
Creating ActiveX Controls for
VFP Using .Net

Doug Hennig
Stonefield Software Inc.

2323 Broad Street
Regina, SK Canada S4P 1Y9

Email: dhennig@stonefield.com
Web site: www.stonefieldquery.com

Blog: DougHennig.BlogSpot.com
Twitter: DougHennig

ActiveX controls provide a way to add both functionality and a modern appearance to your
VFP applications. Unfortunately, there are few new ActiveX controls these days, especially
ones that take advantage of features in Windows Vista and Windows 7. On the other hand,
the .Net framework comes with many attractive looking controls, and there’s an entire
industry devoted to providing even more. This document discusses techniques for creating
ActiveX controls from .Net components so we can take advantage of these controls without
having to convert our applications to .Net.

mailto:dhennig@stonefield.com
http://www.stonefieldquery.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

Creating ActiveX Controls for VFP Using .Net 2

Introduction
One of the ways to extend the life of your VFP applications is to make them look more
modern. Microsoft Office is the standard bearer for Windows applications, so updating your
user interface to resemble parts of Office will give your applications a fresh and yet
comfortable appearance. UI elements you should target include menus, toolbars, open and
save dialogs (which have a new appearance and more functionality in Windows Vista and
later), datetime pickers, progress bars, and so on.

There are several ways you can add more modern controls to your VFP applications. One is
to use the various projects on VFPX (http://vfpx.codeplex.com), such as the
ThemedControls project or the controls in the Ctl32 library. Another is to use ActiveX
controls, which usually provide features native controls can’t. Unfortunately, the ActiveX
controls that come with VFP look fairly dated these days and few developers are creating
ActiveX controls anymore as they’ve moved on to creating .Net controls.

Speaking of .Net, it comes with quite a few attractive looking native controls, such as:

 ProgressBar, which presents a Vista/Windows 7-like appearance

 ToolStrip, which provides an Office-like toolbar

 MenuStrip, which displays an Office-like menu system

 ContextMenuStrip, which presents an Office-like shortcut menu

In addition to the native controls, many companies, such as Telerik and Infragistics, sell
Windows Forms controls, and there are thousands of free ones available. If we could find
some way to leverage .Net controls in VFP applications, we’d have an almost limitless
source of new, modern-looking controls with functionality difficult or impossible to create
natively in VFP.

Fortunately, there is a way to do that. It’s possible to create ActiveX versions of .Net
controls that can be used in VFP or any development environment that can host ActiveX
controls. You don’t need any expensive add-ons for Visual Studio (VS). In fact, you don’t
even need to purchase Visual Studio; you can download the free Visual Studio Express
(http://www.microsoft.com/express/Windows) and use it to create all the ActiveX
controls you wish (although it’s not nearly as easy as VS Express is missing some of the
tools that we’ll use in VS).

Creating ActiveX versions of .Net controls has several benefits:

 You get the functionality and modern UI of these controls without much work.

 You don’t have to rewrite your VFP applications to take advantage of .Net.

 You can use these controls as a migration path if you do intend to one day rewrite
your applications.

http://vfpx.codeplex.com/
http://www.microsoft.com/express/Windows

Creating ActiveX Controls for VFP Using .Net 3

This document provides a cookbook-like approach to creating ActiveX controls using .Net.
Most of the samples are presented in C#, but I don’t expect you to be familiar with that
language, as I’m certainly no expert myself.

Acknowledgment
Before we get started, I’d like to thank Craig Boyd for a couple of blog posts
(http://tinyurl.com/29yk4fk and http://tinyurl.com/2dvs58g) that got me started and did
most of the hard work in figuring out this stuff works. I don’t know about you, but most of
the time when I search the Internet for how to do something cool in VFP, I end up at Craig’s
blog because he’s done it first and shared it with our community.

Our first ActiveX control
Start VS as an administrator; if you don’t, you’ll get an error later when VS tries to register
the ActiveX control we’ll build as a COM object.

Create a new project and choose the “Windows Form Control Library” template from the
C# templates. Let’s call the project “FirstActiveX.” See Figure 1.

Figure 1. Select the Windows Form Controls Library when creating our first project.

http://tinyurl.com/29yk4fk
http://tinyurl.com/2dvs58g

Creating ActiveX Controls for VFP Using .Net 4

VS creates a file named UserControl1.cs and opens a visual designer for it. Although you
could rename it to something more appropriate, we’ll leave the name alone for this project.
Select the Toolbox and drag a ToolStrip from the “Menus & Toolbars” section to the user
control designer. Size the ToolStrip as desired and size the user control so ToolStrip just
fills it.

Although we could add our own buttons and other controls to the ToolStrip, let’s just
populate it with “standard” buttons. Select the ToolStrip and click the little arrow in the
upper right corner. In the ToolStrip Tasks dialog, click the Insert Standard Items link. See
Figure 2 to see what the ToolStrip looks like in the designer.

Figure 2. The ToolStrip control as it appears in the designer.

