
Advanced Uses for Dynamic
Form
Doug Hennig

Dynamic Form is an under-used project in VFPX.
Its ability to create forms quickly and dynamically
isn’t something every developer needs but if you
need it, Dynamic Form is indispensable. In this
article, Doug discusses some advanced uses for
Dynamic Form, including data driving the
markup code.

In the May 2013 issue of FoxRockX, Rick
Schummer discussed Dynamic Form, a VFPX
project (http://vfpx.codeplex.com) which creates
forms on the fly using markup code similar in
purpose (although not in syntax) to XAML or
HTML. Like Rick, I was initially uncertain
whether I would make use of Dynamic Form
myself; after all, it’s not that hard to create a form
for a specific task. However, I came across the
need to ask the user for input about things that
can change from user to user or application to
application, and Dynamic Form soon became a
frequently used tool in my toolbox.

This article discusses some advanced uses of
Dynamic Form, especially data driving the
creating of the markup code for the forms.
Although you may certainly use the code
included in the downloads for this article as is, I
expect it will more likely serve as a source of
inspiration for you to create your own dynamic
forms.

Note: this article uses a version of
DynamicForm.prg that I’ve customized a bit. I’ve
passed on the changes I made to Matt Slay, author
of Dynamic Form, but also included my copy of
DynamicForm.prg with the downloads.

Custom fields
Some applications were built to be customized.
For example, GoldMine and ACT!, two popular
customer relationship management (CRM)
systems, both allow users to add custom fields to
their tables. The reason is that often organizations
want to record additional details about customers
beyond the standard things like company name
and address, such as type of customer and what
month their year end is. Both programs allow the

user to specify the field name, data type, size,
caption, and other meta data for the custom fields,
and provide a data entry form in which the user
can enter the values of those custom fields for a
customer.

Let’s look at doing something similar in a VFP
application. We’ll start with FieldDef.dbf, a table
which contains the definitions of the custom
fields. Its structure is shown in Table 1. As you
can see, FieldDef contains both the definition of
the custom fields (the actual custom field values
are stored in CustomFields.dbf) and the
specifications for the controls used to edit the
values of the fields. Figure 1 shows the records in
the copy of FieldDef.dbf included in the
downloads for this article.

Presumably, the application includes a data
entry form that allows the user to define new
custom fields, which adds records to FieldDef and
new fields to CustomFields. We won’t look at that
part, just how they can edit the values of the
custom fields, since this article is about creating
dynamic forms.

Table 1. The structure of FieldDef.dbf.

Name Type Purpose

Order I The order of the field in the
data entry form

Name C(30) The field name

DataType C(1) The field data type

Length I The field length

Decimals I The number of decimals

Caption C(60) The caption

Class C(30) The class for the control used
to edit the field; empty to use a
class based on DataType,
such as a textbox for character
fields

Library C(30) The VCX containing the class

Top I The top position of the control;
0 to auto-position

Left I The left position of the control;
0 to auto-position

Height I The height of the control; 0 for
auto

Width I The width of the control; 0 for
auto

Anchor I The Anchor setting for the
control

Properties M The values of properties for
the control using Dynamic
Form syntax

Events M A comma-delimited list of
events to handle for the
control

Code M The event code to execute

Figure 1. The FieldDef table contains the definitions of the
custom fields and the controls used to edit them.

The CustomFields class in FieldControls.vcx
is a simple form class used to edit the values of
the custom fields for the specified customer. It has
OK and Cancel buttons and an instance of the
SFDynamicRender class, but no other controls.
The Init method accepts as parameters the name
of the current customer and the customer’s ID. It

finds the customer’s record in CustomFields.dbf,
creating one if necessary. It then uses SCATTER to
create a data object for the record (the properties
of this object are the ControlSource for the
controls that Dynamic Form adds to the form),
opens the FieldDef table, and asks the
SFDynamicRender object on the form to render
the controls for the custom fields. We’ll look at
SFDynamicRender later. Here’s the code for Init:

lparameters tcCustomerName, ;

 tiCustNo

This.Caption = 'Custom Fields for ' + ;

 tcCustomerName

* Open the CUSTOMFIELDS table and find the

* record for the specified customer, creating

* it if necessary.

if used('CUSTOMFIELDS')

 select CUSTOMFIELDS

 set order to CUSTNO

else

 select 0

 use CUSTOMFIELDS order CUSTNO again shared

endif used('CUSTOMFIELDS')

seek tiCustNo

if not found()

 insert into CUSTOMFIELDS (CUSTNO) ;

 values (tiCustNo)

endif not found()

* Create a data object from the record for the

* rendering engine.

scatter memo name This.oDataObject

This.oRender.oDataObject = This.oDataObject

* Render controls for the custom fields.

select 0

use FIELDDEF order ORDER again shared

This.oRender.Render(This)

use

The Click methods of the OK and Cancel
buttons close the form, but OK first uses GATHER
to save the properties of the data object to the
record in CustomFields.

