
New UI Classes From Carlos
Alloatti
Doug Hennig

Carlos Alloatti is a prolific developer of classes
that can make your application’s user interface
sparkle. This month, Doug looks at a couple of
new libraries Carlos created that can replace the
VFP Toolbar and provide a tabbed document
interface to your applications.

Carlos Alloatti specializes in developing libraries
VFP developers can use to make the user interface
of their applications more attractive, modern-
looking, and easier to use. His web site,
http://www.ctl32.com, has downloads and
documentation for many libraries I use and I’m
sure you’ll find useful. I discussed many of these
in the July and September 2011 and January 2012
issues of FoxRockX (“The ctl32 Library, Parts 1, 2
and 3”).

Carlos recently released two new libraries:
TBZ and TDI. TBZ provides easy-to-use buttons
that replace the VFP Toolbar. TDI provides a
tabbed document interface to forms in an
application. I’ll discuss both of these libraries in
this article.

Toolbar buttons
VFP developers often use a toolbar instead of
adding buttons directly to a form because controls
in a toolbar don’t get focus. However, toolbars
aren’t the easiest controls to work with:

 The user can move and close a toolbar,
which often leads to support calls like
“how do I get the toolbar back.” They can
even undock the toolbar with an
inadvertent double-click.

 You can’t create a toolbar instance; you
have to create a separate class even if only
one instance of the toolbar is used and it’s
never subclassed.

 Toolbars are odd controls to work with at
design time. When you drop a control on
one, VFP adds it to the left edge of the
toolbar regardless of where you actually
dropped the control. Separators are weird

to work with too; I always have to
reposition them a couple of times to get
them to the correct place.

 You can’t visually add a toolbar to a form;
doing so creates a formset.
Programmatically adding one to a form is
odd too: you have to do it someplace like
Activate rather than Init or it won’t attach
to the form.

 Toolbars take up some of the form height
but you can’t see that at design time so
you have to pretend the toolbar is there
when sizing the form and placing
controls.

Carlos’ TBZ library, available for download
from http://www.ctl32.com/tbz/tbz.html,
provides controls you add to a VFP form rather
than a toolbar. Because they act like normal VFP
controls at design time and don’t receive focus at
runtime, you avoid the issues discussed above
while getting the benefits of a toolbar.

One other benefit you get from TBZ is that in
additional to command buttons (the
_TBCommand class), checkboxes (_TBCheck and
_TBToggle for a graphical version), and radio
buttons (_TBRadio), Carlos provides drop-down
(_TBDropDown and _TBDropDownVert) and
split button (_TBSplitButton and
_TBSplitButtonVert) controls. These are buttons
that include shortcut menus; in the case of a split
button, you can either click the button to take
some action or the down arrow beside it to
display the menu. See Figure 1 for an example.

http://www.ctl32.com/
http://www.ctl32.com/tbz/tbz.html

Figure 1. The TBZ split button provides both a command
button and a shortcut menu.

Using TBZ
Start by adding _TBZ.VCX to your project. When
you build the project, 74 PRGs, all starting with
“_api,” are automatically added. These PRGs use
a rather ingenious technique: each declares a
Windows API function with an alias the same as
the PRG name and then calls that function. The
benefit of this approach is that there’s no need to
declare functions before they’re used. For
example, when the Windows API CreateFont
function is needed, call _APICreateFont. The first
time it’s called, the PRG is executed, which
declares CreateFont as _APICreateFont and then
executes it. The second time _APICreateFont is
used, the Windows API function is called instead
of the PRG because of the order in which VFP
looks for names.

In addition to the PRGs, eight PNGs,
_TBZ01.PNG through _TBZ08.PNG, are
automatically added to the project. These PNGs
contain images used for the various styles of the
controls.

To create a toolbar in a form, drop instances
of TBZ classes onto the form. For example, to
create the sample TBZToolbar.SCX included with
the downloads for this article, I dropped two
_TBSplitButton, two _TBCommand, and a
_TBToggle onto the form and positioned them
accordingly. I also dropped a _TBLine on the form
to act as a separator line for the toolbar. The
interesting thing about _TBLine is that it sizes
itself automatically to the width of the form so
you don’t have to worry about sizing it, setting
Anchor to handle resizing, etc.

After adding the controls to the form, add
code to the Click method of each. For
_TBDropDown and _TBSplitButton, add code to
the DropDownClick method to define and display
a shortcut menu and take the necessary action.

Listing 1 shows the code that displays the menu
shown in Figure 1. In a real application, the
MESSAGEBOX statement would be replaced with
the appropriate code.