To try out your toolbar, choose Start Debugging from the Debug menu or press F5. The
toolbar appears in a test container (Figure 3). Close the test container window.

Figure 3. Testing the ToolStrip.

This is fine, but it’s still a .Net control, not an ActiveX control. Now the fun starts.

Creating ActiveX Controls for VFP Using .Net 5

Select UserControl1.cs in Solution Explorer, right-click, and choose View Code. Add the
following to the list of using statements at the top of the file:

using System.Runtime.InteropServices;
using System.Reflection;
using Microsoft.Win32;

Add the following lines just before the class statement:

[Guid("A2FC55A1-D5EB-413C-8F95-729AF0E88ACB")]
[ProgId("FirstActiveX.UserControl1")]
[ClassInterface(ClassInterfaceType.AutoDual)]

The square brackets around these statements indicate that they’re attributes rather than
code. The first attribute specifies the GUID for the control. This GUID is from my sample
project. You’ll need to create your own: from the Tools menu, select Create GUID, choose 5
for the GUID format, click Copy to copy the GUID to the clipboard, and then click Exit. Select
the existing GUID statement and paste to replace it with the new one.

The second statement specifies the COM ProgID for the ActiveX control. As you likely know,
a COM object is known by its ProgID, typically in the format MyCOMServer.MyClass. This
ProgID is used for what’s known as “late binding.” In VFP, early binding means dropping
the control on a form or container, in which case it knows the COM object by GUID, and late
binding means you instantiate it using CREATEOBJECT(‘MyCOMServer.MyClass’). VS
automatically assigns a ProgID of Namespace.Class, where Namespace is the namespace the
class is in and Class is the class name. The ProgId attribute allows you to change the ProgID
from that default to something else. However, I don’t think that’s a good idea because it
causes confusion: the early binding name, the one you see in the VFP Insert Object dialog
which appears when you drop an OLE object on a container, is always Namespace.Class, so
if you specify a different ProgId, you have to use a different name for late binding. Although
I included it here as a discussion point, we won’t be using it again for other projects.

The third statement specifies that VS should generate a COM interface for the class, and
that it should be available for both early and late binding (the “AutoDual” enumeration of
ClassInterfaceType). Although the .Net documentation recommends against using
AutoDual, it’s needed for the ActiveX control to work in VFP. However, we’ll see an
alternative way of generating the interface later.

Find the closing curly brace ending the class definition (the second last one in the file; the
last one closes the namespace) and place the following code before it:

[ComRegisterFunction()]
public static void RegisterClass(string key)
{
 // Strip off HKEY_CLASSES_ROOT\ from the passed key as I don't need it
 StringBuilder sb = new StringBuilder(key);
 sb.Replace(@"HKEY_CLASSES_ROOT\", "");

 // Open the CLSID\{guid} key for write access
 RegistryKey k = Registry.ClassesRoot.OpenSubKey(sb.ToString(), true);

Creating ActiveX Controls for VFP Using .Net 6

 // And create the 'Control' key - this allows it to show up in
 // the ActiveX control container
 RegistryKey ctrl = k.CreateSubKey("Control");
 ctrl.Close();

 // Next create the CodeBase entry - needed if not string named and GACced.
 RegistryKey inprocServer32 = k.OpenSubKey("InprocServer32", true);
 inprocServer32.SetValue("CodeBase", Assembly.GetExecutingAssembly().CodeBase);
 inprocServer32.Close();

 // Finally close the main key
 k.Close();
}

[ComUnregisterFunction()]
public static void UnregisterClass(string key)
{
 StringBuilder sb = new StringBuilder(key);
 sb.Replace(@"HKEY_CLASSES_ROOT\", "");

 // Open HKCR\CLSID\{guid} for write access
 RegistryKey k = Registry.ClassesRoot.OpenSubKey(sb.ToString(), true);

 // Delete the 'Control' key, but don't throw an exception if it does not exist
 k.DeleteSubKey("Control", false);

 // Next open up InprocServer32
 RegistryKey inprocServer32 = k.OpenSubKey("InprocServer32", true);

 // And delete the CodeBase key, again not throwing if missing
 k.DeleteSubKey("CodeBase", false);

 // Finally close the main key
 k.Close();
}

This code was published by Morgan Skinner in an article titled “Exposing Windows Form
Controls as ActiveX controls” (http://tinyurl.com/24yk3xd). The two methods are
automatically called when the ActiveX control is registered or unregistered as a COM
object. They ensure the proper Registry entries are created so the control works as an
ActiveX control.

We need to tell VS that this project should be a COM object so we can use it as an ActiveX
control. Select the project in the Solution Explorer, right-click, and choose Properties. In the
Application page, click Assembly Information and in the Assembly Information dialog, turn
on “Make assembly COM-Visible” (Figure 4).You can also set some of the other properties
if you wish; these are similar to the build properties of a VFP EXE or DLL.

http://tinyurl.com/24yk3xd

Creating ActiveX Controls for VFP Using .Net 7

Figure 4. Making our project into a COM control.

