
 

 

 

 

 

 

 

Advantage Database Server for 

Visual FoxPro Developers 

 

 
Doug Hennig 

Stonefield Software Inc. 

Email: dhennig@stonefield.com 

Web site: http://www.stonefield.com 

Web site: http://www.stonefieldquery.com 

Blog: http://doughennig.blogspot.com 

 

 

mailto:dhennig@stonefield.com
http://www.stonefield.com/
http://www.stonefieldquery.com/
http://doughennig.blogspot.com/


Advantage Database Server for Visual FoxPro Developers Doug Hennig 

2 

Overview 

Advantage Database Server is a full-featured, high-performance client/server database engine. 

Interestingly, it can use Visual FoxPro DBF files as its data store and provides a number of benefits over 

accessing these files directly. This document introduces Advantage and discusses how to access it from 

VFP applications. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

3 

Introduction 

Visual FoxPro is a wonderful development tool. Its rich object-orientation, powerful language features, 

integrated report writer, and open and extendible interactive development environment (IDE) make it one 

of the best tools available for developing desktop applications. However, its built-in data engine is both 

one of its greatest strengths and greatest weaknesses. Strength because the data engine is tightly 

integrated into VFP and is one of the fastest on the planet and weakness because the DBF file structure 

can be subject to corruption, lack of security, and size limitations. Fortunately, VFP developers aren’t 

restricted to only using VFP tables as their data store; VFP makes a great front-end to client/server 

databases such as SQL Server, Oracle, and Sybase. 

This document discusses another product in the client/server database market: Advantage Database 

Server. It first looks at what Advantage Database Server is and what features it has, then delves into how 

to access Advantage from VFP applications. For the sake of those who are relatively new to client/server 

technologies, this document assumes you don’t have much experience with accessing backend databases 

and goes into some detail on how to do that. 

 

Introducing Advantage Database Server 

Advantage Database Server, or ADS, is from Sybase iAnywhere, a subsidiary of Sybase. According to 

their marketing materials, “Advantage Database Server is a full-featured, high performance client/server 

data management system specifically designed to meet the needs of business application developers.” 

The more you read about ADS, the more you realize that its features align very nicely with those of the 

database engine in Visual FoxPro. However, it doesn’t replace VFP. Like SQL Server, ADS is a database 

engine rather than a full-featured programming language, and you can easily access its data in VFP using 

ODBC or ADO. However, as you will see, ADS has better support for VFP than any other database 

engine, and its latest incarnation, version 9, greatly extends this support. 

Here’s an overview of the features of ADS compared to VFP: 

 It’s a true client/server database engine. With file-based engines like VFP, the server containing 

the data files is just a file server. All processing, such as selecting records, is performed on the 

workstation, so the entire table must be brought down from the server. With client/server 

engines, all processing is done on the server, so only the results are sent to the workstation. 

This provides several benefits, including reduced network traffic and more database 

management capabilities. In addition, the engine is multi-threaded and supports multiple 

processors for better scalability. 

 ADS actually comes with two database engines: local and remote. The local engine isn’t 

a true database server but more like VFP in that it uses file-based access to the data. It 

uses an in-process DLL that loads into the ODBC driver on the client’s machine. The 

remote engine is a true database server that provides all of the benefits of a 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

4 

client/server architecture. Advantage Local Server is useful for testing on a single 

development system or as a low-cost database engine (it’s actually free) for commercial 

applications, but has many significant limitations the Advantage Remote Server doesn’t 

have. The benefit of Advantage Local Server is that it gives you a client/server-like 

mechanism you can scale up to the full remote server if necessary. 

 The remote server can be accessed over the Internet if necessary. It supports encrypted 

and compressed data transmission for security and performance. 

 One of the most interesting things about ADS is that it can use either a proprietary file 

format (files with an ADT extension) or DBF files for data storage. While there are 

benefits to using ADT files, including additional data types DBFs don’t support, using 

DBFs makes it easier to migrate an existing VFP application to a client/server model. 

What’s really interesting about this is that you can access your existing DBFs through 

ADS to take advantage of the features ADS provides while still accessing them directly 

as VFP tables. This makes a very attractive migration strategy: you can modify your 

application module by module to use client/server techniques while older modules 

continue to work unchanged. 

 When accessing DBF files, it supports two locking mechanisms: compatible and 

proprietary. Compatible locking, which uses operating system locks on bytes in the DBF 

files, allows simultaneous access to the data by ADS and non-ADS (such as VFP) 

applications. Proprietary locking uses an internal locking mechanism. This provides 

better stability and control but means that the files are opened exclusively by ADS and 

cannot be access by another application until they are closed in ADS. 

 It provides database security. A valid user account is required to connect to the 

database so unauthorized users cannot access your data. Different user accounts can 

have different levels of permissions. For example, it’s unlikely normal users need to 

alter, create, or drop tables, so you can prevent everyone but administrative users from 

performing these database-altering tasks. Even if you’re using ADS with DBF files, you 

can place these files in a folder on the server that normal users don’t have access to, so 

the only access they have to the data is through ADS. This would be a lot more difficult 

to implement using a purely VFP solution. 

 For additional security, ADS can encrypt the tables using a case-sensitive password. 

Doing so in purely VFP solution requires a third-party product such as Cryptor by Xitech 

and managing the access to the encrypted data yourself. 

 Like VFP, ADS tables can be free or enhanced with a data dictionary (an ADD file). 

Similar to the VFP database container (DBC), ADD files don’t “contain” the tables but 

instead provide additional information, or meta data, about them. Advantage’s data 

dictionary maps very closely to the VFP DBC, including things such as long field names, 

primary keys, referential integrity rules, default field values, field validation rules and 

custom error messages (although ADS only supports minimum and maximum or null 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

5 

values rather than expressions which can do any type of validation), table validation 

rules and custom error messages, views, triggers, and stored procedures. As this 

document discusses later, ADS comes with a utility that generates an ADD from a DBC, 

automating most of the effort in creating an Advantage data dictionary. 

 Although ADS’s documentation uses the term “Advantage optimized filters,” the 

description of the technology that provides the high performance querying capabilities 

of ADS sounds just like the Rushmore technology that gives VFP its speed. ADS 

examines an index to determine which records match the filter conditions, only 

accessing the physical records when an index isn’t available. The ADS documentation 

has terms like “fully optimized” and “partially optimized” just like the VFP 

documentation. This means VFP developers can use their existing knowledge of 

optimizing VFP queries with ADS databases. 

 ADS has a full-text search engine providing very fast searches of memo files. Many VFP 

developers use third-party products such as PhDbase for full-text searching in their 

applications, but some of these tools are no longer available or haven’t been upgraded 

to work with the latest versions of VFP. 

 Although ADS can access DBF files, it doesn’t have the same limits that VFP does. For 

example, in VFP, DBF and FPT files are limited to 2 GB. In ADS, there isn’t a direct limit 

on the size of the file; instead, the limit is a maximum of 2 billion (2,147,483,648) 

records. Of course, if your DBF becomes larger than 2 GB, you’ll only be able to access it 

through ADS since VFP will see it as invalid. 

 Since the ADS ODBC driver fully supports VFP 9 data types, you can use it in place of the 

VFP ODBC driver, which hasn’t been updated since VFP 6 and so doesn’t support new 

features like Varchar, Varbinary, and Blob fields. 

 ADS supports transactions, complete with commit, rollback, and automatic rollback if 

the workstation or server crashes during the transaction. 

 Replication is a process that distributes changes in records in the tables of one database 

to the tables of another database, such as changes made in databases in remote offices 

to a single consolidated database at head office or vice versa. Replication with VFP data 

is certainly possible but you have to write the code yourself, deal with all types of issues 

such as conflict resolution, and test it extensively to ensure it works under all 

conditions. ADS has built-in replication features so they’ve done all the hard work for 

you. 

 ADS includes online backup capability, meaning you can back up your tables while they’re open 

in an application. It isn’t possible to do that using normal backup procedures against VFP tables. 

You can perform full or incremental backups. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

6 

Installing Advantage Database Server 

There are several components that make up Advantage: the database server itself, the Advantage Data 

Architect, the ODBC driver, and the OLE DB provider. 

