.aspx'

* Download a file using FTP.

llResult = FTPGet(lcWebSite + 'pub/' + ;

 lcFileToGet, lcFileToGet)

messagebox('Downloading ' + lcFileToGet + ;

 ' from ' + lcWebSite + ;

 iif(llResult, ' succeeded', ' failed'))

* Download a file using HTTP.

llResult = HTTPGet(lcWebSite + lcPageToGet, ;

 lcPageToGet)

messagebox('Downloading ' + lcPageToGet + ;

 ' from ' + lcWebSite + ;

 iif(llResult, ' succeeded', ' failed'))

Rather than writing the downloaded file to a
file on disk, you can instead store it to a string by
calling FTPToStr(cSourceURL [,
cProgressCallback [, cTraceCallback]]) or
HTTPToStr (same parameters). Both return the
file as a string instead. They are the equivalent of
calling FTPGet or HTTPGet followed by
FILETOSTR() to read the downloaded file into a
string, but perform better since there’s no disk
read or write involved.

Here’s an example similar to the earlier one
but using FTPToStr and HTTPToStr instead:

lcWebSite = 'http://www.stonefield.com/'

lcFileToGet = 'TaskScheduler.zip'

lcPageToGet = 'techpap.aspx'

* Retrieve a file directly to a string.

lcFile = FTPToStr(lcWebSite + 'pub/' + ;

 lcFileToGet)

messagebox(transform(len(lcFile)) + ;

 ' bytes were retrieved from ' + ;

 lcFileToGet)

* Retrieve a page directly to a string.

lcPage = HTTPToStr(lcWebSite + lcPageToGet)

messagebox(transform(len(lcPage)) + ;

 ' bytes were retrieved from ' + ;

 lcPageToGet)

There are versions of these functions that use
SSL for the connection: FTPSGet, HTTPSGet,
FTPSToStr, and HTTPSToStr. There’s also a
version for retrieving a file from a local or remote
drive: FileGet. Specify the source file as
“FILE://filepath.”

Callback during download
Downloading a large file or even a small one over
a slow connection can take a while, during which
the user may think your application has hung.
Providing download feedback such as a progress
dialog assures the user something is happening.

All of the functions discussed so far accept a
couple of optional parameters: functions or
methods to call when bytes have been retrieved
(the cProgressCallback parameter) and when
information is available about the communication
between the client and the server (the
cTraceCallback parameter). When it calls the
progress callback function, VFPConnection
creates two public variables, nConnectTotalBytes
and nConnectBytesSoFar, your function can use
to display or log progress. When it calls the trace
callback function, which is does at events such as
when attempting to make the connection and
when the connection has been made, it creates
two variables, nTraceDataType and cTraceData,
your function can use to display or log progress of
events other than the actual download.
nTraceDataType indicates the type of information
available in cTraceData: 0 = text, 1 = header in, 2 =
header out, 3 = data in, 4 = data out, 5 = SSL data
in, 6 = SSL data out, and 7 = end.

The following example is similar to code we
saw earlier but uses a progress meter in a dialog
(see Figure 2) to show the download progress:

loProgress = newobject('ProgressForm', ;

 'Samples.vcx')

loProgress.Show()

FTPToStr(lcWebSite + 'pub/' + lcFileToGet, ;

 'loProgress.Update()')

Figure 2. You can use a callback function to display the
progress of a file download.

The Update method of the form updates the
Ctl32_ProgressBar control on the form using this
code:

This.oProgress.ctlValue = nConnectBytesSoFar

This.oProgress.ctlMaximum = nConnectTotalBytes

Uploading files
VFPConnection has functions that mirror the
download functions but upload instead: FTPPut,
HTTPPut, FTPSPut, HTTPSPut, and FilePut.
These functions essentially reverse the first two
parameters: the first is the name and path for the
local file and the second is the URL for the
destination on the server, including username,
password, and port if necessary. Like their “Get”
counterparts, these functions accept progress and
trace callback functions.

Other VFPConnection functions
If you need to post data to a web site,
VFPConnection has a couple of functions for you:
HTTPPost(cPostURL, aPostData [,
cProgressCallback [, cTraceCallback]]) and
HTTPSimplePost(cPostURL, cPostData [,
cProgressCallback [, cTraceCallback]]). For the
aPostData parameter, pass HTTPPost a two-
dimensional array by reference (that is, prefixed
with @) containing the name of the post
parameters in the first column and the values in
the second. For HTTPSimplePost, specify the post
parameters using the same syntax you’d use in a
URL (Parameter1Name=Value1&Parameter2
Name=Value2 …) for the cPostData parameter.

The FTPCommands and FTPSCommands
send a series of FTP commands to an FTP site,
providing you with the same type of commands
an FTP client application typically has, such as
creating or renaming directories. These functions
accept a URL, an array of FTP commands (passed
by reference), and progress and trace callback
functions.

URLEncode and URLDecode accept a string
and return URL encoded or decoded versions of
that string. Encoding a string means converting
any character other than letters and numbers to
their encoded equivalents, which is “%” followed
by the character’s ASCII value in hex (such as
“%20” for a space). Decoding converts encoded

characters in a string back to their normal
equivalents. Here’s an example that uses
URLEncode to download file with a space in the
name:

lcWebSite = 'http://www.swfox.net/'

lcFileToGet = 'Vendor Prospectus.pdf'

* Download a file with a space in the name.

lcResult = FTPToStr(lcWebSite + lcFileToGet)

messagebox(lcResult, 0, 'Download Failed')

* Use URLEncode to resolve the problem.

llResult = FTPGet(lcWebSite + ;

 URLEncode(lcFileToGet), lcFileToGet)

SetConnectTimeout(nSeconds) allows you to
adjust how long VFPConnection waits to connect
to a URL; the default is 10 seconds. Similarly,
SetResponseTimeout(nSeconds) affects the
timeout for all other VFPConnection operations.

DateStrToEpochSec(cDateTime) converts a
date time value as a string to the number of
seconds since midnight of January 1, 1970. This is
useful because there seems to be as many ways to
express a date time value as there are web sites.
For example, RSS files use RFC 822 format, such
as Sun, 28 May 2006 20:48:40 GMT. The following
code downloads a page from VFP developer Joel
Leach’s blog and converts the latest publication
date to a VFP DateTime:

lcPage = HTTPToStr('http://weblogs.foxite' + ;

 '.com/joel_leach/rss.aspx')

lcPub = strextract(lcPage, '<pubDate>', ;

 '</pubDate>')

ltPub = DateStrtoEpochSec(lcPub) + ;

 {^1970-01-01 12:00:00}

messagebox(lcPub + ' converts to ' + ;

 transform(ltPub))

Summary
Craig Boyd has created very easy-to-use and
inexpensive (free!) libraries we can add to our
VFP applications to email and upload and
download files. You’ll love adding the new
features to your applications that these libraries
allow.

Doug Hennig is a partner with Stonefield Systems
Group Inc. and Stonefield Software Inc. He is the
author of the award-winning Stonefield Database
Toolkit (SDT); the award-winning Stonefield Query;
the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro

Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He has
been a Microsoft Most Valuable Professional (MVP)
since 1996. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