One other change you may have to make on the Application page is to set the Target
Framework to the version installed on the systems the ActiveX control is to be deployed to.
For example, if you’re using VS 2010, the default target framework is 4.0. However, even
someone using Windows 7 doesn’t likely have that version installed by default, so unless
you want to install it, change Target Framework to something else. In the Deploying section
later in this document, I’ll discuss how to ensure the .Net framework is installed on the
user’s system.

In the Build page, turn on “Register for COM interop” (Figure 5); this is really only needed
so that when you build the project, VS automatically registers the project for COM on your
system, saving you from doing it manually. We’ll see later what you have to do on your
user’s system to register it. Close the Properties pane.

Creating ActiveX Controls for VFP Using .Net 8

Figure 5. Turn on "Register for COM interop" to automatically register the control on your system.

Let’s try it out. Choose Build FirstActiveX from the Build menu or press Shift-F6. You’ll get a
whole bunch of warnings, like “Type library exporter warning processing
'FirstActiveX.UserControl1.DoDragDrop(#0), FirstActiveX'. Warning: Non COM visible
value type 'System.Windows.Forms.DragDropEffects' is being referenced either from the
type currently being exported or from one of its base types.” You can ignore these.

Start VFP, create a form, add an OLE control to it, and notice FirstActiveX.UserControl1, our
ActiveX control, is in the list. Woohoo, it worked! Select the control and click OK. Set the
Anchor property to 10 so it resizes horizontally when the form resizes. Finally, run the
form. As you move the mouse over each button, you should see a tooltip. If you size the
form so the control is smaller than it needs to be to display all buttons, it displays a drop-
down button at the right end; click that button to display the rest of the buttons. See Figure
6.

Figure 6. A VFP form hosting our first ActiveX control.

Creating ActiveX Controls for VFP Using .Net 9

Using Windows Explorer, navigate to the folder where your project is located and in the
Bin\Debug folder, take a look at the size of the DLL. On my system, it’s only 17K. That’s
incredibly tiny considering that we now have an attractive toolbar available for our VFP
apps. Of course, the reason it’s so small is that most of the code is in the .Net framework.

Accessing components in the ActiveX control
Open the form in the Form Designer and try to select one of the buttons in the ActiveX
control. You can’t. Maybe we have to drill down into the control first. Right-click; there’s no
Edit button in the shortcut menu. Look in the Properties window; notice there’s nothing
under the OLE control. In fact, notice that we don’t even see the ToolStrip as a component;
we just have the UserControl itself. Obviously we don’t have access to the components
inside the control. However, that’s just because we didn’t specify that we wanted to expose
them. Each object in our control has a Modifier property you can see in the VS Properties
window that’s like the visibility of a member in VFP. By default, Modifier is Private, so the
components are only accessible to the class. Changing it to Public makes them accessible to
anything.

Close VFP; we need to do that when we make changes and rebuild our .Net project because
VFP holds a reference to the COM object which will prevent the build from succeeding.

Change Modifier for the ToolStrip and the New button to Public, rebuild the project, run
VFP, and open the form you added the Toolbar to. You still can’t drill down from the
ActiveX control to see the ToolStrip and New button. That’s because Windows Forms in
.Net doesn’t have the concept of visual containership like VFP does. Instead, references to
those components are stored as properties of the control. These properties don’t show up
in the Properties window, but you can see them in IntelliSense: when you type “This.” in a
method of the control, you’ll see both toolStrip1 and newToolStripButton properties.

Unfortunately, having access to these components doesn’t do you much good. First, you
don’t get IntelliSense on the components, so typing “This.toolStrip1.” doesn’t display
anything. More seriously, however, trying to access many of the properties of the
components causes OLE errors. For example, this works:

This.toolStrip1.Enabled = .F.

but this:

This.newToolStripButton.Enabled = .T.

gives “OLE error code 0x80131509: Unknown COM status code”, which is an
InvalidOperationException in .Net. Most of the errors seem to occur when you access
properties that contain .Net objects, such as Font, which is an instance of the
System.Drawing.Font object. However, as you can see from the second command,
sometimes even accessing simple properties causes problems too.

Creating ActiveX Controls for VFP Using .Net 10

The solution is to create methods of the ActiveX control that access or set properties of the
components. This is better from an OOP perspective anyway because we shouldn’t know
the inner details, such as the names of the components, of the ActiveX control.

Handling events in the ActiveX control
Because we didn’t define any behavior for the buttons, clicking them does nothing. Let’s
add some code to the Click event of each button to handle that. Oops, as we saw in the
previous section, we don’t have access to the individual buttons or even the ToolStrip.
Perhaps there’s a Click event for the UserControl. You can see a lot of properties and
methods in the Properties window, but the only events are those for the VFP wrapper of
the ActiveX control, like Init, Destroy, and so on. The events for the .Net control aren’t
exposed in our ActiveX control because events in COM are exposed through interfaces, and
those interfaces aren’t created when we build our control.