ADS runs on Windows, Netware, and Linux. For Windows, the name of the installer for the database 

server is ADSWin_x86_32.EXE. Run this program on the server you want ADS installed on. You can, of 

course, install it on the same system you do development on rather than a separate server, but you would 

normally install it on an actual server in a production environment. By default, the engine installs into 

C:\Program Files\Advantage 9.0 (this is also the default for the other components). After installing the 

engine files, the installer prompts you for the name of the registered owner, whether the engine’s 

Windows service should be started automatically or manually (the default is automatic), which ANSI 

character set to use (the default is to use the default setting for the machine), and which OEM/localized 

character set to use. Once you’ve answered these questions, the Advantage Configuration Utility opens 

(see Figure 1), allowing you to see statistics about the server, including the number of users and 

connections, and configure certain properties, such as timeout, ports used, and log file locations. 

 

Figure 1. After installing ADS, the Configuration Utility appears, allowing you to configure the server properties. 

The next thing to install is the Advantage Data Architect, an ADS utility discussed in the next 

section. Its installer is called Arc32.EXE. Like the server installation, you can specify the install folder 

name, the ANSI character set, and OEM character set. Next, install the ODBC driver by running 

ODBC.EXE if you plan on using ODBC to access ADS and install the OLE DB provider by running 

OLEDB.EXE. You should install the OLE DB provider regardless of whether you plan on using ADO or 

not because OLEDB.EXE installs a VFP-specific utility discussed later in this document. Both of these 

prompt for the install folder name, the ANSI character set, and OEM character set. 

You’re now ready to start using ADS. 

 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

7 

Advantage Data Architect 

Advantage Data Architect, also known as ARC, is a connection and database management tool for ADS. 

If you’ve used SQL Server Enterprise Manager or Management Studio, or even the VFP Data Explorer, 

this utility will be somewhat familiar. Interestingly, the complete source code for ARC, which was 

written in Delphi, is included with the utility. ARC is shown in Figure 2. 

 

Figure 2. Advantage Data Architect provides many of the same features as the VFP Data Explorer or SQL Server Management 

Studio. 

ARC has functions to: 

 Create, maintain, and delete databases and tables 

 Browse tables with filtering, searching, sorting, and navigation 

 Import and export data 

 Export table structures as code 

 Manage security settings and user accounts 

 Execute queries in the SQL Utility and Query Builder tools 

 Compare data dictionaries 

The left pane in ARC is the Connection Repository. This provides easy access to ADS databases 

you’ve registered with ARC. (A database doesn’t have to be registered with ARC to use it in other 

applications.) To create a database and add it to the repository, choose Create New Data Dictionary from 

the File menu; this creates an empty ADD file with the properties you specify in the dialog that appears. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

8 

To add an existing database or a directory of free tables to the repository, choose New Connection 

Wizard from the File menu and follow the steps in the wizard dialog. 

I’ll discuss various functions in ARC throughout the examples in this document. 

Upsizing a VFP database 

Although ADS 9 supports most VFP data features, some of this support relies on using an Advantage 

database rather than “free” tables. (From an ADS point-of-view, even tables in a VFP DBC are free 

tables if they aren’t included in an ADS database.) This includes support for long field names, primary 

keys, referential integrity, field and table validation, triggers, and so on; in other words, the same things 

the VFP database container is used for. In anything but a small database, it would be quite a bit of work 

to create an Advantage database for an existing VFP database. Fortunately, ADS comes with a utility 

written in VFP, DBCConvert.PRG, which creates an Advantage database and populates it with 

information about the tables in a VFP database. 

To see how DBCConvert.PRG works, upsize the Northwind sample database that comes with VFP. 

Start by creating a new folder and copying all the files in the Samples\Northwind folder of the VFP home 

directory to it; that way, you won’t alter your original database when you make some changes described 

later. Start VFP and run DBCConvert.PRG in the OLEDB subdirectory of the ADS program folder. 

When prompted for the database, select Northwind.DBC in the folder you copied the files to. After a few 

seconds, the program completes its tasks. However, note the message displayed: there were 28 errors, but 

it doesn’t indicate what they are. Fortunately, DBCConvert.PRG logs the upsizing process, as discussed 

later. 

Check the directory containing the Northwind database and you’ll see some new files: 

 Northwind.ADD, AI, and AM: The ADS database. 

 BAK versions of some DBF and FPT files: The upsizing process (not DBCConvert.PRG but 

ADS itself) backs up these files just in case. 

 FieldUpgradeResults.ADM and ADT, RelationsUpgradeResults.ADM and ADT, 

TableUpgradeResults.ADM and ADT, and ViewUpgradeResults.ADM and ADT: These 

ADS tables contain log information about the upsizing process, including any errors that 

occurred. You’ll use these extensively to find and resolve problems in the upsizing 

process. 

Open ARC and choose New Connection Wizard from the File menu or click the New Connection 

Wizard button in the toolbar. Choose “Create a connection to an existing data dictionary” in the first step 

of the wizard. In step 2, select the path to Northwind.ADD, the Advantage database created by the 

upsizing utility, and change Server Type to “remote.” Leave the other settings at their default values and 

click Finish (see Figure 3). ARC asks you to login as the AdsSys user (the default administrative user 

name); since there’s no password for that user in this example, click OK. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

9 

 

Figure 3. Use the New Connection Wizard to create a connection to your upsized VFP database in Advantage Data Architect. 

All the tables in Northwind appear under the Tables node but only five of the seventeen views appear 

under Views. In addition, there are the four new tables mentioned earlier, FieldUpgradeResults, 

RelationsUpgradeResults, TableUpgradeResults, and ViewUpgradeResults. 

Open TableUpgradeResults by double-clicking it. Each upsized table is listed multiple times, once 

for each operation. The various columns in this table indicate what process was performed in each step. 

For example, for Customers, there are records for adding the table to the ADS database, specifying long 

field names, creating indexes, specifying the table validation expression and message, and defining the 

primary key. Note that one table, Categories, has an error in the step specifying long field names. The 

error message is (edited for space): 

The requested operation is not legal for the given field type.   ALTER TABLE CATEGORIES ALTER 

"CATEGORYID"  "CATEGORYID" autoinc  NOT NULL ALTER "CATEGORYNA"  "CATEGORYNAME"  char( 15 ) NOT 

NULL ALTER "DESCRIPTIO"  "DESCRIPTION"  memo  NULL ALTER "PICTURE"  "PICTURE" blob  NULL 

Categories contains a General field named Picture but ADS doesn’t support General fields so it 

couldn’t process this table. I’ll discuss this problem in more detail later. 

Open FieldUpgradeResults. This table shows the results of upsizing field comments, validation 

messages, and default values. Again, one record has an error indicating the upsizing utility couldn’t set 

the comment for Categories.CategoryName; that field doesn’t exist in the data dictionary because the 

error logged in TableUpgradeResults prevented defining the long field names for Categories, so the field 

is actually named CategoryNa, the 10-character name stored in the DBF header. 

RelationsUpgradeResults contains log information for upsized relations. This table contains errors 

for every record. The error message is (edited for space): 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

10 

The new referential integrity rule could not be added to the Advantage Data Dictionary.  Primary 

Key: Visual FoxPro keys used in RI must include a !deleted condition 

ViewUpgradeResults, which contains log information for upsized views, has lots of errors. In fact, 

only five views could be upsized. Some of the views failed because they reference 

Categories.CategoryName, which doesn’t exist, but there are several different reasons why others failed. 

While upsizing a VFP database takes you a long way to having a complete ADS version of the 

database, there are a few things to note. 

 As indicated by the error message in RelationsUpgradeResults, ADS requires a filter of NOT 

DELETED() on primary key tags used in referential integrity rules. It’s more than a little hassle to 

add this filter to those tags, because modifying the tag to add the expression deletes persistent 

relations based on that tag. I’ve included a program called FixRelations.PRG in the source code 

accompanying this document that updates all primary keys used in relations to include a NOT 

DELETED() filter while preserving the relationships. 

 ADS doesn’t understand nested JOINs, such as SELECT * FROM Table1 JOIN Table2 JOIN 

Table3 ON Table2.Field = Table3.Field ON Table1.Field = Table2.Field. You’ll need to 

convert views that use nested JOINs to the more normal sequential JOIN syntax before 

upsizing them. One way to do that is to open the view in the View Designer and save it 

again. This works because while in older versions of VFP the View Designer used nested 

syntax, starting in VFP 8 it uses sequential syntax by default. 

 ADS doesn’t support views with ORDER BY clauses or views based on other views. 

