
Make Your Menus Pop
Doug Hennig

Last issue, Doug discussed ctl32_ContextMenu,
an object-oriented menu class that’s part of the
ctl32 library. This month, he looks at another OOP
menu class, this time the VFPX PopMenu project.

I haven’t used VFP’s native menus directly in
many years. I always hated the fact that the Menu
Designer is a clunky tool and that menus are
hard-coded procedural code rather than object
oriented. Because I wanted a more flexible
menuing system, I created a set of OOP menu
classes that are now part of VFPX
(http://tinyurl.com/2a2jnak). Internally, they’re
just wrappers for the VFP DEFINE MENU,
DEFINE PAD, DEFINE BAR, and other menu-
related commands, but at least I can manipulate
my menus as objects now.

However, the other issue is that, as you can
see in Figure 1, VFP’s native menus (the one on
the left) look out of date compared to menus in
more recent applications, such as Microsoft
Outlook (the one on the right).

Figure 1. VFP's native menus look out of date compared to
newer applications.

Fortunately, a VFPX project called PopMenu,
written by LingFeng Shi, provides an entirely new
way of doing menus. Not only are they object-
oriented, they also use the native Windows
menuing system rather than VFP’s menuing
system, meaning that your application’s menus
can look just like those in Microsoft Office
applications.

One downside of PopMenu is that there’s no
documentation and all comments (in code and the
Properties window) are in Chinese. So, I dug
through the code, played with the samples, and
found that I really like this class.

To use PopMenu, download it from VFPX
(http://tinyurl.com/2c9ecr2), unzip it into any
folder, and add the main class library,
VCX_Tools.VCX, to your project.

Note that PopMenu is primarily for shortcut
rather than system menus. I’ll discuss this more in
detail later.

Creating a menu
To create a shortcut menu, instantiate PopMenu
or a subclass, then add items to it using either
Add or AddItem.

AddItem is the simpler of the two methods:
AddItem(cTitle, cCommand, vEnabled, nFlag).
cTitle is the caption for the item, cCommand is the
command to execute when the item is selected,
vEnabled is an expression which indicates
whether the item is enabled or not, and nFlag is a
numeric value indicating how the item should
appear (discussed later). These parameters, all of
which are optional, match up with properties of
menu item objects discussed later. Here’s an
example:

loMenu = newobject('PopMenu', 'VCX_Tool.vcx')

loMenu.AddItem('\<New')

loMenu.AddItem('\<Open')

loMenu.AddItem('\<Save')

Add provides more flexibility:
Add(cParentKey, cKey, cTitle, cCommand,
cPicture, vEnabled, nFlag). cParentKey is the key
assigned to the parent item for this item and cKey
is the key assigned to this item; these parameters
are used when you want to create a submenu.
cTitle, cCommand, vEnabled, and nFlag have the
same meaning as for AddItem. cPicture is the
name of an image file to use for the picture for the
item. All parameters are optional. Here’s an
example:

loMenu = newobject('PopMenu', 'VCX_Tool.vcx')

loMenu.Add('', '', '\<New', ;

 'messagebox("You chose New")', ;

 'Images\New.bmp')

loMenu.Add('', '', '\<Open', '', ;

 'Images\Open.bmp')

loMenu.Add('', '', '\<Save', '', ;

 'Images\Save.bmp')

Both Add and AddItem create a _MenuInfo
object, set its properties, add it to an internal

http://tinyurl.com/2a2jnak
http://tinyurl.com/2c9ecr2

collection, and return a reference to the object.
This object has the following properties you can
set as necessary:

 cCommand: the command to execute when
the item is selected. This isn’t really needed
because you can use a CASE statement after
displaying the menu to decide what to do.

 cEnabled: an expression which indicates
whether the item is enabled or not. This can
either be a logical value or an expression
which evaluates to a logical value. For
example, “GetUserRights(‘Payroll’)” calls the
GetUserRights function to determine whether
the user has rights to payroll and disables the
item if not.

