
Working with Microsoft
Excel, Part 2
Doug Hennig

Microsoft Excel is one of the most widely-used
applications ever. Because of its popularity, other
applications often need to read from or write to
Excel documents. The previous issue’s article
discussed several mechanisms for outputting VFP
data to Excel. This article looks at ways to read
Excel documents into VFP.

Most applications I’ve worked on had to interact
with Microsoft Excel documents in one way or
another. Outputting data to Excel is extremely
common, as most people are comfortable working
with Excel and often want to analyze or massage
the data in their applications in ways a developer
can’t foresee. But importing data from Excel is
also popular, both because it can be a common
interchange format between different applications
and because people often treat Excel like a
database, with its row and column layout making
data entry fast and easy.

In the previous issue of FoxRockX, I discussed
several mechanisms for output data from VFP to
Excel, including the built-in COPY TO and
EXPORT TO commands, using OLE Automation,
using ADO, and writing directly to Excel XML
files. In this issue, we’ll look at the opposite job:
reading from Excel documents into VFP cursors
and tables.

Built-in commands
The VFP APPEND FROM and IMPORT FROM
commands support reading from Excel version 2.0
(using the “TYPE XLS” clause), version 5.0 (using
“TYPE XL5”), and Excel 97 (using “TYPE XL8”)
files (all versions are XLS files). APPEND FROM
appends records into an existing table while
IMPORT FROM creates a new table, either a free
table or one in a database container, depending on
keywords you supply with the command (see
VFP help for details).

There are a few issues:

 Reading from some XLS files saved from
Excel 2007 or later causes errors; for
example, importing from

EmployeesFromXLSX.xls included with
the sample files for this article causes VFP
to crash.

 The columns in the table created with
IMPORT FROM are named A, B, C, etc.
You have to use ALTER TABLE or
MODIFY STRUCTURE to give them more
meaningful names.

 Column headings in the first row are
treated as a record so you have to delete
that record after reading from the Excel
file.

 Memo fields are ignored. For example,
USE EMPLOYEES to open
Employees.DBF (included with the
sample files for this article), then
APPEND FROM Employees.XLS TYPE
XLS. The last column in Employees.XLS is
a 254-character text field but after the
APPEND FROM command, you’ll find
the NOTES memo field, the last field in
the table, is empty.

 There is no support for reading from
XLSX files (Excel 2007 and later).

If you can live with these issues, especially the
last one, then these commands are your best
solution since they’re the fastest way to import
from Excel and take only one line of code.

Using ODBC
There are a couple of ODBC drivers for Excel:
Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *.xlsb),
which works with files created by any version,
and Microsoft Excel Driver (*.xls), which works
with Excel 2003 and earlier. Craig Boyd uses these
drivers to read from Excel files as if they’re
databases in AppendXLSX.PRG, which you can
download from http://tinyurl.com/jzolom3. This
function doesn’t require Excel to be installed.

The AppendFromExcel function accepts the
following parameters:

http://tinyurl.com/jzolom3

 The name of the Excel file to read from.

 The name of the worksheet to read from.
You can also specify a range, such as
Sheet1$A1:C20 (the “$” is required
because the ODBC driver needs it). If you
don’t specify it, the default “Sheet1$” is
used.

 The alias, workarea, or name of the table
to append records to (if not specified, the
current workarea is used). This can be a
cursor or a table.

 A comma delimited list of columns to
read from the worksheet (if not specified,
all columns are read).

 A comma delimited list of fields to insert
values into (if not specified, all fields are
used).

 A WHERE clause used when querying the
cursor for data to be read from the
worksheet.

 .T. if the first row of the worksheet is not
a header row but instead should be
treated as the first record.

AppendXLSX uses the appropriate Excel
ODBC driver to connect to the specified
document, uses SQLEXEC to read from the
specified worksheet as if it’s a table, and then goes
through the resulting cursor and copies the values
to the specified table. I won’t list the code here
because it’s fairly long; feel free to examine
AppendXLSX.PRG yourself. I fixed a couple of
bugs in the code; the fixed version is included
with this month’s downloads.

The code in Listing 1 imports
Employees.XLSX into Employees.DBF.

Listing 1. Test code for AppendFromXLSX.

use Employees exclusive

zap

set procedure to CraigBoyd\AppendXLSX

lnRecords = AppendFromExcel('Employees.xlsx')

messagebox(lnRecords)

browse

In my experience, ODBC works well and it’s a
mechanism I use often to import Excel data. It’s
also the second fastest mechanism I tested.

Reading directly from XLSX files
A XLSX file is basically a zip file containing
several XML files that together make up the Excel
document. Reading directly from an XLSX file
means unzipping the file and reading the content
from the appropriate XML file. Since the file is

accessed directly, neither Excel nor its ODBC
drivers have to be installed.

I looked at a couple of tools available to do
this:

 XLSXWorkbook, a VFPX project
(http://vfpx.codeplex.com), by Greg
Green (I discussed this project’s ability to
write to XLSX files in the previous article).

 ImportFromXLSX and AppendFromXLSX
by Vilhelm-Ion Praisach, which you can
download from his blog
http://praisachion.blogspot.com.

Let’s look at XLSXWorkbook first. You can
download it from http://tinyurl.com/zr6vxc5.
The download includes a number of test
programs and forms, but all of the actual code for
the utility is in a single VCX,
VFPxWorkbookXLSX.VCX. The download also
includes extensive documentation in a PDF file.