SFDynamicRender, contained in
SFDynamicForm.vcx, is a Custom subclass that
uses Dynamic Form to render the controls defined
in a table or cursor in the current workarea. It isn’t
specific for working with custom fields; we’ll use
this same class in the second section of this article
for a different purpose. It can be used for any
data-driven form as long as the structure of the
table or cursor is similar to FieldDef.dbf
(DataType, Length, and Decimals aren’t used but
the other fields are) and as long as the form it’s
used with has an oDataObject property containing
an object with properties matching the contents of
the Name field in the table or cursor. For example,
if there’s a record in the table with Name
containing “SalesRep,” the object referenced by
oDataObject must have a SalesRep property. The
Init method instantiates a

DynamicFormRenderEngine object and sets its
properties the way we want. Note that it specifies
my base classes defined in SFCtrls.vcx; feel free to
change this to use your own classes instead.

* Create a Dynamic Form rendering engine

* object and use our classes as defaults.

This.oRenderEngine = ;

 newobject('DynamicFormRenderEngine', ;

 'DynamicForm.prg')

with This.oRenderEngine

 .cLabelClass = 'SFLabel'

 .cLabelClassLib = 'SFCtrls.vcx'

 .cTextboxClass = 'SFTextBox'

 .cTextboxClassLib = 'SFCtrls.vcx'

 .cEditboxClass = 'SFEditBox'

 .cEditboxCLassLib = 'SFCtrls.vcx'

 .cCommandButtonClass = ;

 'SFCommandButton'

 .cCommandButtonClassLib = 'SFCtrls.vcx'

 .cOptionGroupClass = 'SFOptionGroup'

 .cOptionGroupClassLib = 'SFCtrls.vcx'

 .cCheckboxClass = 'SFCheckBox'

 .cCheckboxClassLib = 'SFCtrls.vcx'

 .cComboboxClass = 'SFComboBox'

 .cComboboxClassLib = 'SFCtrls.vcx'

 .cSpinnerClass = 'SFSpinner'

 .cSpinnerClassLib = 'SFCtrls.vcx'

* Specify that we don't want the container

* resized to fit the controls, we don't want

* Save and Cancel buttons (we'll use buttons

* on the form), we're using the form's data

* object, we don't want controls numbered, and

* we want objects 5 pixels apart vertically.

 .lResizeContainer = .F.

 .cFooterMarkup = ''

 .cDataObjectRef = ;

 'Thisform.oDataObject'

 .lAddControlNumberToName = .F.

 .nVerticalSpacing = 5

endwith

* Create a collection of behavior objects.

This.oBehaviors = newobject('SFCollection', ;

 'SFCtrls.vcx')

The Render method, called from the form’s
Init method, creates the markup code Dynamic
Form uses to render the controls from the records
in the current workarea and has the
DynamicFormRenderEngine object render the
controls to the specified container (in this
example, the form):

#define ccCR chr(13)

lparameters toContainer

local lcRender, ;

 lcName, ;

 loBehavior, ;

 llSetupBehaviors

* Create Dynamic Form markup to create a

* control for each record in the current

* workarea.

This.oContainer = toContainer

lcRender = ''

scan

 lcName = trim(NAME)

 lcRender = lcRender + lcName + ;

 " .Caption = '" + trim(CAPTION) + ;

 "'" + ccCR

 if not empty(CLASS)

 lcRender = lcRender + ".Class = '" + ;

 trim(CLASS) + "'" + ccCR + ;

 iif(empty(LIBRARY), '', ;

 ".ClassLibrary = '" + ;

 trim(LIBRARY) + "'" + ccCR)

 endif not empty(CLASS)

 if TOP > 0

 lcRender = lcRender + " .Top = " + ;

 transform(TOP) + ccCR

 endif TOP > 0

 if LEFT > 0

 lcRender = lcRender + " .Left = " + ;

 transform(LEFT) + ccCR

 endif LEFT > 0

 if HEIGHT > 0

 lcRender = lcRender + " .Height = " + ;

 transform(HEIGHT) + ccCR

 endif HEIGHT > 0

 if WIDTH > 0

 lcRender = lcRender + " .Width = " + ;

 transform(WIDTH) + ccCR

 endif WIDTH > 0

 if ANCHOR > 0

 lcRender = lcRender + " .Anchor = " + ;

 transform(ANCHOR) + ccCR

 endif ANCHOR > 0

 if not empty(PROPERTIES)

 lcRender = lcRender + PROPERTIES + ccCR

 endif not empty(PROPERTIES)

 lcRender = lcRender + '|' + ccCR

* If we have behavior code, create a behavior

* object to handle it.

