
Add Gauges to Your
Applications
Doug Hennig

They say a picture is worth a thousand words.
That’s especially true with a gauge control, which
allows a user to see at a glance how some value
compares to a goal amount. In this month’s
article, Doug presents an easy-to-use gauge
control you can use in your VFP applications.

People like visual images. Most people would
rather see a chart than columns of raw numbers
because it’s easier to see the relationships between
items visually. Adding analysis tools like charts
and gauges to your applications make them much
more valuable to your users.

What is a gauge? A gauge is an image that
shows how a single value compares to a
maximum or goal value. The two values can be
anything: current sales compared to budget,
volume to date compared to the maximum
allowable volume, and so on. For example, many
charitable organizations show the current status
of their fund raising campaigns as a thermometer.
The top of the thermometer represents the value
of the fund raising goal and the height of the bar
inside the thermometer represents how much
money has been raised so far.

The most common type of gauge looks like a
speedometer in a car; see Figure 1 for an example.
The end of the gauge represents the maximum
value and the position of the needle represents the
current value. Color bands around the outside
edge of the gauge show the ranges of certain
categories. For example, in Figure 1, the red band
indicates where sales are too low, the yellow band
where they’re acceptable but not great, and the
green band where sales should be to make the
boss happy.

We recently added support for gauges to my
company’s flagship product, Stonefield Query
(www.stonefieldquery.com). In this article, I’ll
show you how we did it.

Figure 1. It's easy to draw beautiful gauges using the Gauge
class (although this is printed in black and white, the actual
gauge is full color).

The Gauge class
There’s just a single class used to draw gauges:
Gauge in Gauge.VCX (additional components are
also required as I’ll discuss later). It’s a subclass of
Custom so it has no visible appearance at
runtime. How does the gauge appear then? After
you call the DrawGauge method, the cImage
property is set to the bytes for the gauge image.
You can use FILETOSTR() to write the contents of
cImage to a file, such as if you want to use the
gauge in a report, or set the PictureVal property of
an Image object if you want it to appear in a form.
For example, SampleGauge.SCX, one of the forms
included in the downloads for this article, uses
this code to have the Gauge object referenced in
the oGauge property draw a gauge in an Image
named imgGauge:

with This

 .oGauge.nSize = .imgGauge.Width

 .oGauge.DrawGauge()

 .imgGauge.PictureVal = .oGauge.cImage

endwith

http://www.stonefieldquery.com/

Table 1 lists the properties of the Gauge class.
As you can see, there are quite a few of them.
Most of them affect the appearance of the gauge.
The best way to check out how the various
properties work is by running SampleGauge.SCX,
shown in Figure 2. Each control has a tooltip
specifying which property it controls. Changing
any setting immediately redraws the gauge so
you can instantly see the effect.

Figure 2. SampleGauge.SCX allows you to experiment with
the properties of the Gauge object.

Here are comments about some of the
properties:

 nGlossiness controls how bright the
“glossy” ellipse that appears at the top of
the gauge is. This ellipse gives the illusion
of reflected light, as if the gauge was
made of glass or plastic.

 The gauge size is determined by the nSize
property; since a gauge is drawn as a
square, the height and width of the image
are both set to nSize.

 By default, the labels indicating the values
around the gauge are sized based on the
size of the gauge: the larger the gauge, the
bigger the labels. Set lAdjustLabelSize to
.F. if you want to use the font size
specified in nLabelFontSize instead.

 cFormat indicates how the labels are
formatted. It has to use .NET syntax for
number formats for reasons that will be
obvious later. .NET syntax uses “#” as an
optional digit placeholder, “0” as a digit
placeholder that displays 0 if there is no
digit, “.” for a decimal separator, and “,”
to use a thousands separator (unlike VFP,
only one is needed in the format even
when numbers exceed one million). The
format string is surrounded with “{0:”
and “}”, so the default of “{0:#,##0}”

specifies no leading zeros, no decimal
places, and thousands separators.

 nBand1End indicates where on the outer
rim of the gauge the first color band
appears, such as the red band in Figure 1.
Only the end value is needed, since the
band starts at 0. Similarly, nBand2End
and nBand3End indicate the ending
positions of the second and third color
bands, with the starting positions being
the end of the previous band.

 By default, nBand1End, nBand2End, and
nBand3End are assumed to be
percentages, so a value of 35 indicates an
ending position of 35% of the gauge arc. If
you want to use amounts instead, such as
25,000, set lValuesAsPercentages to .F.

