
A Generic About Dialog
Doug Hennig

In the last issue, Doug discussed a couple of
dynamic dialogs built with the assistance of
Dynamic Form. In this article, he presents another
dynamic, generic dialog, this time to display
application information.

Most applications have an About function in the
Help menu that displays information about the
application, such as the name of the company, the
version number, the current directory, and so on.
As I discussed in the September 2016 issue of
FoxRockX, after having created several About
dialogs over the years, I decided to create a
generic one that dynamically displays whatever
settings you wish. While this dialog is data-driven
like the ones in the previous issue, it does not use
the Dynamic Form VFPX project for control
rendering. Instead, it uses a ListView ActiveX
control.

Figure 1 shows what the dialog looks like.
Everything you see in the dialog except the Copy
Settings link and the OK button are customized
by passing parameters or adding records to a
table. This dialog has the following features:

 The ListView lists as many items as you
wish in description/value pairs. The
content of the list comes from a table
named About which we’ll look at in a
moment.

 Some of the items in the list appear in
blue text indicating they are hyperlinked:
clicking them performs some action. For
example, clicking the Program Folder
item brings up a File Explorer window
displaying the contents of the program
folder.

 The Copy Settings button copies the items
in the ListView to the Windows
Clipboard so they can be pasted
somewhere.

 The form caption, image, application
name, and version number aren’t hard-
coded but are passed as parameters to the
form.

 Resizing the dialog automatically resizes
the ListView and its second column. You

can manually adjust the size of the
columns as you normally would with a
ListView.

Figure 1. This About dialog is completely generic.

The Init method accepts three parameters: the
name of the application, the version number (as a
string), and the name of an image to use as the
application or company logo. It uses these
parameters for the caption of the form and labels
for the application name and version number and
for the logo image. It then calls the LoadList
method to load the settings. Here’s the code for
Init:

lparameters tcAppName, ;

 tcVersion, ;

 tcLogoImage

dodefault()

with This

 .Caption = 'About ' + tcAppName

 .lblProduct.Caption = tcAppName

 .lblVersion.Caption = 'Version ' + ;

 transform(tcVersion)

 .imgLogo.Picture = tcLogoImage

 .LoadList()

endwith

LoadList starts by opening the About table.
This table contains the items to display in the
About dialog. Table 1 shows the structure of this
table and Figure 2 shows the records in the
sample table accompanying this article.

Table 1. The structure of About.dbf.

Name Type Purpose

Order I The order of the item in the dialog

Caption C(40) The description of the item

Value M The value as an expression to be
evaluated

Hyperlink L .T. if this item should appear as a
hyperlink

Link M An expression to evaluate for the
hyperlink action; leave it blank to use
Value

Figure 2. The sample About table.

LoadList goes through the records in the
About table to determine the width of the longest
description and bumps up that width by 10 pixels
to account for spacing in the ListView. It then sets
some properties of the ListView control and
creates two columns: one for the description of
each item and one for the value. Since the value is
often wider than the description, the description
column only takes up the width calculated earlier
and the value takes up the rest of the width of the
ListView. Finally, LoadList goes through the
records in the About table again, this time adding
each item to the ListView by calling the
AddSettingToList method, which we’ll look at in
a moment. Here’s the code for LoadList:

local lnSelect, ;

 lnWidth, ;

 lnCurrWidth, ;

 luValue

lnSelect = select()

select 0

use ABOUT order ORDER again shared

lnWidth = 0

scan

 lnCurrWidth = txtwidth(trim(CAPTION), ;

 This.FontName, 8)

 lnCurrWidth = lnCurrWidth * ;

 fontmetric(6, This.FontName, 8)

 lnWidth = max(ceiling(lnCurrWidth), ;

 lnWidth)

endscan

lnWidth = lnWidth + 10

* Set some properties of the ListView.

with This.oList

 .View = 3

 .LabelEdit = 1

 .GridLines = .T.

 .Object.Font.Name = This.FontName

 .Object.Font.Size = 8

 .FullRowSelect = .T.

* Create some columns for the ListView.