 if not empty(CODE)

 loBehavior = ;

 newobject('SFDynamicBehavior', ;

 'SFDynamicForm.vcx')

 loBehavior.cEvents = EVENTS

 loBehavior.cCode = CODE

 This.oBehaviors.Add(loBehavior, lcName)

 llSetupBehaviors = .T.

 endif not empty(CODE)

endscan

* If we have any behavior code, call

* SetupBehaviorEvents for every control

* created.

if llSetupBehaviors

 bindevent(This.oRenderEngine, ;

 'AddControl', This, ;

 'SetupBehaviorEvents', 1)

endif llSetupBehaviors

* Render the markup into the container.

with This.oRenderEngine

 .oDataObject = This.oDataObject

 .cBodyMarkup = lcRender

 .Render(toContainer)

endwith

* Clean up before we exit.

if llSetupBehaviors

 unbindevent(This.oRenderEngine)

endif llSetupBehaviors

This.oContainer = .NULL.

The behaviors code requires some
explanation. Since you can’t add code to a class at
runtime, if you want a control to do something
special in some events, such as Refresh or
InteractiveChange, you either need to use a

control that has code in those events or you need
to use BINDEVENT to bind from the control to an
object that handles the events. Assuming you
don’t want to create special subclasses just for
this, I went with the latter. FieldDef.dbf (or
whatever table you’re using with this class) has an
EVENTS field that lists the events we need to bind
to and a CODE field that contains the code for the
events. The Render method instantiates an
SFDynamicBehavior object and fills in its cEvents
and cCode properties with the values of those
fields, then adds the object to a collection. Once all
of the records have been processed, Render uses
BINDEVENT to bind the AddControl method of
the DynamicFormRenderEngine object, which
creates a control, to the SetupBehaviorEvents
method. This method finds the control the engine
just created and for each of the events the
behavior object is supposed to bind to, binds that
event to the appropriate Handle method of the
behavior object. Here’s the code for
SetupBehaviorEvents:

lparameters tcControlClass, ;

 tcClassLib, ;

 tcControlSource, ;

 tcDataType

local loControl, ;

 lcControl, ;

 loBehavior, ;

 laEvents[1], ;

 lnEvents, ;

 lnI, ;

 lcEvent

loControl = ;

 This.oContainer.Controls(;

 This.oContainer.ControlCount)

if lower(loControl.BaseClass) <> 'label'

 lcControl = substr(loControl.Name, 4)

 loBehavior = ;

 This.oBehaviors.Item(lcControl)

 if not isnull(loBehavior)

 loBehavior.oObject = loControl

 lnEvents = alines(laEvents, ;

 loBehavior.cEvents, 5, ',')

 for lnI = 1 to lnEvents

 lcEvent = laEvents[lnI]

 if pemstatus(loControl, lcEvent, 5)

 bindevent(loControl, lcEvent, ;

 loBehavior, 'Handle' + lcEvent, 1)

 endif pemstatus(loControl, lcEvent, 5)

 next lnI

 endif not isnull(loBehavior)

endif lower(loControl.BaseClass) <> 'label'

Here’s an example. One of the custom fields
in the sample FieldDef table is the type of
company: Prospect or Customer. If they’re a
Customer, we want to record the name of their
salesperson and their year end. If they’re a
Prospect, we don’t need that information. So, we
want the control for Type to refresh the form
when its value changes and the controls for
salesperson and year end to disable themselves if
Type is Prospect when they’re refreshed. The
Events field in FieldDef for the Type custom field

contains “InteractiveChange” and the Code field
contains:

lparameters toObject, ;

 tcEvent

toObject.Parent.Refresh()

Code in the Code field has to accept two
parameters: a reference to the control the code
applies to and the name of the event in upper
case. If a control needs to handle more than one
event, use a CASE statement like this:

lparameters toObject, ;

 tcEvent

do case

 case tcEvent = 'INTERACTIVECHANGE'

 toObject.Parent.Refresh()

 case tcEvent = 'REFRESH'

 * do something

endcase

So, through event binding, when the user
changes the value of Type, the form is refreshed.

