
Working with Microsoft
Excel, Part 1
Doug Hennig

Microsoft Excel is one of the most widely-used
applications ever. Because of its popularity, other
applications often need to read from or write to
Excel documents. This article, the first of two,
discusses several mechanisms for outputting VFP
data to Excel.

Most applications I’ve worked on had to interact
with Microsoft Excel documents in one way or
another. Outputting data to Excel is extremely
common, as most people are comfortable working
with Excel and often want to analyze or massage
the data in their applications in ways a developer
can’t foresee. But importing data from Excel is
also popular, both because it can be a common
interchange format between different applications
and because people often treat Excel like a
database, with its row and column layout making
data entry fast and easy.

Over the next couple of articles, I’ll explore
ways to get data from VFP into Excel documents
and vice versa. This month, we’ll look at several
mechanisms and tools you can use to export data
into Excel.

Built-in commands
The VFP COPY TO and EXPORT TO commands
support creating Excel 2.0 (using the “TYPE XLS”
clause) and 5.0 (using “TYPE XL5”) files. Newer
versions of Excel can open both types of files, but
there are some problems:

 Both formats ignore memo fields.

 You may not be able to output all records:
VFP 8 and 9 only output a maximum of
65,535 rows, and with VFP 7 and earlier
it’s only 16,384.

 Neither command can create an XLSX file
(Excel 2007 and later).

 Excel 2.0 format doesn’t handle date fields
correctly: they give a “text date with 2-
digit year” warning and have to be edited
to work as actual date values.

The first and second points are usually the
biggest problems for most people. If you can live
with these issues, then these commands are your
best solution since they’re fast and take only one
line of code.

Using OLE Automation
As you’re probably aware, you can instantiate
Excel using COM and use OLE Automation to
write to an Excel document. It would be a lot of
code to go through all fields and all records of a
cursor and write them to Excel; it would also
likely be quite slow. Code written by Cetin Basoz
that he showed on TekTips
(http://tinyurl.com/hv9ahd2) eliminates the
need to do that by using a clever trick: creating an
ADO recordset from the VFP data and using
Excel’s little-known CopyFromRecordSet method
to read in the data.

Listing 1 shows the ExcelExportAutomation
class. Instantiate the class and call the Export
method, passing it the name of an Excel XLSX file
to create from the table in the current workarea. If
you want the document left open and Excel
visible, set lShowExcel to .T. first. If you don’t
want field headings in the first row, set
lIncludeHeadings to .F.

Listing 1. The ExcelExportAutomation class outputs to Excel
using OLE Automation.

define class ExcelExportAutomation as Custom

 lShowExcel = .F.

 && .T. to leave the document open and

 && Excel visible

 lIncludeHeadings = .T.

 && .T. to put field names in the first

 && row

 cErrorMessage = ''

 && the text of any error that occurs

* Exports the table in the current workarea to

* the specified Excel file.

 function Export(tcFileName)

 local loExcel, ;

 loException, ;

 lcDatabase, ;

 lcDataSource, ;

 lcTable, ;

 llReturn

http://tinyurl.com/hv9ahd2

 try

 loExcel = ;

 createobject('Excel.Application')

 catch to loException

 This.cErrorMessage = 'Could not ' + ;

 'instantiate Excel. The error ' + ;

 'message is: ' + loException.Message

 endtry

 if vartype(loExcel) = 'O'

 with loExcel

* Determine the datasource (the DBC if there

* is one or the folder for the current table

* if not) and SQL statement (just USE TABLE in

* this case) to use.

 lcDatabase = cursorgetprop('Database')

 if empty(lcDatabase)

 lcDataSource = '"' + ;

 justpath(dbf()) + '"'

 else

 lcDataSource = '"' + lcDatabase + ;

 '"'

 endif empty(lcDatabase)

 lcTable = 'use "' + dbf() + '"'

* Create a workbook and output the data to it,

* then save the file.