 Views using VFP functions won’t upsize properly. For example, the 

Sales_Totals_By_Amount view in the Northwind database uses the VFP BETWEEN() 

function for one of the WHERE conditions. In that case, changing it to use the SQL 

BETWEEN clause instead resolves the problem. Other views may not be as easy to fix, 

however. For example, the Summary_of_Sales_by_Year and 

Summary_of_Sales_by_Quarter views both use EMPTY() and NVL() in WHERE clauses, 

so they can’t be upsized and must be recreated manually. 

 Tables with General fields won’t upsize properly because ADS doesn’t support them 

(yet another reason not to use General fields). That’s why the Categories table had an 

error: Categories.Picture is a General field. In fact, if you try to display the structure of 

the table in ARC (right-click the table and choose Properties), you’ll get an error 

message and no properties are displayed for that field. You must either remove the 

Picture field from the table or change it from General to something else, such as Blob. 

 The VFP field-related properties ADS supports are default value, whether nulls are 

allowed, description (which is upsized from the field comment property), field 

validation message, and whether codepage translation is performed, so those are all 

upsized. ADS doesn’t support field validation rules, but it does support minimum and 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

11 

maximum values, so you could manually populate those properties after upsizing is 

complete. 

 Other field properties ADS doesn’t support are format, inputmask, field mapping, and 

field captions, so none of these are upsized. All of these are UI-related properties so 

they aren’t necessary in ADS. 

 VFP table-related properties ADS supports are memo block size, table description 

(upsized from the table comment property), table validation rule, and validation 

message so those are all upsized. However, rules containing VFP functions are obviously 

a problem. 

 Triggers aren’t upsized since they use VFP code which wouldn’t be understood by ADS. 

However, the most common use for triggers is to support referential integrity rules and 

they are upsized. Note that ADS doesn’t support an Ignore RI rule, so those are upsized 

as Set to NULL. You’ll have to recreate triggers used for other purposes. 

 Stored procedures aren’t upsized for the same reason. You don’t have to worry about 

stored procedures used for RI since RI rules are upsized. However, you’ll have to rewrite 

any other stored procedures in ADS SQL or perhaps move the code into a middle tier 

component. 

 ADS version 9 doesn’t support VFP binary indexes, but Sybase plans to support them in version 

9.1 or possibly a service pack released before 9.1. 

You can fix some of these issues and upsize again. Because DBCConvert.PRG creates an ADS 

database, that database can’t be open in ARC or you’ll get an error when you run the PRG again, so close 

the Northwind connection by right-clicking the connection and choosing Disconnect. Open the 

Northwind database in VFP and make the following changes: 

 Invoices and Product_Sales_For_1997: modify these views, remove the relationships, and 

recreate them. These views used nested joins so recreating the relationships in VFP 9 converts 

the views to use sequential join syntax. (Use the View SQL function in the View Designer to 

confirm that.) While you could do the same for Sales_By_Category, as you’ll see later, this view 

can’t be upsized for other reasons. 

 Quarterly_Orders and Sales_Totals_By_Amount: modify these views, save, and close 

without making any changes. These views use the VFP BETWEEN() function for one of 

the WHERE conditions. Simply saving changes it to use the SQL BETWEEN clause. 

(Product_Sales_For_1997 also uses BETWEEN() but it was automatically fixed in the 

previous step when you saved those views. Sales_By_Category also uses BETWEEN() 

but, as you’ll see later, this view can’t be upsized for other reasons.) 

 Alphabetical_List_of_Products, Current_Product_List, Invoices, and 

Products_By_Category: modify these views and remove the ORDER BY clause. 

Unfortunately, you can’t do that with Ten_Most_Expensive_Products since it has a TOP 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

12 

clause and therefore requires an ORDER BY clause. You’ll have to recreate that view 

manually. Also, while you could make this change for Sales_By_Category, 

Summary_of_Sales_by_Quarter, and Summary_of_Sales_by_Year, it won’t help 

because those views can’t be upsized for other reasons. 

 Invoices: modify this view, choose View SQL, and change both occurrences of ALLTRIM 

to TRIM, since ALLTRIM() isn’t a supported function in ADS but TRIM() is. 

 Run FixRelations.PRG to add a filter of NOT DELETED() to all primary tags involved in 

persistent relations. (Note: this program has not been extensively tested, so please only 

run this on a copy of your database!) 

 Categories: modify this table and remove the Picture field. 

CLOSE TABLES ALL and run DBCConvert.PRG again. This time you get only four errors. Open 

the Northwind connection in ARC and check the log tables. Categories was upsized properly so now all 

errors are in views: 

 Sales_by_Category can’t be upsized because it queries on another view, which isn’t supported 

in ADS. 

 Ten_Most_Expensive_Products has a TOP clause and so requires an ORDER BY clause, 

which isn’t supported in ADS. 

 Summary_of_Sales_by_Year and Summary_of_Sales_by_Quarter both use EMPTY() and NVL() 

in WHERE clauses. 

We still have one issue. All the records in the Employees table were deleted! Also, ADS created a 

new free table, FAIL_EMPLOYEES, which contains all of the deleted records. The reason the records 

are deleted is that referential integrity is enforced during upsizing. The Employees table has a ReportsTo 

column that contains the EmployeeID of each person’s manager and the ReportsTo value for Andrew 

Fuller is 0, which doesn’t match the EmployeeID of any record. The Insert referential integrity rule for 

this self-join is set to Ignore, so VFP doesn’t raise an error with this record. However, ADS doesn’t have 

an Insert referential integrity rule, just Update and Delete, both of which are set to Restrict. Since 

Andrew’s ReportsTo value is invalid, the RI rule fails and that record is deleted. When that record is 

deleted, the other records that have Andrew’s EmployeeID value in their ReportsTo column are deleted, 

and so on. As a result, all the records are deleted. You could argue that deleting the record is a bit harsh; 

perhaps ADS could set ReportsTo to NULL instead. Interestingly, undeleting these records in VFP 

works. 

 

Accessing data in VFP or ADS 

Upsizing a VFP database doesn’t mean it can’t be accessed through VFP anymore. It simply means that 

you now have two ways you can access the database: as native VFP tables or through ADS. You can 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

13 

modify the data in the tables using VFP or ADS and the other one sees the changes. This includes 

support for auto-incrementing fields. 

For example, after upsizing the Northwind database, open it in ARC and double-click the Employees 

table to open it. Click the “+” button in the toolbar at the bottom of the table window (see Figure 2) to 

add a record. Leave EmployeeID blank but fill in the rest of the fields; be sure to fill in a valid value (for 

example, “2”) for the ReportsTo field since the RI rule for the table won’t allow a blank or invalid value. 

Once you’ve moved off that row, notice the EmployeeID is automatically filled in with the next value. 

Now close the table window and disconnect from the database in ARC. Open the database in VFP 

and open the Employees table. Notice the new record is there. Add a record and notice the next available 

ID number is automatically filled in for EmployeeID. VFP doesn’t require a valid ReportsTo value; you 

can leave it blank or type something invalid like “99” without an error because the Insert RI rule for the 

self-join is set to Ignore. 

As discussed earlier, being able to access your tables both directly in VFP and through ADS allows 

you to migrate an existing application to a client/server model one module at a time. For example, in an 

accounting system, you could modify the Accounts Receivable module to access the data using ADS and 

deploy that module once the changes are completed and fully tested. The other modules would continue 

to access the tables directly in VFP. The benefit of this approach is that you don’t have to migrate the 

entire application at once and face the much larger development and testing burden that accompanies 

such a wholesale change. 

If you are starting a new application and have no requirement for backward compatibility of the data, 

you might consider using ADS native tables (ADT files) rather than DBF files. ADT files have many 

advantages over DBFs, including no memo file bloat, more data types (such as case-insensitive character 

fields), longer field names, larger file sizes, more than 255 fields in a table, and automatic reuse of 

deleted records. 

 

Full Text Searching 

ADS has a fast and powerful full text search (FTS) feature. FTS uses an index on each word in a memo 

field to provide fast, index-based lookups for desired words. To enable FTS on a table, you have to create 

an FTS index on one or more memo fields in the table. 

If you’d like to test the performance of FTS but don’t have a large table with lots of memo content, a 

program named MakeDemoMemo.PRG included in the source code for this document can help. It goes 

through your entire hard drive, looking for text files (including PRG, TXT, and HTML) as well as VFP 

VCX and SCX files and pulls them into the Content memo of a table called DemoMemo.DBF. As you 

may imagine, this can take some time to run. One test took about ten minutes to create an 81,000 record 

table with a 545 MB FPT file. 