 cKey: the key for the item. If you don’t assign
a key, a SYS(2015) value is used.

 cMessage: the status bar text for the item.

 cParentKey: the key for the parent item for
this item. If this contains a valid key, this item
appears in a submenu of the parent item.

 cPicture: the name of an image file to use for
the item.

 cTitle: the caption for the item. Use “\<” or
“&” to indicate that the following character is
a hotkey. Use “\-“ for a separator line.

 nFlags: there are several constants defined in
WIN32API.H you can use for nFlags:

 MF_MENUBARBREAK (0x20): places the
item in a new column without a vertical
separator between columns.

 MF_MENUBREAK (0x40): like
MF_MENUBARBREAK but separates the
columns with a vertical line.

 MF_CHECKED (0x8): displays a
checkmark next to the item. This is
ignored if “owner drawn” menus are
used (discussed later).

 nHeight: the height of the bar in pixels. The
default is the same as the nItemHeight
property of PopMenu, which I’ll discuss later.

 nIndex: the order for the item (1 for the first
item, 2 for the second, etc.).

 nWidth: the width of the bar in pixels. The
default is the same as the nItemWidth
property of PopMenu, which I’ll discuss later.

 oRefMenu: if this contains a reference to
another PopMenu object, that object is used as
a submenu for this item. If you set this, be
sure to call CreateContext(oItem,

oItem.oRefMenu) to properly initialize the
submenu.

PopMenu contains a few helper methods:

 SetMessage(cMessage [, nOrder]): sets the
message for the specified menu item; if
nOrder isn’t specified, the last added item is
used.

 SetPicture(cImageFile [, nOrder]): sets the
picture for the specified menu item; if nOrder
isn’t specified, the last added item is used.

 Clear(): removes all items from the menu.

To display the menu, call Show. Here’s an
example that displays a typical “edit” menu. Each
item is enabled if the appropriate function in the
Edit menu is enabled and performs the same
action when selected.

loMenu = newobject('PopMenu', 'VCX_Tool.vcx')

with loMenu

 .Add('', '', 'Cu\<t', ;

 "sys(1500, '_MED_CUT', '_MEDIT')", ;

 'Images\CutXPSmall.bmp', ;

 "not skpbar('_MEDIT', _MED_CUT)")

 .Add('', '', '\<Copy', ;

 "sys(1500, '_MED_COPY', '_MEDIT')", ;

 'Images\CopyXPSmall.bmp', ;

 "not skpbar('_MEDIT', _MED_COPY)")

 .Add('', '', '\<Paste', ;

 "sys(1500, '_MED_PASTE', '_MEDIT')", ;

 'Images\PasteXPSmall.bmp', ;

 "not skpbar('_MEDIT', _MED_PASTE)")

 .Add('', '', 'Clear', ;

 "sys(1500, '_MED_CLEAR', '_MEDIT')", ;

 , "not skpbar('_MEDIT', _MED_CLEAR)")

 .Add('', '', '\-')

 .Add('', '', 'Select \<All', ;

 "sys(1500, '_MED_SLCTA', '_MEDIT')", ;

 , "not skpbar('_MEDIT', _MED_SLCTA)")

endwith

loMenu.Show()

As another example, the code in the
RightClick method of TestPopMenu.SCX creates
the relatively plain looking menu shown in Figure

2.

Figure 2. PopMenu can create object-oriented menus.

Getting fancier
So far, other than having an object-oriented menu,
PopMenu hasn’t done much for us yet. However,
let’s look at some properties that make menus
really pop (pun intended).

The key to having more modern looking
menus is setting lOwnerDraw to .T. This provides
much better control over the appearance. The
menu shown in Figure 3 has this property set to
.T. and a few other properties discussed later set
so the menu has an Office-like appearance.

Figure 3. Setting lOwnerDraw to .T. is the key to more modern
looking menus.