Coding events in .Net

Close VFP. Double-click the New button in the ToolStrip to create a Click event handler.
You’ll find this code was added to UserControl1.cs:

private void newToolStripButton_Click(object sender, EventArgs e)
{

}

Sidebar: Handling events

Events in .Net aren’t treated exactly like events in VFP. In VFP, when you open a code
window for the Click event of a button, we think we’re putting code into the Click event.
However, that’s not really the case. Windows raises an event when you click the button,
and VFP has an event handler called Click that’s called when the event is raised. VFP hides
the internals from us so we only see the event handler, not the wiring between the event
and its handler.

.Net makes this process more visible: you wire up the event to a handler that you specify.
By default, VS names the handler ObjectName_EventName but you can specify a different
name if you wish. The Click event is specifically wired to its handler through generated
code like this in the “Component Designer generated code” section of
UserControl1.Designer.cs:

this.newToolStripButton.Click += new System.EventHandler(this.newToolStripButton_Click);

This code adds the newToolStripButton_Click method to the list of handlers for the Click
event for the newToolStripButton object. (In case you’re wondering, yes, an event can have
more than one handler, something that we need to use BINDEVENT() for in VFP to
accomplish.)

Creating ActiveX Controls for VFP Using .Net 11

This distinction will be more important when we define our own events rather than letting
VS generate the code for us. For more information on how events in .Net work from a VFP
perspective, see Rick Strahl’s article “Handling .NET Events in Visual FoxPro
via COM Interop” at http://tinyurl.com/2crxznl.

Change the scope of the event handler method from “private” to “public” and add the
following code inside the curly braces to display a message box when you click the button.

MessageBox.Show("You clicked New");

Rebuild the project, start VFP, run the form, and click the New button. As expected, the
message box appears. That’s fine, but we probably want to add code that fires in VFP rather
than in .Net. Open the form, double-click the ActiveX control to open a code window, find
the newToolStripButton_Click method, and add a MESSAGEBOX() statement like:

*** ActiveX Control Method ***
LPARAMETERS sender, e
messagebox('Fired VFP code')

Run the form and click the New button. Hmm, we still see the message box from the .Net
code. Close VFP, remove the statement in newToolStripButton_Click, rebuild, start VFP, run
the form, and click New. Now nothing appears even though there’s VFP code in the method.
The problem is that .Net is handling the event itself and not raising it as an event VFP can
handle.

Sidebar: Raising events

There are three components to raising an event in .Net. First, you have to define a delegate.
A delegate is a pointer to a function. It specifies what the signature of the function is: what
parameters it accepts and what data type it returns. Here’s an example of a delegate
definition:

public delegate void MyEventHandler();

The second thing you need is an event. In .Net, you can define your own events. We can sort
of do the same thing in VFP using the RAISEEVENT() function but it’s a little more
sophisticated in .Net. An event is a special type of delegate, so you specify what delegate it’s
based on. The following creates an event that uses the delegate we just defined:

event MyEventHandler MyEvent;

Finally, to raise the event, you call it like you would any method.

Defining a delegate and an event

Let’s define a delegate for button click events. Although we could define one for each
button, there’s no need to do that; we’ll just create one for all of them because they’ll all

http://tinyurl.com/2crxznl

Creating ActiveX Controls for VFP Using .Net 12

have the same signature. Add the following to UserControl1.cs just after the COM
registration code and before the curly brace ending the class (the second last one):

public delegate void ButtonClickEventHandler();

Let's define an event we’ll raise when you click the New button. The event uses the delegate
we just created. Add this just below the delegate statement:

event ButtonClickEventHandler NewButtonClick;

Finally, let’s raise the NewButtonClick event from the Click event handler for the new
Button: add this new statement in newToolStripButton_Click:

public void newToolStripButton_Click(object sender, EventArgs e)
{
 if (NewButtonClick != null)
 NewButtonClick();
}

newToolStripButton_Click is already wired up to the Click event, so Figure 7 shows the
sequence of things that happen when you click the New button.

Figure 7. The flow of events when the user clicks the New button.

Creating ActiveX Controls for VFP Using .Net 13

Adding the event to the COM interface

Now that we have an event, we have to add it to the COM interface for the ActiveX control.
We'll define an interface called ControlEvents that specifies our event and add COM
attributes to the interface so it's visible in VFP.

Add the following between the namespace and class definition in UserControl1.cs:

[Guid("5760720E-8F36-4BBD-8B0D-88582BC91A7F")]
[InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]
public interface ControlEvents
{
 [DispId(1)]
 void NewButtonClick();
}

Remember to generate your own GUID. Add a ComSourceInterfaces attribute to the class,
specifying the new interface:

[ComSourceInterfaces(typeof(ControlEvents))]

Build the project, start VFP, open the form, double-click the ActiveX control, and notice we
now have a NewButtonClick event. Add the following code:

*** ActiveX Control Event ***
messagebox('Fired from VFP')

Run the form and click the New button. Woohoo #2, it works.