Before adding the table to ADS, a test program looked for all instances of the word “tableupdate” in 

Content: 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

14 

select * from DemoMemo where atc('tableupdate', Content) > 0 into cursor Temp 

select * from DemoMemo where 'tableupdate' $ Content into cursor Temp 

The first statement, which uses a case-insensitive search, took 305 seconds. The second, which is 

case-sensitive but faster, took 65 seconds. 

Here are the steps to prepare this table for FTS searches: 

 Open ARC and choose New Connection Wizard from the File menu. Choose “Create a 

connection to a directory of existing tables” and click Next. Specify the desired name for the 

database, select the folder containing DemoMemo.DBF, choose “vfp” for TableType, and click 

OK. Note that this accesses DemoMemo as a free table rather than through an ADS data 

dictionary because currently there’s a problem accessing FTS indexes on DBF files through a 

data dictionary. Sybase is aware of the issue and is planning to fix it in a service pack. 

 Right-click the DemoMemo table under the Tables node and choose Properties. Select 

the Full Text Index Definitions page (see Figure 4), click Add Index, and enter the 

desired name of the index. For Key Field, choose CONTENT (the memo field containing 

the text to index). You can fine-tune the index by specifying the values of other 

properties, such as the minimum and maximum word length, “noise” words such as 

“and” and “the” to exclude from the index, and whether the index is case-sensitive or 

not. Click OK to create the index. 

 

Figure 4. The Full Text Search Index Definitions page of the Table Designer dialog in ARC allows you to create indexes that 

provide fast and powerful full text searching. 

It can take some time for ADS to create the FTS index since it creates an index entry for every word 

in every record. Once you’ve created the index, though, by default it’s automatically updated like other 

indexes are by record additions, modifications, and deletions. If you wish, you can turn the automatic 

update off and rebuild the index on demand for better record update performance. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

15 

After creating the FTS index, the following statement, executed through the ADS engine, took a mere 

0.070 seconds for a case-insensitive search: 

select * from DemoMemo where contains(Content, 'tableupdate') 

Full text searches have a lot more power than just searching for the existence of a word, though. For 

example: 

 You can search all fields for a word by specifying “*” as the field name. 

 You can search for multiple occurrences of the same word in a given record using the 

SCORE function. Although not required for this function, turning on the Keep Score 

property for the index gives better performance since the score value is stored in the 

index. 

select * from DemoMemo where contains(Content, 'tableupdate') and 

  score(Content, 'tableupdate') > 1 

 You can look for one word in proximity to another: 

select * from DemoMemo where contains(Content, 'tableupdate near aerror') 

One thing to note is that once you’ve created an FTS index for a table, you can no longer access that 

table directly in VFP. Trying to do so causes an “operation is invalid for a Memo, Blog, General or 

Picture field” error because VFP doesn’t support indexes on these types of fields. 

 

Connecting to ADS 

There are two ways to access data managed by ADS: using its ODBC driver or its OLE DB provider. 

(There is actually a third way, using the ADS API functions, but those are low-level functions requiring a 

lot of coding.) OLE DB requires a connection string while ODBC can use either an ODBC data source 

name (DSN) or a connection string, sometimes called a DSNless connection. 

Here’s an example of an OLE DB connection string: 

provider=Advantage.OLEDB.1;data source=C:\ADSTest\Northwind\Northwind.add; 

  User ID=adssys;Password="" 

An ODBC connection string is similar: 

driver=Advantage StreamlineSQL ODBC;DataDirectory=C:\ADSTest\Northwind\Northwind.add; 

  uid=adssys;pwd="" 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

16 

If you’d rather use an ODBC DSN than a connection string, you can define one using the ODBC 

Data Source Administrator. Open the Windows Control Panel, open Administrative Tools, and double-

click Data Sources (ODBC). Choose the User DSN tab to create a DSN only you can use or System DSN 

to create a DSN anyone who logs onto your computer can use. Click Add to create a new DSN, select 

Advantage StreamlineSQL ODBC for the driver, and click Finish. Figure 5 shows the ADS ODBC 

driver setup dialog. 

 

Figure 5. You can define a DSN using the ADS ODBC driver. 

Specify a name for the data source and fill in the path for the ADS data dictionary. Set the options as 

desired (the defaults will do for now) and click OK. 

Accessing ADS using remote views 

Like a local view, a remote view is simply a pre-defined SQL SELECT statement that’s defined in a 

database container. The difference is that a remote view accesses data via ODBC rather than natively. 

You can create a remote view either programmatically using the CREATE SQL VIEW command or 

visually using the View Designer. In both cases, you need to specify an ODBC connection to use. The 

connection can either be an ODBC DSN set up on your system or a Connection object that’s already 

defined in the same database. Here’s an example that defines a Connection object and creates a remote 

view to the Customers table of the upsized Northwind database. This was excerpted from code generated 

by GENDBC; there’s actually a lot more code that sets the various properties of the connection, the view, 

and the fields. 

CREATE CONNECTION NORTHWINDCONNECTION ;  



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

17 

   CONNSTRING "DSN=Northwind" 

CREATE SQL VIEW "CUSTOMERSVIEW" ;  

   REMOTE CONNECT "NorthwindConnection" ;  

   AS SELECT * FROM CUSTOMERS Customers 

DBSetProp('CUSTOMERSVIEW', 'View', 'UpdateType', 1) 

DBSetProp('CUSTOMERSVIEW', 'View', 'WhereType', 3) 

DBSetProp('CUSTOMERSVIEW', 'View', 'FetchMemo', .T.) 

DBSetProp('CUSTOMERSVIEW', 'View', 'SendUpdates', .T.) 

DBSetProp('CUSTOMERSVIEW', 'View', 'Tables', 'CUSTOMERS') 

DBSetProp('CUSTOMERSVIEW.customerid', 'Field', 'KeyField', .T.) 

DBSetProp('CUSTOMERSVIEW.customerid', 'Field', 'Updatable', .F.) 

DBSetProp('CUSTOMERSVIEW.customerid', 'Field', 'UpdateName', 'CUSTOMERS.CUSTOMERID') 

DBSetProp('CUSTOMERSVIEW.companyname', 'Field', 'Updatable', .T.) 

DBSetProp('CUSTOMERSVIEW.companyname', 'Field', 'UpdateName', 'CUSTOMERS.COMPANYNAME') 

One of the easiest ways you can upsize an existing application is using the ADS upsizing utility to 

create an ADS database from your VFP database, then create a new VFP database (for example, 

REMOTE.DBC) and create remote views in that database with the same names as the tables they’re 

based on. That way, the code to open a remote view is exactly the same as that to open a local table 

except you’ll open a different database first. For example, if you have an application object named oApp 

and it has an lUseLocalData property to indicate whether local or remote data is used, this code opens the 

appropriate database and then open either the Customers table or the Customers remote view: 

if oApp.lUseLocalData 

  open database Local 

else 

  open database Remote 

endif 

use Customers 

If you’re using cursor objects in the DataEnvironment of forms and reports, you have a little bit of 

extra work to do because those objects have a reference to the specific database you selected when you 

dropped the views into the DataEnvironment. To handle this, put code similar to the following into the 

BeforeOpenTables method of the DataEnvironment: 

local loObject 

for each loObject in This.Objects 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

18 

  if upper(loObject.BaseClass) = 'CURSOR' and not empty(loObject.Database) 

    loObject.Database = iif(oApp.lUseLocalData, 'local.dbc', 'remote.dbc') 

  endif 

next 

Advantages 

The advantages of remote views are: 

 You can use the View Designer to create a remote view visually. It’s great to visually see all the 

fields in the underlying tables, easily set up the various parts of the SQL SELECT statement using 

a friendly interface, and quickly set properties of the view using checkboxes or other UI 

elements. 

 From a language point-of-view, remote views act just like tables. As a result, they can 

be used anywhere: you can USE them, add them to the DataEnvironment of a form or 

report, bind them to a grid, process them in a SCAN loop, and so forth. 

 It’s easier to convert an existing application to use remote views, especially if it already 

uses local views, than using other techniques discussed later. 

 Because you can add a remote view to the DataEnvironment of a form or report, you 

can take advantage of the visual support the DE provides: dragging and dropping fields 

or the entire cursor to automatically create controls, easily binding a control to a field 

by selecting it from a combobox in the Properties Window, and so on. Also, depending 

on the settings of the AutoOpenTables and OpenViews properties, VFP automatically 

opens the remote views for you. 