PopMenu has a few properties that control
the dimensions of the menu items, as shown in
Figure 4.

Figure 4. PopMenu has properties controlling the dimensions
of menu items.

I created a subclass of PopMenu called
SFOfficeMenu (in SFPopMenu.VCX) that has
several properties set to create the menu shown in
Figure 3. It has lOwnerDraw set to .T., nBarWidth
set to 22, nItemHeight and nTextLeft set to 23, and
nTextMargin set to 8. Other properties are set as
described below. I created a subclass of

SFOfficeMenu called SFEditMenu that provides a
pre-defined menu with Cut, Copy, Paste, Clear,
and Select All menu items.

nMenuBackColor is the color for the
background of the menu items. It defaults to -1,
which means use the system color for menus.
SFOfficeMenu has this property set to RGB(255,
251, 247).

nBarStyle controls the appearance of the bar
to the left of the menu items. The values are:

 0: the bar doesn’t have a separate appearance
from the menu items.

 1: fills the bar with the color specified in
nBarFillColor1.

 2: fills the bar with a left-to-right horizontal
gradient from nBarFillColor1 (RGB(255, 251,
247) in SFOfficeMenu) to nBarFillColor2
(RGB(214, 215, 206) in SFOfficeMenu).
SFOfficeMenu has nBarStyle set to 2.

 3: fills the bar with a vertical gradient from
nBarFillColor2 (top) to nBarFillColor1
(bottom).

If lSelectedEnabled is .F. (the default), a
selection bar appears when you move over
disabled items. Set this to .T. to display no bar.

If lShareIcons is .T. (the default), images for
menu items are cached in a collection that’s
shared between all menus.

nSelectedForeColor determines the color of
the text for the selected menu item; the default of -
1 means use the system highlight text color.
SFOfficeMenu has this set to RGB(0, 0, 0).

nSelectedStyle affects how the selected menu
item appears. A related property is
nSelectedImageStyle, which affects how the image
for the selected menu item appears. These
properties have the following values:

 0: a solid bar of the color specified in
nSelectedBackColor (the default of -1 means
use the system highlight color) appears over
the selected menu item. If
nSelectedImageStyle is 0, the image is
included in the same bar or rectangle as the
text of the menu item; otherwise, it appears in
a separate rectangle.

 1: a rectangle appears over the selected menu
item. The border of the rectangle uses
nSelectedBorderColor as its color (the default
of -1 means use the system highlight color).
The fill color is specified in
nSelectedBackColor if it isn’t the default of -1;
if it is the default, the fill color is a blend of
nSelectedBorderColor (or the system
highlight color if it’s -1) and nMenuBackColor

(or the system menu color if it’s -1).
SFOfficeMenu has nSelectedStyle set to 1.

 2: same as 1 but uses a rounded rectangle
with nSelectedRoundX and nSelectedRoundY
specifying the roundedness of the rectangle
(they both default to 12).

 3: displays a raised rectangle over the selected
menu item. The fill color is specified in
nSelectedBackColor if it isn’t the default of -1;
if it is the default, the system highlight color is
used.

 4: like 3, but displays a sunken rectangle.

If the user closes the menu without selecting
an item, Show returns .NULL. nReturn
determines what Show returns when the user
selects an item:

 0 (the default): return the index of the selected
menu item.

 1: return the value of the cKey property for
the selected item.

 2: return the title of the selected item.

 3: returns an object reference to the selected
item.

Show can accept four optional parameters.
The first two are X and Y coordinates for the
menu; if they aren’t specified, the menu is
positioned at the mouse location. Pass .F. for the
third parameter if the X and Y coordinates are
relative to the VFP window or .T. if they’re
absolute values (that is, relative to the screen). The
last parameter is a numeric additive flag
indicating how the menu should appear. Use one
of the following values to specify how to position
the menu horizontally:

 0x4 (constant TPM_CENTERALIGN in
Win32API.H): centers the menu horizontally.