To use XLSXWorkbook, start by instantiating
the VFPXWorkbookXLSX class in
VFPXWorkbookXLSX.VCX. XLSXWorkbook
doesn’t have a specific method to read all the
rows from a worksheet into a table, but it does
have a method, GetSheetRowValues, that reads all
columns from the specified row in the specified
worksheet, so you just need a loop to process all
rows. Pass GetSheetRowValues a handle to a
document you opened with OpenXlsWorkbook,
the name or number of a worksheet in the
document, and the row number to read from.
GetSheetRowValues returns an object with a
Count property, containing the number of
columns read, and a Values array, with one row
per column read. The first column in the array
contains the cell value and the second column the
data type of the value.

The code in Listing 2 imports
Employees.XLSX into Employees.DBF. The results
are identical to that for Craig Boyd’s
AppendFromXLSX.

Listing 2. Test code for XLSXWorkbook.

use Employees exclusive

zap

loExport = newobject('VFPXWorkbookXLSX', ;

 'VFPXWorkbookXLSX\VFPXWorkbookXLSX.vcx')

lnWB = ;

 loExport.OpenXlsxWorkbook('Employees.xlsx')

llDone = .F.

lnRow = 2

do while not llDone

 loRow = loExport.GetSheetRowValues(lnWB, ;

 1, lnRow)

 lnRow = lnRow + 1

 if not isnull(loRow) and ;

 not isnull(loRow.Values[1, 1])

 append blank

 for lnI = 1 to loRow.Count

 lcField = field(lnI)

 replace &lcField with ;

http://vfpx.codeplex.com/
http://praisachion.blogspot.com/
http://tinyurl.com/zr6vxc5

 loRow.Values[lnI, 1]

 next lnI

 else

 llDone = .T.

 endif not isnull(loRow) ...

enddo while not llDone

browse

ImportFromXLSX and AppendFromXLSX are
easier to use because they do all the work of
reading from the XLSX file and creating the table
(in the case of ImportFromXLSX) or adding
records to the table (AppendFromXLSX). The
downloads from Vilhelm-Ion’s blog include a
number of test programs, but the utilities
themselves are in a couple of PRGs:
ImportFromXLSX and AppendFromXLSX.

Call ImportFromXLSX with these parameters:

 The name of the Excel file to read from.

 The starting row to read from; if it isn’t
specified, all rows are read. Pass 2 if the
first row contains column headers.

 The name or number of the worksheet to
read from. If you don’t specify it, the first
worksheet is used.

 .T. if the result should be a cursor or .F.
for a table.

 .T. if the worksheet contains empty cells.
This slows down the import but handles
empty cells better.

 The row number that contains column
headers. If you don’t specify the row
number, ImportFromXLSX uses field
names like MFIELD1, MFIELD2, and so
on for the field names in the table or
cursor. If you do specify the row number,
it uses the column headers (which it may
adjust to be valid VFP names) for the field
names.

 The name of the table or cursor to create;
you can specify “?” to display a Save As
dialog.

For AppendFromXLSX, the parameters are:

 The name of the Excel file to read from.

 The name of the table to append records
to (if not specified, the current workarea
is used). This can be a cursor or a table.

 A comma delimited list of fields to insert
values into (if not specified, all fields are
used).

 The starting row to read from; if it isn’t
specified, all rows are read. Pass 2 if the
first row contains column headers.

 The name or number of the worksheet to
read from. If you don’t specify it, the first
worksheet is used.

 .T. if the worksheet contains empty cells.

Both programs have a couple of constants that
determine their behavior. ERRLANG is the
language to use for error messages; set it to “Ro”
for Romanian, “Fr” for French, “Nl” for Dutch, or
anything else for English. If you want to use
WinRAR for unzipping the Excel file rather than
the default Window file extractor, uncomment the
#DEFINE archiveWinRAR .T. statement.

The code in Listing 3 creates
EmployeesImport.DBF from the content of
Employees.XLSX. The results are very similar to
that for the other mechanisms except the field
names come from the column headings since
we’re creating a table rather than appending into
an existing one.

Listing 3. Test code for ImportFromXLSX.

set path to ImportFromXLSX

ImportFromXLSX('Employees.xlsx', 2, '', .F., ;

 .F., 1, 'EmployeesImport.dbf')

use EmployeesImport

browse

The code in Listing 4 imports
Employees.XLSX into Employees.DBF. The results
are identical to that for the other append
mechanisms I discussed in this article.

Listing 4. Test code for AppendFromXLSX.

set path to AppendFromXLSX

use Employees exclusive

zap

AppendFromXLSX('Employees.xlsx', alias(), ;

 '', 2)

browse

Both Greg’s and Vilhelm-Ion’s utilities
worked well with the Excel files and tables I
tested them with, and both take about the same
amount of time to execute (ImportFromXLSX
takes a little longer because it has to determine the
field names and data types for the table it has to
create). However, they’re significantly slower
than either the built-in commands or ODBC.

Summary
Because of its popularity, being able to read from
or write to Microsoft Excel documents is often an
important requirement for a modern application.
The past two articles discussed several
mechanisms for working with Excel documents.
Select the one that best suits your needs, including
whether you can work with XLS or XLSX files and
whether Excel has to be installed on the machine
or not.

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “VFPX: Open Source Treasure
for the VFP Developer,” “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was
a Microsoft Most Valuable Professional (MVP) from
1996 to 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

	Working with Microsoft Excel, Part 2
	Built-in commands
	Using ODBC
	Reading directly from XLSX files
	Summary