 It’s easy to update the backend with changes: assuming the properties of the view have 

been set up properly, you simply call TABLEUPDATE(). Transaction processing and 

update conflict detection are built-in. 

 Remote views are easy to use in a development environment: just USE and then BROWSE. 

Disadvantages 

The disadvantages of remote views are: 

 Remote views live in a DBC, so that’s one more set of files you have to maintain and install on 

the client’s system. 

 Since a remote view’s SQL SELECT statement is pre-defined, you can’t change it on the 

fly. Although this is fine for a typical data entry form, it can be an issue for queries and 

reports. You may have to create several views from the same set of data, each varying 

in the fields selected, structure of the WHERE clause, and so forth. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

19 

 You can’t call a stored procedure from a remote view, so a remote view needs direct 

access to the underlying tables. 

 When you use TABLEUPDATE() to write changes in the view to the backend database, 

you have little ability (other than by setting a few properties) to control how VFP does 

the update.  

 As is the case with local views, if you use a SELECT * view to retrieve all the fields from a 

specific table and the structure of that table on the backend changes, the view is invalid 

and must be recreated. 

 When you open a view, VFP attempts to lock the view’s records in the DBC, even if only 

briefly. This can cause contention in busy applications where several users might try to 

open a form at the same time. Although there are workarounds (copying the DBC to the 

local workstation and using that one or, in VFP 7 and later, using SET REPROCESS 

SYSTEM to increase the timeout for lock contention), it’s something you must plan for. 

 Until VFP 8, which allows you to specify the connection handle to use when you open a 

remote view with the USE statement, you had little ability to manage the connections 

used by your application. 

 The connection information used for a remote view is hard-coded in plain text in the DBC. That 

means that a hacker can easily discover the keys to your backend kingdom (such as the user 

name and password) using nothing more complicated than Notepad to open the DBC. This isn’t 

much of an issue starting in VFP 7 because it allows you to specify a connection string when you 

open a remote view with the USE command, meaning that you can dynamically assemble the 

database path, user name, and password, likely from encrypted information, just before 

opening the view. 

Basically, it comes down to a control issue: remote views make it easy to work with backend data, 

but at the expense of limiting the control you have over them. 

 

Accessing ADS using SQL passthrough 

VFP provides a number of functions, sometimes referred to as SQL passthrough (or SPT) functions, 

which allow you to access a backend database. SQLCONNECT() and SQLSTRINGCONNECT() make a 

connection to the backend database engine. The difference between these two functions is that 

SQLCONNECT() requires an existing ODBC DSN while SQLSTRINGCONNECT() uses a connection 

string. SQLDISCONNECT() disconnects from the backend. SQLEXEC() sends a command, such as a 

SQL SELECT statement, to the database engine, typically (but not necessarily, depending on the 

command) putting the returned results into a VFP cursor. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

20 

Here’s an example that connects to the upsized Northwind database, retrieves all customers, and 

disconnects. (This assumes there’s a DSN called “Northwind” that defines how to connect to this 

database.) 

lnHandle = sqlconnect('Northwind') 

sqlexec(lnHandle, 'select * from Customers') 

browse 

sqldisconnect(lnHandle) 

To use a DSNless connection instead, replace the SQLCONNECT() statement with the following: 

lcConnString = 'driver=Advantage StreamlineSQL ODBC;' + ; 

  'DataDirectory=C:\ADSTest\Northwind\Northwind.add;' 

lnHandle = sqlstringconnect(lcConnString) 

Table 1 lists the keywords you can specify in a connection string; most of these have equivalents in 

the ODBC dialog shown in Figure 5. All but DataDirectory are optional. 

 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

21 

Table 1. ADS ODBC driver connection string keywords. 

Keyword Description 

DataDirectory Specify the path and name of the ADD file to use an ADS database. For free tables, specify the 

directory for the tables. 

DefaultType For free tables, specify “FoxPro” for VFP tables or “Advantage” for ADS tables (ADT files). This 

setting is ignored for databases. 

ServerTypes Specify a numeric value that’s the sum of the types of ADS server to connect to: Remote (2), Local 

(1), or Internet (4). For example, use 3 (2 + 1) for Remote and Local. 

AdvantageLocking “ON” (the default) to use ADS proprietary locking or “OFF” for VFP-compatible locking. 

Locking “Record” (the default) for record locking or “File” to lock the entire file during updates. 

Rows Similar to SET DELETED. “True” displays deleted records while “False” (the default) omits them. 

This setting is ignored for ADS tables because deleted records are never visible in that case. 

TrimTrailingSpaces Similar to Varchar fields. “True” removes trailing spaces from character fields returned to the 

application and “False” (the default) does not. 

MemoBlockSize Similar to the SET BLOCKSIZE command. Specify the block size for memo fields for new tables. 

The default is 64 for VFP tables and 8 for ADS tables. 

CharSet The collation setting to use: “ANSI” (the default) or “OEM”. If you use “OEM”, you must also specify 

the Language setting. 

Language The  language to use if CharSet=OEM. 

MaxTableCloseCache The number of cursors in the ADS cache; the default is 5. 

Compression The type of compression to use. See the ADS help file for a discussion of the types of compression 

available. 

CommType The communication protocol to use. See the ADS help file for details. 

 

Regardless of whether you use a DSN or a connection string to connect to ADS, you then use the 

same type of SQL statements you’d use to access, update or delete records in VFP tables, but you use the 

SQLEXEC() function to execute them. In addition to DML (Data Manipulation Language) functions like 

SELECT, INSERT, UPDATE, and DELETE, the ODBC driver also supports DDL (Data Definition 

Language) functions such as CREATE DATABASE | TABLE | INDEX | VIEW | PROCEDURE, DROP 

INDEX | TABLE | VIEW | PROCEDURE, and ALTER TABLE. 

Note that while ADS supports most of the VFP data types, how you specify values for Logical, Date, 

and DateTime fields is a little different than with VFP syntax. ADS Logical values come back to VFP as 

Logical fields but you must specify them using .T., True or 1 for true and .F., False or 0 for false. For 

example, the first of the following statements fails but the rest succeed: 

sqlexec(lnHandle, "select * from Products where Discontinued") 

sqlexec(lnHandle, "select * from Products where Discontinued=.T.") 

sqlexec(lnHandle, "select * from Products where Discontinued=True") 

sqlexec(lnHandle, "select * from Products where Discontinued=1") 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

22 

Date and DateTime values must be specified using standard ODBC syntax: {d 'YYYY-MM-DD'} for 

Date and {ts 'YYYY-MM-DD HH:MM:SS'} for DateTime. Here’s an example: 

sqlexec(lnHandle, "select * from orders " + ; 

  "where OrderDate between {d '1997-07-01'} and {d '1997-07-31'}") 

Here’s a function called VFP2ODBCDate that converts VFP Date and DateTime values to ODBC 

syntax: 

lparameters tuDate 

local lcDate, ; 

  lcReturn 

lcDate = transform(year(tuDate)) + ; 

  '-' + padl(month(tuDate), 2, '0') + ; 

  '-' + padl(day(tuDate), 2, '0') 

if vartype(tuDate) = 'D' 

  lcReturn = "{d '" + lcDate + "'}" 

else 

  lcReturn = "{t '" + lcDate + ; 

    ' ' + padl(hour(tuDate), 2, '0') + ; 

    ':' + padl(minute(tuDate), 2, '0') + ; 

    ':' + padl(sec(tuDate), 2, '0') + "'}" 

endif vartype(tuDate) = 'D' 

return lcReturn 

The following example uses this function: 

ldFrom = {^1997-07-01} 

ldTo   = {^1997-07-31} 

sqlexec(lnHandle, "select * from orders " + ; 

  "where OrderDate between " + VFP2ODBCDate(ldFrom) + " and " + VFP2ODBCDate(ldTo)) 

Instead of converting VFP values into ODBC syntax, you can use a parameterized query, replacing a 

hard-coded value with a variable name prefixed with “?” (the variable, of course, must be in scope). In 

that case, VFP takes care of data type conversions for you. This has the additional benefit of avoiding 

SQL injection attacks (which are beyond the scope of this document). For example: 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

23 

ldFrom = {^1997-07-01} 

ldTo   = {^1997-07-31} 

sqlexec(lnHandle, 'select * from orders ' + ; 

  'where OrderDate between ?ldFrom and ?ldTo') 

 

Although VFP can use single quotes, double quotes, and square brackets as string delimiters, pass 

string values to SPT functions delimited with single quotes only. 