You can now go back and create Click event handlers for each of the buttons, create events
for each of those, and wire up the event handler to the event just as we did with the New
button.

Creating a base ActiveX class
What we’ve built so far works great but has a couple of issues:

 If you create several ActiveX controls, you have to copy and paste the RegisterClass
and UnregisterClass methods in each one.

 The interface exposed by the ActiveX control includes a lot of members we don’t
care about, as you can see in Figure 8.

Creating ActiveX Controls for VFP Using .Net 14

Figure 8. There are more members exposed for the ActiveX control than we want.

We’ll fix the first problem by creating a base class we’ll use for all of our ActiveX controls.
Create a new project using the “UserControl” template called DotNetControls. Rename
UserControl1.cs to COMUserControl.cs. Right-click COMUserControl.cs and choose View
Code. Replace the code in the class with the following:

using System.Text;
using System.Windows.Forms;
using System.Reflection;
using Microsoft.Win32;
using System.Runtime.InteropServices;

namespace DotNetControls
{
 [ComVisible(false)]
 public partial class COMUserControl : UserControl
 {
 public COMUserControl()
 {
 InitializeComponent();
 }

 [ComRegisterFunction()]
 public static void RegisterClass(string key)
 {
 // Strip off HKEY_CLASSES_ROOT\ from the passed key as I don't need it
 StringBuilder sb = new StringBuilder(key);
 sb.Replace(@"HKEY_CLASSES_ROOT\", "");

Creating ActiveX Controls for VFP Using .Net 15

 // Open the CLSID\{guid} key for write access
 RegistryKey k = Registry.ClassesRoot.OpenSubKey(sb.ToString(), true);

 // And create the 'Control' key - this allows it to show up in
 // the ActiveX control container
 RegistryKey ctrl = k.CreateSubKey("Control");
 ctrl.Close();

 // Next create the CodeBase entry - needed if not string named and GACced.
 RegistryKey inprocServer32 = k.OpenSubKey("InprocServer32", true);
 inprocServer32.SetValue("CodeBase",
 Assembly.GetExecutingAssembly().CodeBase);
 inprocServer32.Close();

 // Finally close the main key
 k.Close();
 }

 [ComUnregisterFunction()]
 public static void UnregisterClass(string key)
 {
 StringBuilder sb = new StringBuilder(key);
 sb.Replace(@"HKEY_CLASSES_ROOT\", "");

 // Open HKCR\CLSID\{guid} for write access
 RegistryKey k = Registry.ClassesRoot.OpenSubKey(sb.ToString(), true);

 // Delete the 'Control' key, but don't throw an exception if it does not exist
 k.DeleteSubKey("Control", false);

 // Next open up InprocServer32
 RegistryKey inprocServer32 = k.OpenSubKey("InprocServer32", true);

 // And delete the CodeBase key, again not throwing if missing
 k.DeleteSubKey("CodeBase", false);

 // Finally close the main key
 k.Close();
 }
 }
}

This code declares the COMUserControl class as non-visible to COM; we won’t be using it
directly so we don’t want it showing up in COM. It also has the RegisterClass and
UnregisterClass methods so we don’t have to add those methods to our classes anymore.

To use this base class, our ActiveX controls will inherit from COMUserControl rather than
UserControl; that way, we automatically get the COM register/unregister functionality.

The fix for the second problem is changing the COM interface generated by VS so we only
see the members we want. We’ll change the ClassInterface attribute for our classes from
AutoDual to None. That tells VS to not generate a COM interface from the UserControl class,
so we won’t see any members we don’t want. However, if we then build the project and try
to use the ActiveX control in VFP, we’ll get an “interface not supported” error. So, we need

Creating ActiveX Controls for VFP Using .Net 16

to add one other thing to our ActiveX control class: an interface that specifies the members
we want exposed through COM. We’ll then have our class inherit from that interface.

Sidebar: Multiple Inheritance and Interfaces

VFP doesn’t really have the concept of an interface. An interface is the definition (but not
implementation) of the members of a class. It lists the properties and their data types and
the methods and their signatures without providing any behavioral code. In essence, it’s a
contract that guarantees anything inheriting from the interface has the specified properties
and methods. The closest we can come to an interface in VFP is to define an abstract class
with properties and methods and no code, and then subclass from it to implement
behavior.

One interesting thing about interfaces is that a class can inherit from more than one. Like
VFP, .Net doesn’t support multiple inheritance; a class can derive from only one parent
class. However, .Net does allow a class in implement multiple interfaces. For example,
support one interface specifies an Execute method and another has an IsValid property. A
class can inherit from both interfaces as long as it has an Execute method with the correct
signature and an IsValid property of the correct data type.

Interfaces have several uses including allowing you to treat different objects that
implement the same interface as if they were the same. However, we’re going to make use
of only one aspect of an interface: telling COM what members our controls expose.

Let’s look at an example.

Creating a generic toolbar
The toolbar we built for our first ActiveX control works great if you want a static ToolStrip
with pre-defined buttons. However, what we really want is a generic toolbar we can add
buttons to in VFP. Follow these steps to create the control:

 Build the project so the COMUserControl is available in the next step.

