
Processing Whole Words
Doug Hennig

Visual FoxPro has many text processing functions,
including ATC() and STRTRAN(). However, these
functions suffer from one flaw: they are character-
based rather than word-based, so they can find
substrings you may not have wanted. In this
article, Doug presents replacement functions that
word on whole words.

We do a lot of text processing at Stonefield
Software, especially with expressions. We use the
built-in VFP text processing functions extensively,
and usually they work well for us. However,
sometimes they don’t: when we want them to
search for text as a word rather than any
occurrence of the text.

ATC() replacement
One processing task we frequently do is look for
the existence of a field in an expression. It’s not as
simple as it sounds. For example, suppose you
have a SQL statement like this stored in a variable
named lcSelect:

select Employees.FirstName,

 Employees.LastName,

 Employees.CountryOfBirth

 from ...

and you want to know if the Country field is
involved in the query. Unfortunately,
ATC('Country', lcSelect) returns a false positive
because “Country” is contained within
“CountryOfBirth.” ATC looks anywhere in the
string rather than looking at words.

One of our genius developers at Stonefield,
Trevor Mansuy, wrote a replacement for ATC()
called ATCWord that searches for words rather
than substrings. So, using the example above,
ATCWord('Country', lcSelect) returns 0.

Like ATC(), ATCWord expects three
parameters: the string to search for, the string to
search for a match in, and which occurrence to
search for (optional: if it isn’t passed, 1 is used). It
returns the index of the first character of the
match or 0 if there is no match. It uses the
VBScript regular expression parser to do the hard
work.

lparameters tcSearch, ;

 tcString, ;

 tnOccurrence

local lnOccurrence, ;

 lcLeftBoundary, ;

 lcRightBoundary, ;

 lcDelimiters, ;

 lcSearch, ;

 lcString, ;

 lcSearchString, ;

 loRegExpr, ;

 loMatches, ;

 lnReturn, ;

 loMatch, ;

 lcMatch

* Ensure the necessary parameters were passed.

assert vartype(tcSearch) = 'C' and ;

 not empty(tcSearch) ;

 message 'Invalid search string passed'

assert vartype(tcString) = 'C' ;

 message 'Invalid string passed'

* Bug out if the string is empty.

if empty(tcString)

 return 0

endif empty(tcString)

* Get the occurrence number.

lnOccurrence = ;

 iif(vartype(tnOccurrence) = 'N', ;

 tnOccurrence, 1)

* This is here for future proofing. Right now,

* the function expects whatever we search for

* to begin and end with non-word characters,

* but just in case, save the boundary

* characters in variables so we can change

* them easily. Right now, we're using word-

* boundaries (the space between a word and a

* non-word character). We originally wanted to

* use non-word characters (\W) for this, but

* the match consumes the character, so side-

* by-side matches won't be found. The drawback

* of \b is if we do an ATC() for a string with

* a non-word character at the beginning or

* end, there's no guarantee there's a word

* boundary on the other side of that

* character.

lcLeftBoundary = '\b'

lcRightBoundary = '\b'

* Strip the usual name delimiters since they

* interfere with the search.

lcDelimiters = '"[]`'

lcSearch = chrtran(tcSearch, ;

 lcDelimiters, '')

lcString = chrtran(tcString, ;

 lcDelimiters, '')

* Certain RegExp special characters prevent

* matches, so escape them.

lcSearchString = AddRegExEscape(lcSearch)

lcString = AddRegExEscape(lcString)

* In the pattern below, the three sets of

* parentheses represent three match groups.

* The first match group, (LB|^), means we

* first match either a non-word character or

* the beginning of a string. Similarly, (RB|$)

* means at the end we match either a non-word

* character or the end of the string. This

* means we make a match in every situation

* except where the string in lcSearch is a

* substring of one of the strings in tcString.

loRegExp = createobject('VBScript.RegExp')

loRegExp.IgnoreCase = .T.

loRegExp.Global = .T.

loRegExp.Pattern = '(' + lcLeftBoundary + ;

 '|^)(' + lcSearchString + ;

 ')(' + lcRightBoundary + '|$)'

* Test the string and check how many matches

* were made. If it's less than the occurrence

* passed, return 0.

loMatches = loRegExp.Execute(lcString)

if loMatches.Count < lnOccurrence

 lnReturn = 0

* Retrieve the specified occurrence from the

* Item collection. If the match is the one we

* want, return its start location in the

* string.

else

 loMatch = loMatches.Item(lnOccurrence - 1)

 lcMatch = loMatch.Value

 lnReturn = ;

 iif(upper(lcSearch) = upper(lcMatch), ;

 loMatch.FirstIndex + 1, 0)

endif loMatches.Count < lnOccurrence

return lnReturn

AddRegExEscape, called from ATCWord,
escapes certain characters in regular expressions
that prevent matches:

lparameters tcString

local lcString

lcString = strtran(tcString, '\', '\\')

lcString = strtran(lcString, '?', '\?')

lcString = strtran(lcString, '*', '*')

lcString = strtran(lcString, '+', '\+')

lcString = strtran(lcString, '.', '\.')

lcString = strtran(lcString, '|', '\|')

lcString = strtran(lcString, '{', '\{')

lcString = strtran(lcString, '}', '\}')

lcString = strtran(lcString, '[', '\[')

lcString = strtran(lcString, ']', '\]')

lcString = strtran(lcString, '(', '\(')

lcString = strtran(lcString, ')', '\)')

lcString = strtran(lcString, '$', '\$')

return lcString

Here’s an example that shows that ATC()
gives a false positive while ATCWord correctly
returns 0:

text to lcSelect noshow

select Employees.FirstName,

 Employees.LastName,

 Employees.CountryOfBirth

 from Employees

endtext

messagebox(atc('Country', lcSelect))

messagebox(ATCWord('Country', lcSelect))

STRTRAN() replacement
Another processing task we do frequently is
replacing one field name with another. For
example, in the following SQL statement, there
are two fields named FirstName:

select Employees.FirstName,

 Customers.FirstName

 from ...