Listing 1. This code displays a shortcut menu for the first split
button in the form.

local lnResult

This.tbMenuItemAdd(1, 0, 0, 0, 0, ;

 '&Order', 'invoice.png')

This.tbMenuItemAdd(2, 0, 0, 0, 0, ;

 '&Customer', 'customer.png')

This.tbMenuItemAdd(3, 0, 0, 0, 0, ;

 '&Item', 'item.png')

lnResult = This.tbMenuShow()

do case

 case lnResult = 1

 messagebox('Create new order')

 case lnResult = 2

 messagebox('Create new customer')

 case lnResult = 3

 messagebox('Create new item')

endcase

Add items to the shortcut menu by calling the
tbMenuItemAdd method of the button and
display the menu by calling tbMenuShow. The
parameters for tbMenuItemAdd are:

 The ID of the item. This is the value
returned by tbMenuShow when the user
selects an item.

 The parent ID of the item. To create a
submenu, specify the ID of the item this
item should be under. Figure 2 shows an
example of a submenu.

 The type of menu item. You can use
constants defined in _TBZ.H for the
values. The choices are 0 for a normal
item, 1 for a separator, 2 to display a
button as a checkmark, and 3 if the item
contains a submenu.

 1 if the item is checked (or displays a
button if the third parameter is 2) or 0 if
not.

 0 if the item is enabled or 1 if not.

 The caption of the item. Use & to specify
that the next character is the hot key for
the item.

 An image file to use as a picture for the
item.

Figure 2. Submenus are easy to create using tbMenuItemAdd.

You may also want to set properties of the
controls. There are a lot of properties that control
the appearance of the controls, all documented on
the TBZ web page, but the main ones are listed in
Table 1.

Although it’s just a sample form and doesn’t
do much, TBZToolbar.SCX shows one use for split
buttons: allowing the user to select one of several
choices. For example, clicking New (the leftmost
button) would add a new customer but clicking
the drop-down part of the button allows the user
to select what to create a new record of: Order,
Customer, or Item. Similarly, clicking Open (the
second button in the toolbar) would display a
dialog of orders for the current customer but
clicking the drop-down displays the most recent
orders for the customer.

Table 1. The most common properties of the TBZ controls.

Property Description

Picture The image to use for the button.

Caption The caption for the button.

PicturePosition Determines where the picture goes;
only applicable when Caption isn’t
blank.

Alignment Specifies the alignment of the caption.

ToolTipText The tooltip to display for the control.
TBZ uses a custom tooltip window
rather than the VFP window.

tbAlign Controls how automatic positioning
works: 0 means no automatic
positioning, 1 (the default) positions
controls starting at the left edge of the
form, and 2 positions them starting at
the right edge.

tbGroupID Radio controls with the same value act
like a group.

tbMarginH The space between the left or right
edge of the form and the first control
when tbAlign is 1 or 2.

tbMarginV The space between the top or bottom of
the form and the controls when tbAlign
is 1 or 2.

tbStyle Specifies which of the eight PNG files
provides the visual style for the control;
see the TBZ web page for screen shots
of the various styles.

tbValue The value of the radio button or
checkbox; use this instead of Value.

TBZ issues
There are a couple of things I couldn’t get to work
at first. One was that neither drop-down nor split
buttons would display a shortcut menu. The
cause turned out to be a case-sensitivity issue in
the _GetMouseStatus method of _TB, the parent
class for the TBZ controls. Replace the
commented-out line in that method with the one
following it:

*** If m.laMouse[1].Name = 'UISHAPER' Then

 If upper(m.laMouse[1].Name) = 'UISHAPER'

The second wasn’t really a problem, just a
difference in the way the controls worked from
the documentation. The TBZ web page states that
the controls are automatically laid out at runtime,
similar to how a VFP Toolbar works. However, I
found I had to manually position the controls
where I wanted them to appear because they
weren’t automatically positioned. The cause

turned out to be simple: the TBZ controls use
BINDEVENT to bind their _ArrangeControls
method, which does the positioning, to the Init
method of the form, and my sample form didn’t
have code in Init, which caused the event binding
to fail. Adding a comment to Init took care of that
issue.

How it works
Carlos has a good description of how TBZ works
on the TBZ web page. He includes information on
how to create your own style PNG files if you
want to use a different theme as well as GDI+
drawing issues he ran into and how he solved
them.