 Right-click the DotNetControls project, choose Add, New Item. Enter “Toolbar.cs” as
the name. From the Windows Form category, double-click “Inherited User Control.”
Choose “COMUserControl” to inherit from, and click OK.

 Add a ToolStrip control to the UserControl and change its name to “toolStrip.” Size
the user control as desired.

 Right-click Toolbar.cs in the Solution Explorer and choose View Code.

 Add the following to the using section:

using System.Runtime.InteropServices;

 Add the following lines above the class definition, and replace the two GUIDs with
new ones:

Creating ActiveX Controls for VFP Using .Net 17

[Guid("11DFA2BB-4E7B-43CB-8201-2E74983DE6D4")]
[InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]
public interface ToolbarEvents
{
 [DispId(1)]
 void ButtonClick();
}

[Guid("A2FC55A1-D5EB-413C-8F95-729AF0E88ACB")]
[ClassInterface(ClassInterfaceType.None)]
[ComSourceInterfaces(typeof(ToolbarEvents))]

 Add the button click event handling:

public delegate void ButtonClickEventHandler();
event ButtonClickEventHandler ButtonClick;
private void ToolStripButton_Click(object sender, EventArgs e)
{
 if (ButtonClick != null)
 {
 ButtonClick();
 }
}

 Add a method to allow programmatically adding buttons. It accepts the name of the
button, the tooltip text for it, and the name of the image file to use. It also registers
ToolStripButton_Click as the event handler for the button.

public ToolStripButton AddButton(string name, string text, string imageFile)
{
 ToolStripButton newButton = new ToolStripButton();
 this.toolStrip.Items.Add(newButton);
 newButton.DisplayStyle = ToolStripItemDisplayStyle.Image;
 newButton.Image = System.Drawing.Image.FromFile(imageFile);
 newButton.ImageTransparentColor = System.Drawing.Color.White;
 newButton.Name = name;
 newButton.AutoSize = true;
 newButton.Text = text;
 newButton.Click += new System.EventHandler(this.ToolStripButton_Click);
 return newButton;
}

 As I mentioned in the previous section, we need to define an interface that specifies
the COM interface we want exposed and have our class inherit from that interface.
Add the following code after the class definition (before the final curly brace which
ends the namespace):

public interface ToolbarInterface
{
 ToolStripButton AddButton(string name, string text, string imageFile);
}

Creating ActiveX Controls for VFP Using .Net 18

This interface defines the signature for the AddButton method. Note that we now
have two interfaces defined: one for the events we’ll raise that’s only there so those
events are exported to COM, and one for the members of the class.

 To specify that we want our class to inherit from this interface, change the class
definition to:

public partial class Toolbar : COMUserControl, ToolbarInterface

 Turn on the two COM registration settings in the Properties dialog for the project
discussed earlier.

 Build the project.

 Start VFP, create a new form, add DotNetControls.Toolbar, and name it oToolbar. Set
Anchor to 10.

 Add the following code to the Init method of the form to programmatically create
buttons in the toolbar (This code assumes the specified images exist in the current
folder. They’re included with the sample files accompanying this document.)

with This.oToolbar
 .AddButton('OpenButton', 'Open', 'Open.bmp')
 .AddButton('NewButton', 'New', 'New.bmp')
 .AddButton('SaveButton', 'Save', 'Save.bmp')
endwith

 Add this code to oToolbar.ButtonClick:

messagebox('Button clicked')

 Run the form and click one of the buttons. You should see the message box appear.
See Figure 9.

Figure 9. A VFP form hosting our generic toolbar ActiveX control.

The only thing missing now is that we can’t tell which button the user clicked. We’re going
to have to pass a parameter to ButtonClick. Close VFP and switch back to VS.

 Change the signature for the delegate to accept the name of the button:

public delegate void ButtonClickEventHandler(string buttonName);

 Similarly, change the ButtonClick method signature in the ToolbarControlEvents
interface:

Creating ActiveX Controls for VFP Using .Net 19

void ButtonClick(string buttonName);

 Change the code in ToolStripButton_Click to pass the name of the clicked button to
the ButtonClick event:

private void ToolStripButton_Click(object sender, EventArgs e)
{
 if (ButtonClick != null)
 {
 ToolStripButton button = (ToolStripButton)sender;
 ButtonClick(button.Name);
 }
}

 Build the project.

 Start VFP, remove the code in oToolbar.ButtonClick, then close the method and open
it again. You’ll now see a LPARAMETERS buttonname statement. Add this code:

messagebox(buttonname)

 Run the form and click the button. The message box now shows the name of the
button. In a real form, you’d use a CASE statement to decide what to do based on
which button was clicked.

As you can see in Figure 10, thanks to the interfaces we defined, we now only see the
members we’re interested in: AddToolStripButton (thanks to ToolbarInterface) and
ButtonClick (thanks to ToolbarControlEvents).