The Events field for both the SalesRep and
YearEnd custom fields contains “Refresh” and the
Code field contains:

lparameters toObject, ;

 tcEvent

toObject.Enabled = ;

 toObject.Parent.opgType.Value = 2

This causes the controls for those fields to
only be enabled when Type is Customer (the
second choice in the option group specified as the
control for Type).

We won’t look at the code in
SFDynamicBehavior, as it’s quite simple: the
various Handle methods simply use
EXECSCRIPT to execute the code specified in the
cCode property, which comes from the Code field
in the definition table.

Main.prg in the downloads for this article
calls the CustomFields class like this:

loForm = newobject('CustomFields', ;

 'FieldControls.vcx', '', ;

 'ACME Supplies Ltd.', 1)

loForm.Show()

In a real-world application, the form would
likely be displayed by clicking a button in the
Customers form or choosing a “Edit Custom
Fields” menu item and rather than hard-coding
the customer name and ID, something like
TRIM(CUSTOMERS.COMPANYNAME),
CUSTOMERS.CUSTOMERID would be used.

The resulting form is shown in Figure 2. The
values displayed in the form are stored in
CustomFields.dbf. Adding a new custom field is
as simple as adding a new record to FieldDef.dbf
and a new field to CustomFields.dbf.

Figure 2. The custom fields form.

Dynamic application settings
Most applications need configuration settings of
some type. Configurable settings allow a user to
customize how the application works for them.
Examples of settings are where data files are
located (making that configurable allows the user
to run the application on their local workstation
but store the data on a server where it can be
shared), what email settings to use (if the
application sends emails), and what the
company’s year end is (if the application works
with accounting data).

After creating what seemed like the
hundredth dialog allowing a user to change
configuration settings, I decided to create a
generic one. I’ve always like the look of the Visual
Studio Options dialog (Figure 3), so I modeled my
form after that.

Figure 3. The Visual Studio Options dialog.

Let’s start with where the settings are stored.
They can be stored in lots of places, but a table, an
INI file, and the Windows Registry are the most
common. To be flexible, I use a set of persistence
classes I wrote about a very long time ago (see
“Persistence without Perspiration” at
http://doughennig.com/papers/default.html)
that have the same programmatic interface but
different storage mechanisms: SFPersistentINIFile
is for INI files, SFPersistentTable is for tables, and

SFPersistentRegistry is for the Registry. Here’s an
example that uses Settings.ini to store settings:

loPersist = newobject('SFPersistentINIFile', ;

 'SFPersist.vcx', '', .T.)

loPersist.cFilePath = 'Settings.ini'

loPersist.cSection = 'Options'

Here’s one that stores settings in the Registry
in the specified key under
HKEY_CURRENT_USER:

loPersist = newobj('SFPersistentRegistry', ;

 'SFPersist.vcx', '', .T.)

loPersist.cKey = 'Software\Stonefield ' + ;

 'Software Inc.\MyApplication\Options'

How does the persistence object know what
values to store? That’s handled with an options
class, SFOptions in SFOptions.vcx. SFOptions
uses a data-driven approach; it uses a table whose
name is specified in the cOptionsFile property
(defaults to Options.dbf) to define which settings
are used.

Options.dbf has almost the same structure as
FieldDef.dbf that I discussed earlier because it’s
used by SFDynamicRender to display the settings
to the user. It has a few additional fields:

 Rectype contains “P” for a Page record
(the item in the TreeView defining a page
of settings) or “O” for an Option record (a
specific setting).

 Page contains the name of the page the
option belongs to.

 Parent contains the name of the parent
page the current page belongs under. This
allows hierarchical pages. Figure 4 shows
an example of this: Email appears under
the General item. To have Email appear at
the top level instead, simply blank the
Parent field in the sample Options.dbf
accompanying this article.

 GetValue contains custom code to execute
to convert the value from how it’s stored
to how it’s displayed. For example,
GetValue contains the following code for
the Password record to decrypt the
encrypted password:

 lparameters toOptions, ;

 tcProperty

 set library to VFPEncryption

 lcValue = evaluate('toOptions.' + ;

 tcProperty)

 if not empty(lcValue)

 lcValue = Decrypt(lcValue, ;

 'MyKey', 1024)

 endif not empty(lcValue)

 return lcValue

 SaveValue contains custom code to
convert the value from how it’s displayed
to how it’s stored. SaveValue for the
Password record contains similar code to
GetValue but calls Encrypt instead.