 0x0 (TPM_LEFTALIGN): positions the menu
so its left side is at the X coordinate.

 0x8 (TPM_RIGHTALIGN): positions the
menu so its right side is at the X coordinate.

Use one of the following values to specify
how to position the menu vertically:

 0x20 (TPM_BOTTOMALIGN): positions the
menu so its bottom is at the Y coordinate.

 0x0 (TPM_TOPALIGN): positions the menu
so its top is at the Y coordinate.

 0x10 (TPM_VCENTERALIGN): centers the
menu vertically.

Use one of the following values to specify
which mouse button can be used:

 0x0 (TPM_LEFTBUTTON): only the left
mouse button can select items.

 0x2 (TPM_RIGHTBUTTON): the user can use
both the left and right buttons.

There are several values (and associated
constants) that provide animation of the menu,
but as with ctl32_ContextMenu, I couldn’t get
these to work.

You can also display the menu by calling
ShowBy(oObject [, tnAddX [, tnAddY]]), where
oObject is a reference to an object whose upper-
left corner is used as the location of the menu and
tnAddX and tnAddY are offset values to add to
the X and Y values.

I fixed a few issues in PopMenu; see the
comments in Init, CreateContext, CreateMenus,
and Show for details.

To try out PopMenu, run the TestPopMenu
form. Right-click in the text box to see a VFP
shortcut menu, then turn on “Office-style menu”
to use PopMenu instead. Right-click the form; it
displays either a plain menu (“Office-style menu”
turned off) or an Office-like menu (that setting
turned on). Try turning on “Multi-column” and
“Select disabled items” to see the effect they have.

What about system menus?
We’ve seen that PopMenu can make your shortcut
menus look more modern. However, what about
system menus? Unfortunately, that’s a little more
difficult to do. PopMenu uses the Windows API
TrackPopupMenu function, which displays a
shortcut menu. Shortcut menus are almost
identical to popup menus (the menu that appears
under a pad in a menu bar) except for one thing:
they’re modal. You have to click off a shortcut
menu to close it without making a selection. A
popup menu, on the other hand, closes when you
move the mouse off it.

There’s one other issue: where to display the
menu. With shortcut menus, you expect the menu
to appear at the mouse location. However, popup
menus should appear directly under the menu
pad, regardless of where the mouse is on that pad.

I created a sample program,
TestPopMenu.PRG, that shows how to use
PopMenu with a system menu bar. This program
defines a menu bar using DEFINE PAD functions
and uses ON SELECTION PAD to call functions
that use PopMenu to display a menu. The vertical
location for the menu can be determined using
some SYSMETRIC() functions:

lnY = _vfp.Top + sysmetric(9) + ;

 sysmetric(4) + sysmetric(20)

The complication is that the horizontal
location of the menu isn’t the location of the
mouse but the location of the pad, which can’t
really be determined easily. For example, the
location for the Tools pad uses a empirically
determined offset of 40 to determine where the
menu should go:

lnX = _vfp.Left + sysmetric(3) + 40

An easier solution is to dispense with the VFP
menuing system and implement your own. I
created a couple of classes in SFPopMenu.VCX,
SFMenubar and SFPadButton, that provide a
menu bar and pads as a proof of concept.
TestSystemMenu.SCX uses these classes for a
simple menu in a form.

Regardless of which mechanism you use, you
can’t escape the fact that the menus are modal, so
the user can’t slide the mouse from one pad to the
next once they’ve clicked a pad; they have to click
on the next pad to close the current popup and
open the next one.

The Windows API also contains functions for
dealing with system menu bars, so hopefully
LingFeng Shi or someone else will implement
them to allow us to deal with menus more
gracefully.

Summary
PopMenu provides an easy way to add object-
oriented shortcut menus that look like menus in
modern applications such as Microsoft Office.
However, it needs more work if you want to do
something similar for system menu bars.

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He has
been a Microsoft Most Valuable Professional (MVP)
since 1996. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