Creating ActiveX Controls for VFP Using .Net 20

Figure 10. By specifying the interface for our class, we only expose the members we want.

The Toolbar class still needs some work. For example, you need a way to modify a button
dynamically, such as changing the tooltip, the image, or enabled status. Also, other types of
controls can be used in ToolStrips, such as labels, comboboxes, and separators. However,
this is a good start towards a complete .Net ActiveX control we can use in VFP.

Sidebar: Adding descriptions to properties and methods

To make your ActiveX class easier to use, you might want to add descriptions to the
properties and methods. VFP IntelliSense displays your descriptions as tooltips in the list of
properties and methods that appear when you type the object name and a period.

Add descriptions using the [Description] attribute. You’ll need to add a “using
System.ComponentModel” line in your code to use the attribute. Here’s an example of how
this attribute is used:

[Description("This is my method")]

Note a few things about how this works. First, descriptions on the properties and methods
of a class are ignored; only those on the interface for the class are used. Second, the
description for a property is ignored; you have to put the description on the “getter” of the
property. Here’s an example of an interface that has descriptions for its members:

public interface MyInterface
{

Creating ActiveX Controls for VFP Using .Net 21

 string Name
 {
 [Description("The name of the item")]
 get;
 set;
 }
 [Description("Some method")]
 void SomeMethod();
}

Add more classes
Let's add a menubar class to the project. Because we’re not creating a new project, this will
give us one DLL containing several controls.

 Close VFP.

 Right-click the DotNetControls project, choose Add, New Item. Enter “MenuBar.cs”
as the name. From the Windows Form category, double-click “Inherited User
Control.” Choose “COMUserControl” to inherit from, and click OK.

 From the Toolbox, drag a MenuStrip to the UserControl and rename it to menuStrip.

 Open MenuBar.cs and add this to the using section:

using System.Runtime.InteropServices;

 Add the following lines above the class definition, and replace the two GUIDs with
new ones:

[Guid("13278C09-7E50-4C1F-ACAA-2AD7BEB3C17D")]
[InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]
public interface MenuBarEvents
{
 [DispId(1)]
 void ItemClick(string ItemName);
}

[Guid("EF4B01BE-578F-493C-88EE-FE1CA165D2B6")]
[ClassInterface(ClassInterfaceType.None)]
[ComSourceInterfaces(typeof(MenuBarEvents))]

 Add the event handling code:

public delegate void ItemClickEventHandler(string itemName);
event ItemClickEventHandler ItemClick;
private void MenuItem_Click(object sender, EventArgs e)
{
 if (ItemClick != null)
 {
 ToolStripMenuItem item = (ToolStripMenuItem)sender;
 ItemClick(item.Name);
 }
}

Creating ActiveX Controls for VFP Using .Net 22

 Add methods to add a pad to the menu and add a menu item to a pad:

public ToolStripMenuItem AddPad(string name, string text, string shortcutKey)
{
 ToolStripMenuItem newItem = new ToolStripMenuItem();
 this.menuStrip.Items.Add(newItem);
 newItem.Name = name;
 newItem.AutoSize = true;
 newItem.Text = text;
 if (shortcutKey != "")
 {
 char key = shortcutKey.ToUpper().ToCharArray()[0];
 newItem.ShortcutKeys = ((Keys)((Keys.Alt | (Keys)(byte)key)));
 }
 return newItem;
}

public ToolStripMenuItem AddBar(ToolStripMenuItem menuPad, string name, string

text, string shortcutKey, string imageFile)
{
 ToolStripMenuItem newBar = new ToolStripMenuItem();
 menuPad.DropDownItems.Add(newBar);
 newBar.Name = name;
 newBar.AutoSize = true;
 newBar.Text = text;
 newBar.Click += new System.EventHandler(this.MenuItem_Click);
 if (imageFile != "")
 {
 newBar.Image = System.Drawing.Image.FromFile(imageFile);
 newBar.ImageTransparentColor = System.Drawing.Color.White;
 }
 if (shortcutKey != "")
 {
 char key = shortcutKey.ToUpper().ToCharArray()[0];
 newBar.ShortcutKeys = ((Keys)((Keys.Control | (Keys)(byte)key)));
 }
 return newBar;
}

 Create the COM interface and add it to the class definition for MenuBar:

public interface MenuBarInterface
{
 ToolStripMenuItem AddPad(string name, string text, string shortcutKey);
 ToolStripMenuItem AddBar(ToolStripMenuItem menuPad, string name, string text,

string shortcutKey, string imageFile);
}

 Build the project.

 Start VFP, create a new form, add DotNetControls.MenuBar, and name it oMenu.