 Since the gauge can’t go above 100%, the
needle is pegged at the maximum value
when nValue is greater than nMaxValue.
Because you may want the maximum
value to be a goal that could be exceeded
(for example, a salesperson’s monthly
quota may be $10,000 but they certainly
could sell more than that), you can set
nGoalPosition to a lower value than 100.
For example, if you set it to 75, then the
nMaxValue value appears at 75%.

 For larger numbers (over 1,000), the labels
can overlap the major tick marks, so
increase the value of nLabelDistance
accordingly. Alternatively, you can set
nLabelFactor to a value to divide the
labels by so smaller numbers are shown.
For example, if you set nLabelFactor to
10000, the 5,000 position on the gauge
appears as “5.”

Creating a dashboard
Dashboards are all the rage these days. A
dashboard is a form displaying multiple panels of
information, such as charts, reports, and of course
gauges. Another sample form that comes with the
downloads for this article, Dashboard.SCX
(Figure 3), is a simple demo of how a dashboard
might work.

This form is actually quite simple. Its Init
method adds eight Image controls and sizes and
positions them so they take up two rows of four
images. A Timer on the form calls the form’s
DrawGauges method, which uses a single Gauge
control to do the drawing. DrawGauges sets the
properties of the Gauge control to different values
for each gauge (different dial colors and different
current and maximum values), draws the gauge,

and sets the PictureVal property of each Image
control to the resulting image. Just for fun, the
timer fires every 2 seconds and shows a random
value so you can see the needles move.

Figure 3. A dashboard consists of multiple gauges.

Table 1. The properties of the Gauge class.

Property Description

cDialText The text for the dial

cDialTextFontName The font for the dial text

cErrorMessage The text of any error that occurs

cFormat The format for the labels in .NET
syntax: {0:#,##0} by default

cImage The gauge image

cLabelFontName The font for the labels

lAdjustLabelSize .T. to adjust the label size based
on the gauge size, .F. to use the
size specified in nLabelFontSize

lDialTextFontBold .T. if the dial text is bold

lDialTextFontItalic .T. if the dial text is italics

lDisplayDigitalValue .T. to display the value in a digital
display

lLabelFontBold .T. if the label text is bold

lLabelFontItalic .T. if the label text is italics

lValuesAsPercentages .T. to use percentages for values,
.F. to use amounts for values

nBackColor The background color or the
starting color for a background
gradient

nBackColor2 The end color for a background
gradient; if it's the same as
nBackColor, there is no gradient

nBackColorAlpha The alpha for the background
color

nBackGradientMode The mode for a background
gradient: 0 = left to right, 1 = top to
bottom, 2 = from top left, 3 = from
top right

nBand1Color The color for band 1

nBand1End The ending position for band 1

nBand2Color The color for band 2

nBand2End The ending position for band 2

nBand3Color The color for band 3

nDialAlpha The alpha for the dial color

nDialColor The color to use for the dial

nDialTextColor The color for the dial text

nDialTextFontSize The font size for the dial text

nDigitsColor The color for digital digits

nGlossiness The glossiness value (0 – 100)

nGoalPosition The position where the goal value
appears on the gauge; defaults to
100

nLabelColor The color to use for labels

nLabelDistance The distance between labels and
major tick marks

nLabelFactor The factor to use for labels: 1,
1000, 10000, etc.

nLabelFontSize The font size for the labels

nMajorTickColor The color of major tick marks

nMajorTickCount The number of major ticks

nMaxValue The goal value for the gauge

nMinorTickColor The color of minor tick marks

nMinorTickCount The number of minor ticks

nSize The height and width of the gauge
(it's a square so they're the same)

nValue The current value for the gauge

oBridge A reference to a wwDotNetBridge
object

oGauge A reference to a .NET
GaugeControl object

How Gauge works
The Gauge class is actually a wrapper for a .NET
DLL that does all the work. I’ll discuss the .NET
class later.

To avoid COM registration and other issues, I
use Rick Strahl’s wwDotNetBridge utility, which I
discussed in the January 2013 issue of FoxRockX.
As you can see in Listing 1, the Init method of
Gauge instantiates wwDotNetBridge into the
oBridge property. Since you usually only want a
single instance of wwDotNetBridge in an
application, you can pass an existing instance to
Init instead. Init also loads the Gauge.DLL .NET
assembly and instantiates the
Gauge.GaugeControl class into the oGauge
property.