Although these examples omit it, be sure to check the return value of SQLEXEC(). If it returns 

something less than 1, the command failed so use AERROR() to determine what went wrong. Also, you 

can specify the name of the cursor to create as the third parameter to SQLEXEC(); the cursor is named 

SQLResult if you omit this parameter. 

 

Advantages 

The advantages of using SPT are: 

 You have a lot more flexibility in data access than with remote views, such as calling stored 

procedures using the SQLEXEC() function. 

 You can change the connection information on the fly as needed. For example, you can 

store the user name and password as encrypted values and only decrypt them just 

before using them in the SQLCONNECT() or SQLSTRINGCONNECT() functions. As 

mentioned earlier, this isn’t nearly the advantage over remote views that it used to be, 

since VFP 7 and later allows you to specify the connection string on the USE command. 

 You can change the SQL SELECT statement as needed. For example, you can easily vary 

the list of the fields, the WHERE clause (such as changing which fields are involved or 

eliminating it altogether), the tables, and so on. 

 You don’t need a DBC to use SPT, so there’s nothing to maintain or install, lock 

contention isn’t an issue, and you don’t have to worry about a SELECT * statement 

being made invalid when the structure of the backend tables change. 

 As with remote views, the result set of a SPT call is a VFP cursor, which can be used 

anywhere in VFP. 

 Although you have to code for it yourself (this is discussed in more detail under 

Disadvantages), you have greater control over how updates are done. For example, you 

might use a SQL SELECT statement to create the cursor but call a stored procedure to 

update the ADS tables. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

24 

 You can manage your own connections. For example, you might want to use a connection 

manager object to manage all the connections used by your application in one place. 

Disadvantages 

The disadvantages of using SPT are: 

 It’s more work, since you have to code everything: creating and closing the connection, the SQL 

SELECT statements to execute, and so on. You don’t have a nice visual tool like the View 

Designer to show you which fields exist in which tables. 

 You can’t visually add a cursor created by SPT to the DataEnvironment of a form or 

report. Instead, you have to code the opening of the cursors (for example, in the 

BeforeOpenTables method), you have to manually create the controls, and you have to 

fill in the binding properties (such as ControlSource) by typing them yourself. Don’t 

make a typo when you enter the alias and field names or the form won’t work. 

 They’re harder to use than remote views in a development environment: instead of just 

issuing a USE command, you have to create a connection, then use a SQLEXEC() call to 

get the data you want to look at. You can make things easier on yourself if you create a 

set of PRGs to do the work for you or you can use the Data Explorer that comes with 

VFP to examine the structures and contents of the tables. You can even create a DBC 

and set of remote views used only in the development environment as a quick way to 

look at the data. 

 Cursors created with SPT can be updatable, but you have to make them so yourself 

using a series of CURSORSETPROP() calls to set the SendUpdates, Tables, KeyFieldList, 

UpdatableFieldList, and UpdateNameList properties. Also, you have to manage 

transaction processing and update conflict detection yourself. 

 Since SPT cursors aren’t defined like remote views, you can’t easily switch between local and 

remote data using SPT as you can with remote views by simply changing which view you open in 

a form or report. 

Accessing ADS using ADO 

OLE DB providers are similar to ODBC drivers: they provide a standard, consistent way to access data 

sources. Because OLE DB is a set of low-level COM interfaces, it’s not easy to work with in languages 

like VFP. To overcome this, Microsoft created ActiveX Data Objects (ADO), a set of COM objects that 

provide an object-oriented front-end to OLE DB. 

ADO consists of several objects, including: 

 Connection: This is the object responsible for communicating with the data source. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

25 

 Recordset: This is the equivalent of a VFP cursor: it has a defined structure, contains the 

data in the data set, and provides properties and methods to add, remove, or update 

records, move from one to another, filter or sort the data, and update the data source. 

 Command: This object provides the means of doing more advanced queries than a simple 

SELECT statement, such as parameterized queries and calling stored procedures. 

Here’s an example (ADOExample.PRG) that gets all Brazilian customers from the upsized 

Northwind database and displays the customer ID and company name. Notice that the Connection object 

handles the connection while the Recordset handles the data. 

local loConn as ADODB.Connection, ; 

  loRS as ADODB.Recordset, ; 

  lcCustomers 

 

* Connect to the ADS database. 

 

loConn = createobject('ADODB.Connection') 

loConn.ConnectionString = 'provider=Advantage.OLEDB.1;' + ; 

  'data source=c:\adstest\northwind\northwind.add' 

loConn.Open() 

 

* Create a Recordset and set its properties. 

 

loRS = createobject('ADODB.Recordset') 

loRS.ActiveConnection = loConn 

loRS.LockType         = 3  && adLockOptimistic 

loRS.CursorLocation   = 3  && adUseClient 

loRS.CursorType       = 3  && adOpenStatic 

 

* Execute a query and display the results. 

 

loRS.Open("select * from customers where country='Brazil'") 

lcCustomers = '' 

do while not loRS.EOF 

  lcCustomers = lcCustomers + ; 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

26 

    loRS.Fields('customerid').Value + chr(9) + ; 

    loRS.Fields('companyname').Value + chr(13) 

  loRS.MoveNext() 

enddo while not loRS.EOF 

messagebox(lcCustomers) 

loRS.Close() 

loConn.Close() 

Notice how this code uses object-oriented code to access the Recordset. The EOF property is the 

equivalent of the VFP EOF() function and the MoveNext method is like SKIP. To access the value of a 

field in the current record, use Recordset.Fields('FieldName').Value. 

Using parameterized queries with ADO is a little more work than it is with ODBC. In addition to 

specifying a parameter as “?” (without the variable name), you also have to use ADO Command and 

Parameter objects to specify the parameter and its value. This code references ADOVFP.H, an include 

file of constants useful when working with ADO. 

#include ADOVFP.H 

 

* Connect to the ADS database. 

 

loConn = createobject('ADODB.Connection') 

loConn.ConnectionString = 'provider=Advantage.OLEDB.1;' + ; 

  'data source=c:\adstest\northwind\northwind.add' 

loConn.Open() 

 

* Create a Command object and define the command type and connection. 

 

loCommand = createobject('ADODB.Command') 

loCommand.CommandType      = adCmdText 

loCommand.ActiveConnection = loConn 

 

* Create a Parameter object, set its properties, and add it to the Command 

* object. 

 

loParameter = loCommand.CreateParameter('Country', adChar, adParamInput, 15) 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

27 

loParameter.Value = 'UK' 

loCommand.Parameters.Append(loParameter) 

 

* Execute a parameterized query and display the results. 

 

loCommand.CommandText = 'select * from customers where country = ?' 

loRS = loCommand.Execute() 

* same code as above to display the results 

Advantages 

The advantages of using ADO are: 

 Many of the advantages are the same as with SPT: you have more flexibility in data access than 

with remote views, you can change the connection information on the fly as needed, you can 

change the SQL SELECT statement as needed, you can manage your own connections, and 

there’s no DBC involved. 

 Although performance differences aren’t significant in simple scenarios (in fact, in 

general, ODBC is faster than ADO), ADO is more scalable in heavily-used applications 

such as Web servers. 

 ADO is object-oriented, so you can deal with the data like objects. 

 Depending on how they’re set up, ADO Recordsets are automatically updateable 

without any additional work other than calling the Update or UpdateBatch methods. 

Transaction processing and update conflict detection are built-in. 

 You can easily persist a Recordset to a local file, then later reload it and carry on working, and 

finally update the ADS data source. This makes it a much better choice for “road warrior” 

applications than remote views or SPT. 

Disadvantages 

The disadvantages of ADO are: 

 It’s more work, since you have to code everything: creating and closing the connection, the SQL 

SELECT statements to execute, and so on. You don’t have a nice visual tool like the View 

Designer to show you which fields exist in which tables on the backend. 

 An ADO Recordset is not a VFP cursor, so you can’t use it in places that require a cursor, 

such as grids and reports. There are functions in the VFPCOM utility (available for 

download from the VFP home page, http://msdn.microsoft.com/vfoxpro) that can 

convert a Recordset to a cursor and vice versa, but using them can impact performance, 

http://msdn.microsoft.com/vfoxpro


Advantage Database Server for Visual FoxPro Developers Doug Hennig 

28 

especially with large data sets, and they have known issues with certain data types. If 

you want to use ADO, CursorAdapter (discussed next) is the way to go. 