 .WorkBooks.Add()

 loSheet = .ActiveWorkBook.ActiveSheet

 llReturn = ;

 This.VFP2Excel(lcDataSource, ;

 lcTable, loSheet.Range('A1'))

 if llReturn

 loSheet.UsedRange.Columns.Autofit()

 llReturn = ;

 This.SaveDocument(loExcel, ;

 .ActiveWorkBook, tcFileName)

 endif llReturn

* Either display Excel or close it.

 if This.lShowExcel and llReturn

 .Visible = .T.

 else

 .Quit()

 endif This.lShowExcel ...

 endwith

 endif vartype(loExcel) = 'O'

 return llReturn

 endfunc

* Fills the specified range with the data from

* the specified SQL statement or table.

 protected function VFP2Excel(tcDataSource, ;

 tcSQL, toRange)

 local loConn, ;

 loRS, ;

 lnI, ;

 lnRow, ;

 llReturn

 try

 loConn = ;

 createobject('ADODB.Connection')

 loConn.ConnectionString = ;

 'Provider=VFPOLEDB;Data Source=' + ;

 tcDataSource

 loConn.Open()

 loRS = loConn.Execute(tcSQL)

 if This.lIncludeHeadings

 for lnI = 0 to loRS.Fields.Count - 1

 toRange.Offset(0, lnI).Value = ;

 proper(loRS.Fields(lnI).Name)

 toRange.Offset(0, lnI).Font.Bold = ;

 .T.

 next lnI

 lnRow = 1

 else

 lnRow = 0

 endif This.lIncludeHeadings

 toRange.Offset(lnRow, ;

 0).CopyFromRecordSet(loRS)

 loRS.Close()

 loConn.Close()

 llReturn = .T.

 catch to loException

 This.cErrorMessage = 'Could not ' + ;

 'output data to workbook. The ' + ;

 'error message is: ' + ;

 alltrim(substr(loException.Message, ;

 at(':', loException.Message) + 1))

 endtry

 return llReturn

 endfunc

* Saves the workbook to the specified file.

 protected function SaveDocument(toExcel, ;

 toWorkbook, tcFileName)

 local llAlerts, ;

 lcFileName, ;

 llReturn

* Set DisplayAlerts to .F. to avoid any

* dialogs.

 try

 llAlerts = toExcel.DisplayAlerts

 toExcel.DisplayAlerts = .F.

 catch

 endtry

* Save the workbook.

 lcFileName = GetFullPath(tcFileName)

 try

 toWorkbook.SaveAs(lcFileName)

 llReturn = file(lcFileName)

 catch to loException

 endtry

 if not llReturn

 This.cErrorMessage = 'Could not ' + ;

 'save ' + lcFileName + ;

 iif(vartype(loException) = 'O', ;

 '. The error message is: ' + ;

 alltrim(substr(loException.Message, ;

 at(':', loException.Message) + 1)), ;

 '')

 endif not llReturn

* Restore DisplayAlerts.

 try

 toExcel.DisplayAlerts = llAlerts

 catch

 endtry

 return llReturn

 endfunc

enddefine

The code shown in Listing 2 outputs the
Employee sample table that comes with VFP to
EmployeeOLE.XLSX.

Listing 2. Test code for ExcelExportAutomation.

open database (_samples + 'data\testdata')

use Employee

loExport = ;

 createobject('ExcelExportAutomation')

loExport.lShowExcel = .T.

if not loExport.Export('EmployeeOLE.xlsx')

 messagebox(loExport.cErrorMessage)

endif not loExport.Export('EmployeeOLE.xlsx')

There are a couple of drawbacks to
ExcelExportAutomation:

 It doesn’t work with a cursor, only a table.

 Like all OLE Automation mechanisms, it
requires Excel installed on the machine,
which may be problem if you’re running
the code on a server because many
companies don’t install Excel on a server,
just workstations.

Using ADO
The Microsoft Access Database Engine, in
addition to (as its name suggests) providing
access to Microsoft Access databases, also
provides access to Excel spreadsheets. Craig Boyd
takes advantage of that in AppendXLSX.PRG,
which you can download from
http://tinyurl.com/jzolom3. Although its name
suggests it’s for reading from Excel (I’ll discuss
that in the next issue’s article), it has a
CopyToExcel function that writes to Excel. This
function doesn’t require Excel to be installed.

CopyToExcel accepts the following
parameters:

 The name of the Excel file to create or
update.

 The name of the worksheet to write to.
Specify Sheet1$ to write to the default
worksheet.

 The alias, workarea, or name of the table
to export (if not specified, the current
workarea is used). This can be a cursor or
a table.

 A comma delimited list of columns to
create in the worksheet (if not specified,
the columns match the cursor fields).

 A comma delimited list of fields to copy
from the cursor (if not specified, all fields
are copied).

 A WHERE clause used when querying
the cursor for data to be copied to the
worksheet.

CopyToExcel uses a clever technique: using
ADO to create a “table” (that is, a worksheet) in
the document, then updating that table from the
cursor using a CursorAdapter. I won’t list the
code here because it’s fairly long; feel free to
examine AppendXLSX.PRG yourself. I fixed a
couple of bugs in the code; the fixed version is
included with this month’s downloads.