Listing 1. The Init method sets up the helper objects needed
by the class.

lparameters toBridge

* If we were passed a wwDotNetBridge object,

* use it. Otherwise, create one.

if vartype(toBridge) = 'O'

 This.oBridge = toBridge

else

 This.oBridge = newobject('wwDotNetBridge', ;

 'wwDotNetBridge.prg', '', 'V2')

endif vartype(toBridge) = 'O'

loBridge = This.oBridge

* Load the Gauge assembly: it must be in the

* current directory or path.

if not loBridge.LoadAssembly('Gauge.dll')

 This.cErrorMessage = 'Gauge.dll could ' + ;

 'not be loaded: ' + loBridge.cErrorMsg

 return

endif not loBridge.LoadAssembly('Gauge.dll')

* Instantiate a GaugeControl object.

This.oGauge = ;

 loBridge.CreateInstance('Gauge.GaugeControl')

* Set cFormat to a default we can't set in the

* Properties window.

This.cFormat = '{0:#,##0}'

Since the .NET DLL does all the work, all the
DrawGauge method of the Gauge class has to do
is populate the properties of the .NET object with
the values of its own properties, call the .NET
object’s DrawGauge method, and put the return
value, which is the bytes of the gauge image, into
cImage. The code for DrawGauge is shown in
Listing 2.

Listing 2. The DrawGauge method uses the GaugeControl
object to draw the gauge.

local lnEnd1, ;

 lnEnd2, ;

 lnMaxValue

with This

* Get the band positions.

 lnEnd1 = .nBand1End

 lnEnd2 = .nBand2End

 lnMaxValue = .nMaxValue/100

* If the band values were entered as amounts,

* convert to percentages.

 do case

 case .lValuesAsPercentages

 case .nMaxValue = 100

 && max value hasn't been set

 lnEnd1 = 35

 lnEnd2 = 70

 otherwise

 lnEnd1 = int(lnEnd1/lnMaxValue)

 lnEnd2 = int(lnEnd2/lnMaxValue)

 endcase

endwith

with This.oGauge

* Set the appearance properties.

 .AdjustLabelSize = ;

 This.lAdjustLabelSize

 .BackColor = ;

 This.GetColor(This.nBackColor, ;

 This.nBackColorAlpha)

 .BackColor2 = ;

 This.GetColor(This.nBackColor2, ;

 This.nBackColorAlpha)

 .BackGradientMode = ;

 This.nBackGradientMode

 .Band1Color = ;

 This.GetColor(This.nBand1Color)

 .Band1End = lnEnd1

 .Band2Color = ;

 This.GetColor(This.nBand2Color)

 .Band2End = lnEnd2

 .Band3Color = ;

 This.GetColor(This.nBand3Color)

 .DialColor = ;

 This.GetColor(This.nDialColor, ;

 This.nDialAlpha)

 .DialText = This.cDialText

 .DialTextColor = ;

 This.GetColor(This.nDialTextColor)

 .DialTextFontName = ;

 This.cDialTextFontName

 .DialTextFontSize = ;

 This.nDialTextFontSize

 .DialTextFontBold = ;

 This.lDialTextFontBold

 .DialTextFontItalic = ;

 This.lDialTextFontItalic

 .DigitsColor = ;

 This.GetColor(This.nDigitsColor)

 .DisplayDigitalValue = ;

 This.lDisplayDigitalValue

 .LabelFontBold = This.lLabelFontBold

 .LabelFontItalic = ;

 This.lLabelFontItalic

 .LabelFontName = This.cLabelFontName

 .LabelFontSize = This.nLabelFontSize

 .Format = This.cFormat

 .Glossiness = This.nGlossiness

 .Height = This.nSize

 .LabelColor = ;

 This.GetColor(This.nLabelColor)

 .LabelDistance = This.nLabelDistance

 .LabelFactor = This.nLabelFactor

 .MajorTickColor = ;

 This.GetColor(This.nMajorTickColor)

 .MajorTicks = ;

 This.nMajorTickCount

 .MinorTickColor = ;

 This.GetColor(This.nMinorTickColor)

 .MinorTicks = ;

 This.nMinorTickCount

* Set the value properties.

 .MaxValue = This.nMaxValue * ;

 100/This.nGoalPosition

 .Value = This.nValue

* Draw the image and set our cImage property

* to the image bytes.

 This.cImage = .DrawGauge()

endwith

The only complication in DrawGauge is that
VFP color values don’t match up with .NET color
values: the .NET values have the red, green, and
blue components reversed, and also support an
alpha, or transparency, value. So, DrawGauge
calls a helper method named GetColor (Listing 3),
which pulls out the color components and puts
them into the order needed for .NET.