 There’s no visual support for ADO Recordsets, so you have to code their creation and 

opening, you have to manually create the controls, and you have to fill in the binding 

properties (such as ControlSource) by typing them yourself. This is even more work 

than for SPT, because the syntax isn’t just CURSOR.FIELD—it’s 

Recordset.Fields('FieldName').Value. 

 They’re the hardest of the technologies to use in a development environment, since 

you have to code everything: making a connection, retrieving the data, and moving 

back and forth between records. You can’t even BROWSE to see visually what the result 

set looks like (unless you use VFPCOM or CursorAdapter to convert the Recordset to a 

cursor). 

 There’s a bigger learning curve involved with ADO than using the cursors created by ODBC. 

Accessing ADS using CursorAdapter 

One of the things you’ve likely noted is that each of the mechanisms discussed is totally different from 

the others. That means you have a new learning curve with each one, and converting an existing 

application from one mechanism to another is a non-trivial task. 

Fortunately, there’s a VFP technology that provides a common interface for both ODBC and OLE 

DB: the CursorAdapter class. CursorAdapter, added in VFP 8, is a great solution because: 

 It makes it easy to use ODBC, ADO, or XML, even if you’re not very familiar with these 

technologies. 

 It provides a consistent interface to remote data regardless of the mechanism you 

choose. 

 It makes it easy to switch from one mechanism to another. 

Here’s an example of the last point. Suppose you have an application that uses ODBC with 

CursorAdapters to access ADS data, and for some reason you want to change to use ADO instead. All 

you need to do is change the DataSourceType of the CursorAdapters and change the connection to the 

ADS database, and you’re done. The rest of the components in the application neither know nor care 

about this; they still see the same cursor regardless of the mechanism used to access the data. 

Here’s an example (CursorAdapterExample.PRG) that gets certain fields for Brazilian customers 

from the Customers table in the Northwind database. The cursor is updateable, so if you make changes in 

the browse window, close it, and then run the program again, you’ll see that your changes were saved. 

local lcConnString, ; 

  lnHandle, ; 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

29 

  loCursor as CursorAdapter, ; 

  laErrors[1] 

close tables all 

 

* Connect to ADS. 

 

lcConnString = 'driver=Advantage StreamlineSQL ODBC;' + ; 

  'DataDirectory=C:\ADSTest\Northwind\Northwind.add;' 

lnHandle     = sqlstringconnect(lcConnString) 

 

* Create a CursorAdapter and set its properties. 

 

loCursor = createobject('CursorAdapter') 

with loCursor 

  .Alias              = 'Customers' 

  .DataSourceType     = 'ODBC' 

  .DataSource         = lnHandle 

  .SelectCmd          = "select CUSTOMERID, COMPANYNAME, CONTACTNAME " + ; 

    "from CUSTOMERS where COUNTRY = 'Brazil'" 

  .KeyFieldList       = 'CUSTOMERID' 

  .Tables             = 'CUSTOMERS' 

  .UpdatableFieldList = 'CUSTOMERID, COMPANYNAME, CONTACTNAME' 

  .UpdateNameList     = 'CUSTOMERID CUSTOMERS.CUSTOMERID, ' + ; 

    'COMPANYNAME CUSTOMERS.COMPANYNAME, CONTACTNAME CUSTOMERS.CONTACTNAME' 

  if .CursorFill() 

    browse 

  else 

    aerror(laErrors) 

    messagebox(laErrors[2]) 

  endif .CursorFill() 

endwith 

You don’t have to create a CursorAdapter programmatically. You can use the Class Designer to 

create a CursorAdapter subclass and either fill in the properties in the Properties window or use the 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

30 

CursorAdapter Builder, which provides a nice visual tool for the CursorAdapter (see Figure 6). Note that 

the CursorAdapter Builder doesn’t quite work right with ADS when you’re using ODBC to connect to 

the database; see Appendix A, “Fixing the VFP CursorAdapter Builder,” for details and how to correct 

the problem. 

 

Figure 6. The CursorAdapter Builder provides a visual tool to create CursorAdapter subclasses. 

Although CursorAdapter has quite a few properties and methods, the most important ones are: 

 DataSourceType: specifies how to access the data. The choices are “Native,” “XML,” “ODBC,” 

and “ADO,” although only the latter two are used with ADS. 

 DataSource: the value of this property depends on what DataSourceType is set to. In 

the case of ODBC, it must be an open ODBC connection handle. For ADO, it’s an ADO 

Recordset object with its ActiveConnection set to an open Connection object. Note that 

in either case, you’re responsible for opening and managing the connection yourself. 

 SelectCmd: the SQL statement to execute to retrieve the data. 

 Alias: the alias of the cursor created. 

 KeyFieldList, Tables, UpdatableFieldList, and UpdateNameList: these fields are the key 

to making the cursor updateable. Set them to the appropriate values and 

CursorAdapter automatically writes changes back to the source data. See the VFP 

documentation for details on these properties. 

 CursorFill: call this method to create the cursor and execute the statement in SelectCmd 

to populate the cursor. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

31 

 CursorDetach: by default, the cursor created by CursorAdapter is “attached” to the 

CursorAdapter object. When the CursorAdapter is destroyed (such as when it goes out of 

scope), the cursor is automatically closed. If you want the cursor to remain open, call the 

CursorDetach method to detach the cursor from the CursorAdapter. 

A CursorAdapter can use either ODBC or ADO to connect to ADS. For ODBC, open a connection to 

the database using SQLCONNECT() or SQLSTRINGCONNECT() and set the CursorAdapter 

DataSource property to the connection handle and set the DataSourceType property to “ODBC.” ADO is 

a little more work: instantiate and open an ADO Connection object, instantiate a Recordset object, set the 

Recordset’s ActiveConnection property to the Connection object, set the CursorAdapter’s DataSource 

property to the Recordset object, and set DataSourceType to “ADO.” For parameterized queries, use the 

“?VariableName” syntax in your SQL statement, even for ADO. For ADO, though, you must also 

instantiate an ADO Command object and pass it as the fourth parameter to CursorFill (don’t worry about 

the Parameter object; VFP takes care of that internally). 

Instead of doing all that work for ADO manually, the SFCursorAdapterADO subclass included in 

SFCursorAdapter.VCX in the source code for this document does some of this work for you. Its 

DataSourceType property is set to “ADO” and its Init method sets up the DataSource property. 

local loRS as ADODB.Recordset 

loRS = createobject('ADODB.RecordSet') 

loRS.CursorLocation = 3  && adUseClient 

loRS.LockType       = 3  && adLockOptimistic 

This.DataSource     = loRS 

After creating and opening a Connection object, pass it to SetConnection. 

lparameters toConnection 

This.DataSource.ActiveConnection = toConnection 

You don’t have to pass a Command object to CursorFill; SFCursorAdapterADO automatically uses a 

Command object if there’s a “?” in the SQL statement. 

lparameters tlUseCursorSchema, ; 

  tlNoData, ; 

  tnOptions, ; 

  toSource 

local loSource as ADODB.Command, ; 

  lnOptions, ; 

  llUseCursorSchema, ; 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

32 

  llNoData, ; 

  llReturn, ; 

  laError[1] 

 

* If we have a parameterized query, we need an ADO Command object. Create one 

* if it wasn't passed. 

 

if '?' $ This.SelectCmd and vartype(toSource) <> 'O' 

  loSource = createobject('ADODB.Command') 

  loSource.ActiveConnection = This.DataSource.ActiveConnection 

  lnOptions = adCmdText 

else 

  loSource  = toSource 

  lnOptions = tnOptions 

endif '?' $ This.SelectCmd ... 

 

* If the first two parameters weren't specified, we don't want to explicitly 

* pass .F., so use the default values. If CursorSchema is empty, we'll, of 

* course, pass .F. for the first parameter. 

 

do case 

  case pcount() >= 2 

    llUseCursorSchema = tlUseCursorSchema 

    llNoData          = tlNoData 

  case pcount() = 1 

    llUseCursorSchema = tlUseCursorSchema 

    llNoData          = This.NoData 

  case pcount() = 0 

    llUseCursorSchema = This.UseCursorSchema 

    llNoData          = This.NoData 

endcase 

if empty(This.CursorSchema) 

  llUseCursorSchema = .F. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

33 

endif empty(This.CursorSchema) 

llReturn = dodefault(llUseCursorSchema, llNoData, lnOptions, loSource) and ; 

  used(This.Alias) 

 

* If something went wrong, find out why. 

