
Creating iCalendar Files
Doug Hennig

This is the third of several articles on components
of Doug’s in-house library. This issue discusses
how to create iCalendar files so scheduled items
can automatically be added to a calendar.

I needed a way to create iCalendar files for a web
site. The idea was that a user could click a link for
a scheduled item to automatically add the item to
their calendar, either on their computer or their
phone.

An iCalendar file is pretty easy to create, as
it’s just a text file with an ICS extension. Here’s an
example:

BEGIN:VCALENDAR

VERSION:2.0

CALSCALE:GREGORIAN

X-WR-TIMEZONE:America/Phoenix

BEGIN:VEVENT

DTSTART:20121019T170000Z

DTEND:20121019T181500Z

SUMMARY;ENCODING=QUOTED-PRINTABLE:Win32API for

VFP Developers - Doug Hennig

DESCRIPTION;ENCODING=QUOTED-PRINTABLE:The

Windows API (Win32API) contains thousands of

useful functions. However, finding which

function to use when, and how to call it from

a VFP application, can be challenging. This

session discusses how API functions are called

in VFP, where to find information on the API,

and presents lots of useful API functions you

can call in your VFP applications today.

LOCATION;ENCODING=QUOTED-PRINTABLE:Gilbert

UID:SWFOX20121019T170000Z

PRIORITY:3

END:VEVENT

END:VCALENDAR

The DTSTART and DTEND elements contain
the start and end date and time in UTC
(Coordinated Universal Time,
http://tinyurl.com/cskd9xu), SUMMARY is the
summary or title of the item, DESCRIPTION
contains the item’s description, LOCATION has
location such as a building name or room number,
and UID is a unique ID. See
http://tinyurl.com/8p55y9x for a more complete
specification of the format.

The code to generate the iCalendar text is
pretty straightforward: it simply uses text merge
to insert the appropriate values into a template
string. Listing 1 shows the code for
CreateICSFile.prg, which creates a ICS file when
you pass it the following parameters:

 The starting date and time for the item.

 The ending date and time for the item.

 The title.

 The description.

 The location.

 The name and path for the ICS file.

Listing 1. CreateICSFile.prg creates an ICS file from the
specified settings.

lparameters tdStart, ;

 tdEnd, ;

 tcTitle, ;

 tcDescription, ;

 tcLocation, ;

 tcFile

* Get the time zone offset for UTC.

loTimeZone = GetTimeZoneInfo()

lnTimeZoneOffset = loTimeZone.TimeZoneOffset

* Generate an ICS file.

lcStart = chrtran(ttoc(tdStart + ;

 lnTimeZoneOffset, 3), '-:', '') + 'Z'

lcEnd = chrtran(ttoc(tdEnd + ;

 lnTimeZoneOffset, 3), '-:', '') + 'Z'

lcID = sys(2015)

text to lcContent noshow textmerge pretext 2

BEGIN:VCALENDAR

VERSION:2.0

BEGIN:VEVENT

DTSTART:<<lcStart>>

DTEND:<<lcEnd>>

SUMMARY:<<tcTitle>>

DESCRIPTION:<<tcDescription>>

LOCATION:<<tcLocation>>

UID:<<lcID>>

PRIORITY:3

END:VEVENT

END:VCALENDAR

endtext

strtofile(lcContent, tcFile)

The only wrinkle is getting the date/time
values in UTC. The best way to do that is to ask
Windows for the current time zone information,
as I discussed in the March 2016 issue of
FoxRockX. Listing 2 shows the code for
GetTimeZoneInfo.prg, which returns an object
with TimeZoneDesc (the time zone description)
and TimeZoneOffset (the offset from GMT in
seconds) properties.

http://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://tinyurl.com/cskd9xu
http://tinyurl.com/8p55y9x

Listing 2. GetTimeZoneInfo.prg asks Windows for the time
zone offset from GMT.

local loObject, ;

 lcTimeZone, ;

 lnID, ;

 lnStandardOffset, ;

 lnDaylightOffset

* Create an object to hold the time zone

* information.

loObject = createobject('Empty')

addproperty(loObject, 'TimeZoneDesc')

addproperty(loObject, 'TimeZoneOffset')

* Declare the time zone information API

* function and get the time zone

* information.