The code in Listing 3 outputs the Employee
sample table to EmployeeADO.XLSX. The

resulting spreadsheet is very similar to
EmployeeOLE.XLSX.

Listing 3. Test code for CopyToExcel.

open database (_samples + 'data\testdata')

use Employee

set procedure to AppendXLSX

lnRecords = CopyToExcel('EmployeeADO.xlsx', ;

 'Employees')

messagebox(lnRecords)

A couple of issues I found are:

 I’m not sure whether installing Microsoft
Office automatically installs the Microsoft
Access Database Engine—it wasn’t
installed on my system—but you can
download the installer from
http://tinyurl.com/jzurwra. Be aware
that you may also have to install it on any
customer systems you intend to use this
technique on.

 Although CopyToExcel has code that
deletes the default worksheet (Sheet1) if
that isn’t the one you’re outputting to,
that doesn’t work so you end up with two
worksheets. So you might as well use
Sheet1 for output.

Using Excel binary format
In the March 2014 issue of FoxRockX, Rick
Schummer discussed a VFPX project named
FoxyXLS (http://vfpx.codeplex.com), written by
Cesar Chalom. FoxyXLS writes to a BIFF3 format
file, which is an older Excel binary format. I won’t
go into detail about FoxyXLS because Rick
covered it thoroughly in his article.

Since FoxyXLS writes directly to an Excel file,
it doesn’t require that Excel be installed on the
system. However, it has a few drawbacks other
tools discussed in this article don’t have:

 It doesn’t have a specific method to write
a cursor to an Excel document, so you
have to write your own code to do that,
such as the code shown in Listing 4
(Execute.PRG, called from this code,
using the Windows API ShellExecute
function to open a file).

 It writes to XLS files, not the newer XLSX.

 It doesn’t support memo fields properly;
only the first 256 bytes are output.

Listing 4. This code outputs the Employees table to Excel
using FoxyXLS.

open database (_samples + 'data\testdata')

use Employee

set procedure to FoxyXLS\FoxyXLS.prg

loExport = createobject('FoxyXLS')

http://tinyurl.com/jzolom3
http://tinyurl.com/jzurwra
http://vfpx.codeplex.com/

lnFields = afields(laFields)

for lnI = 1 to lnFields

 loExport.AddCell(1, lnI, laFields[lnI, 1])

 loExport.SetColumnWidth(lnI, ;

 laFields[lnI, 3] * 10)

next lnI

lnRow = 2

scan

 for lnI = 1 to lnFields

 lcField = laFields[lnI, 1]

 if laFields[lnI, 2] = 'G'

 luValue = ''

 else

 luValue = evaluate(lcField)

 endif laFields[lnI, 2] = 'G'

 loExport.AddCell(lnRow, lnI, luValue)

 next lnI

 lnRow = lnRow + 1

endscan

loExport.WriteFile('EmployeeFoxyXLS.xls')

Execute('EmployeeFoxyXLS.xls')

Using Excel XML
One of the file formats Excel can read is XML.
Since XML is just text, VFP can easily create a file
in a format Excel can open. Since no OLE
Automation is involved, Excel doesn’t have to be
installed, and because the XML supports
formatting attributes, you can create a document
that’s nicer looking than just a raw spreadsheet.
This mechanism is also fast since it simply uses
VFP text processing functions.

There are several tools available to do this,
including:

 ExcelXML, a VFPX project created by
Rodrigo Bruscain and discussed by Rick
Schummer in the May 2014 issue of
FoxRockX.

 XLSXWorkbook, another VFPX project, by
Greg Green.

 Vilhelm-Ion Praisach has several similar
utilities, including ExportXLSX and
DBF2XLSX which you can download
from http://tinyurl.com/j9nxmwq.

Let’s look at XLSXWorkbook. You can
download it from http://tinyurl.com/zr6vxc5;
the download includes a number of test programs
and forms, but all of the actual code for the utility
is in a single VCX, VFPxWorkbookXLSX.VCX.
The download also includes extensive
documentation in a PDF file.

To use XLSXWorkbook, start by instantiating
the VFPXWorkbookXLSX class in
VFPXWorkbookXLSX.VCX. XLSXWorkbook has a
couple of methods that make quick work of
creating a spreadsheet from VFP data:
SaveTableToWorkbook, which saves the specified
table to a workbook, and SaveGridToWorkbook,
which save the content and some of the
formatting of the specified grid to a workbook.

The code in Listing 5 outputs the Employee
sample table to EmployeeXLSXWookbook.XLSX.
This file is very similar to those created using the
other techniques.