 .ColumnHeaders.Add(, 'Description', ;

 'Description', lnWidth)

 .ColumnHeaders.Add(, 'Value', ;

 'Value', .Width - lnWidth)

endwith

* Add the settings we want displayed.

scan

 luValue = transform(evaluate(VALUE))

 This.AddSettingToList(trim(CAPTION), ;

 luValue, HYPERLINK, ;

 iif(empty(LINK), '', evaluate(LINK)))

endscan

use

select (lnSelect)

AddSettingToList accepts four parameters:
the description of the item, the value of the item,
.T. if it’s hyperlinked, and the value to use for the
hyperlink. It checks to see if the item is already in
the aItems array of the form and if not, adds a
new item to the ListView and the array. It sets the
value of the ListView item and if the item is
supposed to be hyperlinked, changes the color to
blue so it looks like a hyperlink and stores either
the hyperlink expression or the value into the Tag
property of the item (if the expression is blank, the
value is used). Here’s the code for
AddSettingToList:

lparameters tcDescription, ;

 tcValue, ;

 tlHyperlink, ;

 tcLink

local lnRow, ;

 loItem

with This

 if vartype(tcDescription) = 'C' and ;

 not empty(tcDescription) and ;

 len(tcDescription) <= 100 and ;

 not empty(tcValue) and ;

 len(tcValue) <= 255

lnRow = ascan(.aItems, tcDescription, ;

 -1, -1, 1, 13)

 if lnRow > 0

 loItem = .oList.ListItems(lnRow)

 else

 loItem = .oList.ListItems.Add(, ;

 sys(2015), tcDescription)

 lnRow = iif(empty(.aItems[1]), ;

 1, alen(.aItems) + 1)

 dimension .aItems[lnRow]

 .aItems[lnRow] = tcDescription

 endif lnRow > 0

 loItem.SubItems(1) = tcValue

 if tlHyperlink

 loItem.Forecolor = rgb(0, 0, 255)

 loItem.Tag = iif(empty(tcLink), ;

 tcValue, tcLink)

 endif tlHyperlink

 endif vartype(tcDescription) = 'C' ...

endwith

return

When the user clicks an item in the list, the
ListView’s ItemClick method is called. This
method checks to see whether the item has
anything in the Tag property and if so, uses the
Windows API ShellExecute function to open the
default application for the item it (ExecuteFile.prg
is a wrapper for ShellExecute). So, if the value of
the item is a path, File Explorer opens with that
path. If it’s a URL, the user’s default browser
opens with that URL. In the case of an email
address, use something like “'mailto:' +
oApp.cSupportEmail” in the Link field of the
About table if oApp.cSupportEmail contains the
email address to use.

lparameters toItem

if not empty(toItem.Tag)

 ExecuteFile(toItem.Tag)

endif not empty(toItem.Tag)

When the form is resized, we want the value
column of the ListView to resize as well. The
following code in the Resize event of the form
takes care of that:

local lnWidth

with This.oList

 lnWidth = .Width - ;

 .ColumnHeaders.Item(1).Width

 .ColumnHeaders.Item(2).Width = ;

 max(lnWidth, 100)

endwith

Main.prg is a sample program that shows
how to use SFAbout. It creates a dummy
application object for demo purposes only.
SFAbout doesn’t use oApp but the records in the
sample About table do; for example, the
expression for the value of the User Name item is
oApp.cUserName. Main then instantiates
SFAbout, passing it “My Sample Application” as
the application name, “1.0” as the version
number, and “KokoWhite.jpg” as the image to
use.

oApp = createobject('Empty')

addproperty(oApp, 'cUserName', 'DHENNIG')

addproperty(oApp, 'cWebSite', ;

 'http://www.stonefieldquery.com')

addproperty(oApp, 'cSupportEmail', ;

 'websupport@stonefieldquery.com')

addproperty(oApp, 'nLicenseCount', 5)

* Display the About dialog.

loForm = newobject('SFAbout', 'SFAbout.vcx', ;

 '', 'My Sample Application', '1.0', ;

 'KokoWhite.jpg')

loForm.Show()

Summary
There are numerous dialogs that most
applications have in common, including an
Options dialog discussed in the previous issue

and the About dialog discussed in this one.
Creating generic, dynamic versions of these
dialogs means you never have to create them
again.

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “VFPX: Open Source Treasure
for the VFP Developer,” “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was
a Microsoft Most Valuable Professional (MVP) from
1996 to 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

	A Generic About Dialog
	Summary