#define TIME_ZONE_SIZE 172

declare integer GetTimeZoneInformation ;

 in kernel32 ;

 string @lpTimeZoneInformation

lcTimeZone = replicate(chr(0), TIME_ZONE_SIZE)

lnID = ;

 GetTimeZoneInformation(@lcTimeZone)

* Determine the standard and daylight time

* offset.

lnStandardOffset = ctobin(substr(lcTimeZone, ;

 1, 4), '4RS')

lnDaylightOffset = ctobin(substr(lcTimeZone, ;

 169, 4), '4RS')

* Determine the total offset based on whether

* the computer is on daylight time or not. Get

* the description for the time zone.

if lnID = 2 && daylight time

 loObject.TimeZoneDesc = ;

 strtran(strconv(substr(lcTimeZone, 89, ;

 64), 6), chr(0), '')

 loObject.TimeZoneOffset = ;

 (lnStandardOffset + lnDaylightOffset) * 60

else && standard time

 loObject.TimeZoneDesc = ;

 strtran(strconv(substr(lcTimeZone, 5, ;

 64), 6), chr(0), '')

 loObject.TimeZoneOffset = ;

 lnStandardOffset * 60

endif lnID = 2

return loObject

Originally, I just used the following code to
get the start date/time and something similar for
the ending date/time:

ttoc(tdStart + lnTimeZoneOffset, 3) + 'Z'

This gave values formatted like this:

2012-10-20T21:00:00Z

While this worked just fine with Microsoft
Outlook, I found a problem when trying to add an
item to the calendar on my iPhone. I found a blog
post by Joe Bradford that suggested the problem
might be the wrong MIME type for ICS files.
Checking the IIS settings confirmed I had the
same issue as Joe. The easiest way to change the
settings for me (since I didn’t have access to the

IIS settings directly) was to create a web.config
file that changed the MIME setting and add it to
the root folder of the web site:

<configuration>

 <system.webServer>

 <staticContent>

 <remove fileExtension=".ics" />

 <mimeMap fileExtension=".ics"

 mimeType="text/calendar" />

 </staticContent>

 </system.webServer>

</configuration>

However, that still didn’t resolve the problem;
while I didn’t get an error, the item simply didn’t
show up in the calendar. Just for grins, I tried to
import an ICS file into Google Calendar; while the
item did appear in the calendar, it was in the
wrong timeslot (almost a year off). I manually
created a calendar item and exported it, and
noticed a difference in how the date/time values
were formatted: the same as mine but without
dashes or colons:

DTSTART:20121020T210000Z

DTEND:20121020T221500Z

As a result, the code in CreateICSFile.prg now
strips out the extra characters inserted by TTOC().

TestCreateICSFile.prg creates an ICS file for a
sample appointment from 9:00 a.m. to 10:00 a.m.
local time (for the Central Daylight Time zone in
North America, that’s 1400 to 1500 UTC) on
August 1, 2017. It has the following code:

ltStart = datetime(2017, 8, 1, 9, 0, 0)

ltEnd = datetime(2017, 8, 1, 10, 0, 0)

CreateICSFile(ltStart, ltEnd, ;

 'Meeting with Brad', 'Meeting with ' + ;

 'Brad to discuss proposal. Remember ' + ;

 'to bring new customer forms.', ;

 'Boardroom', 'MyMeeting.ics')

Figure 1 shows what the appointment looks
like when you double-click the ICS file to add it to
Microsoft Outlook and Figure 2 shows how it
appears when you import it into Google
Calendar.

Figure 1. The sample appointment as it appears in Microsoft

Outlook.

Figure 2. The sample appointment as it appears in Google

Calendar.

Summary
Creating iCalendar files is simple. If your
application supports scheduled items, such as
appointments, meetings, or events, you can easily
add the ability to automatically add them to the
user’s calendar using CreateICSFile.prg.

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “VFPX: Open Source Treasure
for the VFP Developer,” “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was
a Microsoft Most Valuable Professional (MVP) from
1996 to 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

	Creating iCalendar Files
	Summary