Listing 5. Test code for XLSXWorkbook.

open database (_samples + 'data\testdata')

use Employee

loExport = newobject('VFPXWorkbookXLSX', ;

 'VFPXWorkbookXLSX\VFPXWorkbookXLSX.vcx')

loExport.SaveTableToWorkbook(alias(), ;

 'EmployeeXLSXWookbook.xlsx', .T., .T.)

Creating a workbook from a grid is easy too,
needing just a single line of code:

loExport.SaveGridToWorkbook(This.grdGrid, ;

 'MyWookbook.xlsx', .T., .T.)

However, XLSXWookbook provides a lot
more control over the workbook if you wish. You
can format cells (color, font, border, style, etc.),
manage worksheets within the workbook, use
custom numeric formatting, and so on. So, you
don’t have to create a plain spreadsheet if your
users want something more attractive. The code in
FormatXLSXWorkbook.PRG, shown in Listing 6
and included with this month’s downloads,
creates the workbook shown in Figure 1.

Figure 1. This formatted Excel workbook was created with
XLSXWookbook.

Listing 6. This code creates a formatted Excel document.

#DEFINE BORDER_LEFT 1

#DEFINE BORDER_RIGHT 2

#DEFINE BORDER_TOP 4

#DEFINE BORDER_BOTTOM 8

loExport = newobject('VFPXWorkbookXLSX', ;

 'VFPXWorkbookXLSX\VFPXWorkbookXLSX.vcx')

with loExport

 lnWorkbook = ;

 .CreateWorkbook('ExcelTest.xlsx')

 lnSheet = .AddSheet(lnWorkbook, ;

 'Test Sheet 1')

* Create some dummy data.

 for lnRow = 1 to 10

 for lnCol = 1 to 9

 .SetCellValue(lnWorkbook, lnSheet, ;

 lnRow, lnCol, sys(2015))

 next lnCol

 next lnRow

* Set the row and column heights.

http://tinyurl.com/j9nxmwq
http://tinyurl.com/zr6vxc5

 .SetRowHeight(lnWorkbook, lnSheet, 6, 25)

 .SetColumnWidth(lnWorkbook, lnSheet, 1, 25)

 for lnCol = 2 to 9

 .SetColumnWidth(lnWorkbook, lnSheet, ;

 lnCol, 14)

 next lnCol

* Set font, size, color, and style.

 .SetCellFont(lnWorkbook, lnSheet, 1, 1, ;

 'Calibri', 14, .T., .T., rgb(255, 0, 0))

 .SetCellFont(lnWorkbook, lnSheet, 2, 1, ;

 'Tahoma', , , , rgb(0, 0, 255))

 .SetCellFont(lnWorkbook, lnSheet, 3, 1, , ;

 14, .T.)

 .SetCellFont(lnWorkbook, lnSheet, 4, 1, ;

 'Arial', 14, .T., .T., rgb(0, 0, 255))

 .SetCellFont(lnWorkbook, lnSheet, 6, 1, , ;

 , , , , 'single')

 .SetCellFont(lnWorkbook, lnSheet, 7, 1, , ;

 , , 'double')

* Set borders.

 lnBorder = BORDER_LEFT + BORDER_RIGHT + ;

 BORDER_TOP + BORDER_BOTTOM

 .SetCellBorder(lnWorkbook, lnSheet, 3, 4, ;

 lnBorder, 'thin', rgb(16, 100, 200))

 .SetCellBorder(lnWorkbook, lnSheet, 3, 6, ;

 lnBorder, 'thick', rgb(100, 150, 200))

 .SetCellBorder(lnWorkbook, lnSheet, 3, 8, ;

 lnBorder, 'double', rgb(200, 150, 100))

 .SetCellBorderEx(lnWorkbook, lnSheet, 5, ;

 2, 'thin', ,'thin', ,'thick', ,'thick')

* Save and open the workbook.

 .SaveWorkbook(lnWorkbook)

endwith

Execute('ExcelTest.xlsx')

Summary
Of the solutions I looked at, ExcelXML and
XLSWookbook are the best for my needs, and I’ve
used them both in production applications. They
have the fewest drawbacks and the most
flexibility in output.

In the next issue, we’ll discuss importing from
Excel into VFP data.

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “VFPX: Open Source Treasure
for the VFP Developer,” “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written

numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was
a Microsoft Most Valuable Professional (MVP) from
1996 to 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

	Working with Microsoft Excel, Part 1
	Built-in commands
	Using OLE Automation
	Using ADO
	Using Excel binary format
	Using Excel XML
	Summary