Listing 3. The GetColor method converts a VFP color number
to the .NET equivalent.

lparameters tnColor, ;

 tnAlpha

local lnRed, ;

 lnGreen, ;

 lnBlue, ;

 lnAlpha

lnRed = mod(tnColor, 256)

lnGreen = mod(bitrshift(tnColor, 8), 256)

lnBlue = mod(bitrshift(tnColor, 16), 256)

lnAlpha = iif(vartype(tnAlpha) = 'N', ;

 tnAlpha, 255)

return rgb(lnBlue, lnGreen, lnRed) + ;

 bitlshift(lnAlpha, 24)

The .NET component
GaugeControl.cs, included with the downloads
for this article, is the source code for the .NET
gauge component in Gauge.DLL. I started with
code created by Ambalavanar Thirugnanam,
available from http://tinyurl.com/ppl44uy, and
made a number of changes to it:

 I modified it to be a simple .NET class that
returns an image as a string rather than a
Windows Forms User Control that
displays the gauge. This allows the image
to be written to a file or displayed in a
VFP Image control without having to
worry about registering the .NET control
as an ActiveX control and adding it to a
VFP form.

 I added properties for various colors, such
as the background color, rather than
using hard-coded values.

 I added support for a background
gradient in addition to a solid color.

 Because it’s difficult to create a .NET Font
object in VFP, even with
wwDotNetBridge, I added properties for
the name, size, bold, and italics settings of
fonts used for the dial text and labels.
GaugeControl uses these properties to
instantiate a Font object with the specified
settings.

If you’re interested in how the .NET
component works, I recommend reading the
article at http://tinyurl.com/ppl44uy as it
discusses the logic and math involved in drawing
the gauge. Then examine the C# source code in
GaugeControl.cs to see how it’s implemented.

If you build the Gauge solution that includes
GaugeControl.cs, you’ll find that it has a post-
build event that copies the DLL to the parent
folder of the solution, which is the same folder as
Gauge.VCX is located. Note that if you’ve used
the VFP Gauge control and VFP is still open, you
have to close VFP before building the .NET
solution because the .NET DLL is still open in
VFP.

Since GaugeControl.cs uses GDI+ to do all of
the drawing, why didn’t I convert the C# code to
VFP code using the VFPX GDIPlusX project?
After all, that would give us a 100% VFP solution

http://tinyurl.com/ppl44uy
http://tinyurl.com/ppl44uy

with no need for wwDotNetBridge or Gauge.DLL.
The reason I didn’t is two-fold:

 Why reinvent the wheel? It would’ve
taken several hours to convert the C#
code into the equivalent VFP code and
there’d be lots of debugging to make sure
it works the same.

 I’ve run into some performance issues
with GDIPlusX on some machines. In fact,
this is what prompted me to look at this
solution in the first place. I was using the
VFPX FoxCharts project to draw gauges
but found that on some systems, it was
taking a minute or more to draw the
gauge. In tracking the problem down, I
found that on those systems, some of the
GDI+ function calls were taking an order
of magnitude longer to execute, and these
functions were called thousands of times
for each gauge. I don’t know why some
systems have this performance problem
with GDIPlusX but the .NET component
has no such problems on those systems.

Deploying Gauge
Deploying Gauge is straightforward:

 Add Gauge.VCX and
wwDotNetBridge.PRG to your project.

 Use the Gauge class as you see fit: to
create image files for reports (cImage is in
PNG format) or for the source of images
in forms.

 Include wwDotNetBridge.DLL,
ClrHost.DLL, and Gauge.DLL in your
installer or copy those files to the client’s
system. No registration is required for
any of these components.

Gauge.DLL requires version 2.0 of the .NET
framework. Windows Vista and later come with
.NET 2.0 so this is only an issue for Windows XP
and earlier. If you use Inno Setup as your
application installer, you can make your installer
detect whether .NET 2.0 is missing and
automatically download and install it by adding
#INCLUDE DotNet2Install.iss to your Inno script
file. DotNet2Install.iss is included in the
downloads for this article, as is Isxdl.DLL, a
component used by DotNet2Install.iss.

Summary
The Gauge class and supporting components
make it easy to add beautiful, customizable

gauges to your applications. I look forward to any
feedback you have to enhance this tool.

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was
a Microsoft Most Valuable Professional (MVP) from
1996 to 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

	Add Gauges to Your Applications
	The Gauge class
	Creating a dashboard
	How Gauge works
	The .NET component
	Deploying Gauge
	Summary