Tabbed document interface
Some users live in their Internet browsers. They’re
used to a web page just being another tab within
their browser window. Carlos’ TDI library,
available for download from
http://www.ctl32.com/tdi/tdi.html, allows you
to create a similar user interface for your
application: each open form is just another tab
within a main window. Figure 3 shows an
example, with three forms open as tabs.

Figure 3. The TDI library makes it easy to create a tabbed
document interface.

Typically, the first tab in such an interface is a
menu of available forms or some type of home
page for the application, such as that shown in
Figure 4. When the user opens a form, it appears
as a new tab. The tab may display an icon and
includes an “X” to close the tab. The home button
at the right edge of the main window selects the
first tab. As more tabs are opened, the tab width
automatically narrows as necessary to fit all of the
open tabs in the window. Tabs can be rearranged
by dragging them to the desired tab position. The
first tab is special in that it doesn’t display an icon
and can’t be closed or rearranged.

Figure 4. The first tab is usually a menu or home page.

Using TDI
Start by adding _TDI.VCX to your project. When
you build your project, 29 PRGs, all starting with
“_api” and using the same technique the PRGs
used by TBZ do, are automatically added. Only 10
of the PRGS are the same as those in TBZ so if you
use both libraries in an application, you’ll have 93
of these PRGS in your project.

The next step is to create the main window for
the application. This form hosts the forms in your
application rather than _SCREEN so it’ll be a top-
level form. To hide _SCREEN, create a
CONFIG.FPW file containing at least
SCREEN=OFF (you’ll likely want other lines as
well, such as RESOURCE=OFF) and add it to the
Text Files section of your project. Create a form
and set ShowWindow to 2-As Top-Level form.
Drop a TDIMain object on the form and add code
to its TDIInit method to run another form, the one
that’ll display the content for the first tab. For
example, Main.SCX (shown in Figure 5), the form
that acts as the main window in the samples for
this article, just has one line of code in TDIInit:

do form Main

Figure 5. The form for the main window just consists of an
instance of TDIMain.

There are only a few properties of TDIMain
you may wish to change:

http://www.ctl32.com/tdi/tdi.html

 TabFirstWidth: the width of the first tab.
If you leave this at the default of 0, the tab
is automatically sized.

 TabMaxWidth: the maximum width of a
tab. The default is 200.

 TDICenterDialogs: set this to .T. (the
default) to center system dialog windows,
such as MESSAGEBOX(), on the form or
.F. to center them on the Windows
desktop.

 TDIGoToFirstTabOnClose: set this to .T.
to automatically select the first tab when a
tab is closed or .F. (the default) to select
the next logical tab.

Now create a form that contains the contents
of the first tab. Set ShowWindow to 1-In Top-
Level Form and Caption to the text displayed on
the first tab. Add whatever controls to the form
you wish. In the case of Menu.SCX (shown in
Figure 6), which is the form used for the first tab
in the samples for this article, I added some labels
and some instances of a custom class consisting of
an image and label to act as big buttons (the
“Customers,” “Orders,” and other buttons shown
in Figure 6). The Click method of each “button”
runs another form using DO FORM
SomeFormName or displays a message box.

Figure 6. The form for the main tab usually contains buttons to
launch other forms.

Finally, create the other forms used by the
application, being sure to set ShowWindow to 1-
In Top-Level Form, Caption to the text displayed
on the tab, and Icon to the desired icon for the tab.
One thing you’ll find is that you might want to
move the controls a little to the right and down
from the top from where you might normally put
them. For example, I usually start controls 10
pixels from the left and 10 from the top but that
puts them too close to the edges when used with
TDI. I suggest starting them at least 15 pixels from
the left and top edges.

To display the main window for the
application, use DO FORM MainWindowName or

instantiate and call the Show method of the main
window class you created.

How it works
Carlos has a brief description of how TDI does its
magic on the TDI web page. Basically, one of his
classes monitors VFP window creation and takes
over how the form is displayed inside the top-
level form.

Summary
Carlos Alloatti has created a couple of cool new
libraries to add new features to your application’s
user interface. The TBZ library allows you to
replace the VFP Toolbar with something that has
all of the benefits of toolbars but none of the
pitfalls. The TDI library provides a tabbed
document interface for your application. Not all
applications will benefit from this type of
interface but it’s certainly an interesting concept
for form-centric applications.

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was
a Microsoft Most Valuable Professional (MVP) from
1996 to 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

	New UI Classes From Carlos Alloatti
	Toolbar buttons
	Using TBZ
	TBZ issues
	How it works

	Tabbed document interface
	Using TDI
	How it works

	Summary