 

if not llReturn 

  aerror(laError) 

  This.cErrorMessage = laError[2] 

endif not llReturn 

return llReturn 

Here’s an example that uses SFCursorAdapterADO, taken from ADOCursorAdapterExample.PRG: 

local loConnection as ADODB.Connection, ; 

  loCA as SFCursorAdapterADO of SFCursorAdapter.vcx 

private pcCountry 

 

* Create and open an ADO Connection object. 

 

loConnection = createobject('ADODB.Connection') 

loConnection.ConnectionString = 'Provider=Advantage.OLEDB.1;' + ; 

  'Data Source=C:\ADSTest\northwind\northwind.add;' + ; 

  'User ID=adssys;Password=""' 

loConnection.Open() 

 

* Create an SFCursorAdapterADO object and set it up. 

 

loCA = newobject('SFCursorAdapterADO', 'SFCursorAdapter.vcx') 

with loCA 

  .SetConnection(loConnection) 

  .SelectCmd = 'select * from customers where country = ?pcCountry' 

  .Alias     = 'customers' 

 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

34 

* Do the query and either show the result set or an error. 

 

  pcCountry = 'Germany' 

  if .CursorFill() 

    browse 

  else 

    messagebox(loCa.cErrorMessage) 

  endif .CursorFill() 

endwith 

 

* Close the connection. 

 

loConnection.Close() 

Advantages 

The advantages of CursorAdapters are essentially the combination of those of all of the other 

technologies. 

 Depending on how it’s set up (if it’s completely self-contained, for example), opening a cursor 

from a CursorAdapter subclass can almost be as easy as opening a remote view: you simply 

instantiate the subclass and call the CursorFill method. You could even call that from Init to 

make it a single-step operation. 

 It’s easier to convert an existing application to use CursorAdapters than to use cursors 

created with SPT. 

 Like remote views, you can add a CursorAdapter to the DataEnvironment of a form or 

report and take advantage of the visual support the DE provides: dragging and dropping 

fields to automatically create controls, easily binding a control to a field by selecting it 

from a combobox in the Properties Window, and so on. 

 It’s easy to update the backend with changes: assuming the properties of the view have 

been set up properly, you simply call TABLEUPDATE(). 

 Because the result set created by a CursorAdapter is a VFP cursor, they can be used 

anywhere in VFP: in a grid, a report, processed in a SCAN loop, and so forth. This is true 

even if the data source comes from ADO and XML, because the CursorAdapter 

automatically takes care of conversion to and from a cursor for you. 

 You have a lot of flexibility in data access, such as calling stored procedures or middle-

tier objects. 



Advantage Database Server for Visual FoxPro Developers Doug Hennig 

35 

 You can change the connection information on the fly as needed, you can change the 

SQL SELECT statement as needed, you don’t need a DBC, and you can manage your own 

connections. 

 Although you have to code for it yourself, you have greater control over how updates are done. 

For example, you might use a SQL SELECT statement to create the cursor but call a stored 

procedure to update the backend tables. 

Disadvantages 

There aren’t a lot of disadvantages for CursorAdapters: 

 You can’t use a nice visual tool like the View Designer to create CursorAdapters, although the 

CursorAdapter Builder is a close second. 

 Like all new technologies, there’s a learning curve that must be mastered. 

Licensing 

Advantage Database Server uses a concurrent licensing model; you need one license per connected user. 

Each workstation can have an unlimited number of database connections. Multiple Advantage-enabled 

applications running on a single workstation are licensed as a single user. Sybase iAnywhere does not 

publish a price list for licenses. Although they state that they have flexible pricing options and OEM 

partner discounts and that their price is competitive to other database servers, you must contact them for 

a quote based on how many licenses you require. However, I have seen published in one place that a five-

user license is $645 and an unlimited user license is $7,870. I have not verified the accuracy of this. 

 

Resources 

The Advantage Developer Zone site, http://devzone.advantagedatabase.com, has numerous resources for 

learning more about ADS, such as newsgroups (including a VFP-specific newsgroup), online 

documentation, white papers, tutorials, and sample code. Also, a book by Cary Jensen and Loy Anderson, 

Advantage Database Server: A Developer’s Guide (ISBN 978-1-4259-7726-9), provides a great 

introduction to ADS. Although none of the examples are in VFP, VFP developers will have no trouble 

understanding and translating the code. 

Andrew MacNeill interviewed J.D. Mullin, R & D Manager for ADS, in The FoxShow #49, a 

podcast available for download at http://akselsoft.libsyn.com/index.php?post_id=302994. This interview 

provides some background to ADS and VFP and discusses some of the design features of ADS. J.D. has 

a blog (http://jdmullin.blogspot.com) and has posted some videos, including one on using the Advantage 

SQL Debugger (http://devzone.advantagedatabase.com/jeremym/sqldebug/sqldebug.html). 

 

http://devzone.advantagedatabase.com/
http://akselsoft.libsyn.com/index.php?post_id=302994
http://jdmullin.blogspot.com/
http://devzone.advantagedatabase.com/jeremym/sqldebug/sqldebug.html


Advantage Database Server for Visual FoxPro Developers Doug Hennig 

36 

Summary 

Advantage Database Server is an exciting database engine that provides better support for VFP 

application developers than any other client/server database engine. It can form the basis of a migration 

strategy to move your applications from file-based data access to true client/server technology. 

 

Biography 

Doug Hennig is a partner with Stonefield Systems Group Inc. and Stonefield Software Inc. He is the 

author of the award-winning Stonefield Database Toolkit (SDT); the award-winning Stonefield Query; 

the MemberData Editor, Anchor Editor, and CursorAdapter and DataEnvironment builders that come 

with Microsoft Visual FoxPro; and the My namespace and updated Upsizing Wizard in Sedna. Doug is 

co-author of the “What’s New in Visual FoxPro” series, “The Hacker’s Guide to Visual FoxPro 7.0,” and 

the soon-to-be-released “Making Sense of Sedna and VFP 9 SP2.” He was the technical editor of “The 

Hacker’s Guide to Visual FoxPro 6.0” and “The Fundamentals.” All of these books are from 

Hentzenwerke Publishing (http://www.hentzenwerke.com). Doug wrote over 100 articles in 10 years for 

FoxTalk and has written numerous articles in FoxPro Advisor and Advisor Guide. He currently writes for 

FoxRockX (http://www.foxrockx.com). He spoke at every Microsoft FoxPro Developers Conference 

(DevCon) since 1997 and at user groups and developer conferences all over the world. He is one of the 

organizers of the annual Southwest Fox conference (http://www.swfox.net). He is one of the 

administrators for the VFPX VFP community extensions Web site (http://www.codeplex.com/VFPX). 

He has been a Microsoft Most Valuable Professional (MVP) since 1996. Doug was awarded the 2006 

FoxPro Community Lifetime Achievement Award 

(http://fox.wikis.com/wc.dll?Wiki~FoxProCommunityLifetimeAchievementAward). 

       

 

Copyright © 2008 Doug Hennig. All Rights Reserved. 

http://www.hentzenwerke.com/
http://www.foxrockx.com/
http://www.swfox.net/
http://www.codeplex.com/VFPX
http://fox.wikis.com/wc.dll?Wiki~FoxProCommunityLifetimeAchievementAward


Advantage Database Server for Visual FoxPro Developers Doug Hennig 

37 

Appendix A. Fixing the VFP CursorAdapter Builder 

The CursorAdapter Builder has a problem with the ADS ODBC driver (it works fine with the ADS OLE 

DB provider). The Select Command Builder dialog displays when you click the Build button for the 

Select command in page 2 of the CursorAdapter Builder. This dialog gives an error with the ADS ODBC 

driver because the driver returns a different result set to the SQLTABLES() and SQLCOLUMNS() 

functions than SQL Server and many other drivers do. Rather than having fields named TABLE_NAME 

and COLUMN_NAME, ADS names them TABLENAME and COLUMNNAME. 

Fortunately, Microsoft provides the source code for the CursorAdapter Builder and the fix was easy, 

so the source code accompanying this document includes a replacement DEBuilder.APP that takes care 

of these issues. Copy that file to the Wizards folder of the VFP home directory, overwriting the existing 

file. The source code for the fix is in the included DECABuilder.VCX, which you normally find in the 

Tools\XSource\VFPSource\Wizards\DEBuilder folder of the VFP home directory after extracting 

XSource.ZIP in Tools\XSource. 