There are two main methods in SFOptions:
LoadSettings and SaveSettings. We’ll just look at
the code for LoadSettings.

local lnSelect, ;

 lcAlias, ;

 loException, ;

 lcProperty, ;

 lcDataType, ;

 luValue

* Open the options table and create properties

* for each of the settings, plus add an item

* to the persistent object so it knows what to

* save and restore.

lnSelect = select()

lcAlias = sys(2015)

with This

 select 0

 try

 use (.cOptionsFile) alias (lcAlias) ;

 again shared

 catch to loException

 .cErrorMessage = loException.Message

 endtry

 if used(lcAlias)

 scan for RECTYPE = 'O'

 lcProperty = trim(NAME)

 lcDataType = DATATYPE

 do case

 case lcDataType = 'C'

 luValue = ''

 case lcDataType = 'L'

 luValue = .F.

 case lcDataType = 'D'

 luValue = {/}

 case lcDataType = 'T'

 luValue = {/:}

 otherwise

 luValue = 0

 endcase

 try

 addproperty(This, lcProperty, luValue)

 .oPersist.AddItem(lcProperty, ;

 'This.oObject.' + lcProperty, ;

 lcDataType)

 catch to loException

 .cErrorMessage = loException.Message

 endtry

 endscan for RECTYPE = 'O'

* Now use the persistence object to load the

* values of the settings. Note that to avoid

* dangling references, we don't keep the

* object reference around any longer than we

* need to.

 .oPersist.oObject = This

 .oPersist.Restore()

 .oPersist.oObject = .NULL.

* Handle any settings that have code to

* execute to get the value.

scan for RECTYPE = 'O' and ;

 not empty(GETVALUE)

 lcProperty = trim(NAME)

 store execscript(GETVALUE, This, ;

 lcProperty) to ('This.' + lcProperty)

 endscan for RECTYPE = 'O' ...

 use

 endif used(lcAlias)

endwith

select (lnSelect)

This code goes through the options table and
adds properties to itself for each one. That allows
you to access the settings using code like
loSettings.YearStart and loSettings.DataDirectory.
LoadSettings also configures the persistence
object stored in oPersist so it knows which
settings to read and write. Then it calls Restore to
actually load the settings from the appropriate
persistence location, and finally executes any
custom code in the GetValue memo for each
record. SaveSettings is similar but it calls Save
rather than Restore and executes custom code in
the SaveValue memo.

To load the settings for an application at
startup, do something like this:

loPersist = newobject('SFPersistentINIFile', ;

 'SFPersist.vcx', '', .T.)

loPersist.cFilePath = 'Settings.ini'

loPersist.cSection = 'Options'

loPersist.lSaveOnDestroy = .F.

loSettings = newobject('SFOptions', ;

 'SFOptions.vcx', '', loPersist)

loSettings.LoadSettings()

Here’s an example that uses the YearStart
setting, which contains which month a company’s
fiscal year starts in (for example, 11 for
November), to determine which fiscal quarter a
date is in:

lnQuarter = quarter(ldDate, ;

 loSettings.YearStart)

SFOptionsDialog (shown in Figure 4) is the
class used to edit the settings. It consists of an
SFTreeViewContainer object (see “The Mother of
All TreeViews” part 1 and 2 at
http://doughennig.com/papers/default.html for
a discussion of that class) to display the list of
pages of settings and a pageframe with Tabs set to
.F. to contain the controls to edit the setting.
Selecting an item in the TreeView sets the
ActivePage property of the pageframe to the
specified page.

Figure 4. SFOptionsDialog allows the user to edit their
settings.

We won’t look at the code in this form other
than the part related to Dynamic Form. The
following is used to get a list of the options for the
current page and render them to the appropriate
page of the pageframe:

select * from OPTIONS ;

 where RECTYPE = 'O' and ;

 trim(PAGE) == lcPage ;

 into cursor RENDER order by ORDER

loPage = Thisform.pgfOptions.Pages[lnPage]

Thisform.oRender.Render(loPage)

As with the CustomFields class we saw
earlier, SFOptionsDialog uses an
SFDynamicRender object to do the hard work. To
display the Options dialog to the user, use code
like this:

loForm = newobject('SFOptionsDialog', ;

 'SFOptions.vcx', '', loSettings)

loForm.Show()

Summary
If you need the ability to create forms that appear
differently for different users or different
applications, Dynamic Form is a great tool that’ll
save you a lot of time. Being able to data-drive the
markup code makes Dynamic Form even more
flexible than I originally imagined. Feel free to use
the code or the ideas in this article in your own
applications.

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “VFPX: Open Source Treasure
for the VFP Developer,” “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of

the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was
a Microsoft Most Valuable Professional (MVP) from
1996 to 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

	Advanced Uses for Dynamic Form
	Custom fields
	Dynamic application settings
	Summary