Rather than letting VFP create a unique name
for these fields, we’d rather specify a name for the
second one:

select Employees.FirstName,

 Customers.FirstName as FirstName_A

 from ...

You’d think STRTRAN() would make short
work of this, but STRTRAN() has a similar
problem to ATC(): it can find substring matches
because it doesn’t specifically handle words. To
take care of this, Trevor wrote a function to
replace STRTRAN() as well, called StrTranWord.

StrTranWord accepts three parameters: the
string to search and replace in, the string to search
for, and the string to replace the found string
with. It returns the string with any replacements
made. Unlike STRTRAN(), it doesn’t accept the
starting occurrence or the number of occurrences
to replace parameters since we didn’t need that
functionality. It also doesn’t accept the flags
parameters, as it’s always case-insensitive.

lparameters tcString, ;

 tcSearch, ;

 tcReplace

local loRegExp, ;

 lcSearch, ;

 lcReplace, ;

 loMatchCollection, ;

 lcLeftBoundary, ;

 lcRightBoundary, ;

 lcResult

* Ensure the necessary parameters were passed.

assert vartype(tcSearch) = 'C' and ;

 not empty(tcSearch) ;

 message 'Invalid search string passed'

assert vartype(tcString) = 'C' ;

 message 'Invalid string passed'

assert vartype(tcReplace) = 'C' ;

 message 'Invalid replacement string passed'

* Bug out if the string is empty.

if empty(tcString)

 return tcString

endif empty(tcString)

* If the search string begins or ends with a

* non-word character, this causes the string

* match to fail. In some cases, however, we

* want the match and replacement to be

* successful (i.e. TableName.FieldName,

* replacing "TableName." with "Replacement.").

* To handle this, we check the left and right

* sides of the search string for non-word

* characters and use them instead of \W if

* they exist. We also have to remove these

* characters from the search string.

loRegExp = createobject('VBScript.RegExp')

loRegExp.IgnoreCase = .T.

loRegExp.Global = .T.

loRegExp.Pattern = '\W'

lcSearch = tcSearch

lcReplace = tcReplace

loMatchCollection =

loRegExp.Execute(left(tcSearch, 1))

if loMatchCollection.Count = 0

 lcLeftBoundary = '\W'

else

 lcLeftBoundary = ;

 AddRegExEscape(left(tcSearch, 1))

 lcSearch = substr(lcSearch, 2)

endif loMatchCollection.Count = 0

loMatchCollection =

loRegExp.Execute(right(tcSearch, 1))

if loMatchCollection.Count = 0

 lcRightBoundary = '\W'

else

 lcRightBoundary = ;

 AddRegExEscape(right(tcSearch, 1))

 lcSearch = left(lcSearch, ;

 len(lcSearch) - 1)

endif loMatchCollection.Count = 0

* Certain RegExp special characters prevent

* matches, so escape them.

lcSearch = AddRegExEscape(lcSearch)

* In the pattern below, the three sets of

* parentheses represent three match groups.

* The first match group, (\W|^), means we

* first match either a non-word character or

* the beginning of a string. Similarly, (\W|$)

* means at the end we match either a non-word

* character or the end of the string. This

* means we do the replacement in every

* situation except where the string in

* lcSearch is a substring of one of the

* strings in tcString.

loRegExp.Pattern = '(' + lcLeftBoundary + ;

 iif(lcLeftBoundary = '\W', '|^)(', ')(') + ;

 lcSearch + ')(' + lcRightBoundary + ;

 iif(lcRightBoundary = '\W', '|$)', ')')

* Do the replacement. The $1 and $3 refer to

* the first and third capturing groups in our

* RegEx. We add these in case the non-word

* match consumes a boundary character such as

* a space, an operator in an expression, etc.,

* and we want to put it back. If the first or

* third capturing groups captured a specific

* non-word character, ignore it during the

* replacement since a suitable character is

* assumed to be in the replacement string in

* this case.

lcResult = loRegExp.Replace(tcString, ;

 iif(lcLeftBoundary = '\W', '$1', '') + ;

 tcReplace + ;

 iif(lcRightBoundary = '\W', '$3', ''))

return lcResult

Here’s an example that shows the difference
between STRTRAN() and StrTranWord:

text to lcSelect noshow

select Employees.LastName,

 Employees.Tax,

 Employees.TaxStatus

 from Employees

endtext

messagebox(strtran(lcSelect, 'Tax', ;

 'Tax as Tax_A'))

messagebox(StrTranWord(lcSelect, 'Tax', ;

 'Tax as Tax_A'))

STRTRAN() replaces both instances of “Tax,”
giving:

select Employees.LastName,

 Employees.Tax as Tax_A,

 Employees.Tax as Tax_AStatus

 from Employees

which is not what we want, while StrTranWord
gives the correct text:

select Employees.LastName,

 Employees.Tax as Tax_A,

 Employees.TaxStatus

 from Employees

Summary
VFP has some great text processing functions, but
one of their shortcomings is that they aren’t word-
based. Fortunately, using regular expressions, we
created replacement functions that provide the
same functionality but handle whole words rather
than substrings. Feel free to use this functions if
you have a similar need.

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “VFPX: Open Source Treasure
for the VFP Developer,” “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was
a Microsoft Most Valuable Professional (MVP) from
1996 to 2011. Doug was awarded the 2006 FoxPro

Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

	Processing Whole Words
	ATC() replacement
	STRTRAN() replacement
	Summary