 Add the following code to the Init method of the form to programmatically fill the
menu:

with This.oMenu

Creating ActiveX Controls for VFP Using .Net 23

 loPad = .AddPad('FilePad', 'File', 'F')
 .AddBar(loPad, 'FileOpenBar', '&Open', 'O', 'Open.bmp')
 .AddBar(loPad, 'FileNewBar', '&New', 'N', 'New.bmp')

 loPad = .AddPad('EditPad', 'Edit', 'E')
 .AddBar(loPad, 'EditCut', '&Cut', 'X', 'Cut.bmp')
 .AddBar(loPad, 'EditCopy', '&Copy', 'C', 'Copy.bmp')
 .AddBar(loPad, 'EditPaste', '&Paste', 'V', 'Paste.bmp')
endwith

 Add the following code to oMenu.ItemClick:

LPARAMETERS itemname
messagebox(itemname)

 Run the form and select a menu item; the message box displays the name of the item
you chose (Figure 11).

Figure 11. This VFP form hosts both MenuBar and Toolbar ActiveX controls.

Non-visual controls
There’s nothing saying the ActiveX control you create has to be a visual one. For example,
the .Net framework has several dialog classes that use the latest version of your operating
system’s common dialogs. Compare the dialogs displayed by the VFP GETFILE() function
(Figure 12) and the .Net OpenFileDialog (Figure 13), for example. The VFP dialog looks
old and doesn’t support features added in Windows Vista and Windows 7 such as search
and libraries. The .Net dialog, on the other hand, looks like a typical dialog you see in other
modern applications.

Creating ActiveX Controls for VFP Using .Net 24

Figure 12. The VFP GETFILE() dialog looks old and doesn't support Windows Vista or 7 features.

Figure 13. The .Net open file dialog supports all of the new features in Windows Vista and 7.

Let’s create an ActiveX control that exposes several .Net dialog classes. Create a new class
using the “Class Library” template; we’ll create an ActiveX control we instantiate with
CREATEOBJECT() rather than a visual control we drop on a form. Name the class Dialogs.

Creating ActiveX Controls for VFP Using .Net 25

Here's the code for the class. Remember to change the GUID.

using System.Windows.Forms;
using System.Runtime.InteropServices;

namespace DotNetControls
{
 [Guid("A4E548B7-D31E-43C0-8B25-A77CDE2C383C")]
 [ClassInterface(ClassInterfaceType.None)]
 public class Dialogs : COMUserControl, DialogsInterface
 {
 public string DefaultExt { get; set; }
 public string FileName { get; set; }
 public string InitialDir { get; set; }
 public string Title { get; set; }
 public string Filter { get; set; }
 public int FilterIndex { get; set; }

 public string ShowOpenDialog()
 {
 string fileName;
 OpenFileDialog dialog = new OpenFileDialog();
 dialog.FileName = FileName;
 dialog.DefaultExt = DefaultExt;
 dialog.InitialDirectory = InitialDir;
 dialog.Title = Title;
 dialog.Filter = Filter;
 dialog.FilterIndex = FilterIndex;

 if (dialog.ShowDialog() == DialogResult.OK)
 fileName = dialog.FileName;
 else
 fileName = "";
 return fileName;
 }

 public string ShowSaveDialog()
 {
 string fileName;
 SaveFileDialog dialog = new SaveFileDialog();
 dialog.FileName = FileName;
 dialog.DefaultExt = DefaultExt;
 dialog.InitialDirectory = InitialDir;
 dialog.Title = Title;
 dialog.Filter = Filter;
 dialog.FilterIndex = FilterIndex;

 if (dialog.ShowDialog() == DialogResult.OK)
 fileName = dialog.FileName;
 else
 fileName = "";
 return fileName;
 }
 }

 public interface DialogsInterface
 {

Creating ActiveX Controls for VFP Using .Net 26

 string DefaultExt { get; set; }
 string FileName { get; set; }
 string InitialDir { get; set; }
 string Title { get; set; }
 string Filter { get; set; }
 int FilterIndex { get; set; }

 string ShowOpenDialog();
 string ShowSaveDialog();
 }
}

This code creates properties for the default extension of the file, the default filename, the
initial directory to display, the title of the dialog, the filter (file types displayed in the “Files
of type” combobox), and the index for the default filter. Filter is similar to the
cFileExtensions parameter of the VFP GETFILE() function, but is formatted a little
differently: specify each file type as the description of the filter, followed by a vertical bar
(|) and the filter pattern. You can specify multiple extensions for a given file type by
separating them with semicolons. Separate additional file types with a vertical bar. For
example, use this to specify image files with three possible extensions or all files:

Image Files (*.bmp, *.jpg, *.gif)|*.bmp;*.jpg;*.gif|All files (*.*)|*.*

There are other properties of the OpenFileDialog and SaveFileDialog classes we could set,
such as Multiselect and ShowReadOnly; I’ll leave that as an exercise for you. See
http://tinyurl.com/2weng6a and http://tinyurl.com/36n3fsp for documentation on the
properties of these classes.

Build the project, then start VFP. Set up IntelliSense for the Dialogs class: select IntelliSense
Manager from the Tools menu, select the Types page, click the Type Libraries button, click
the checkbox for DotNetControls, click Done, and click OK (Figure 14).

Figure 14. Adding the DotNetControls library to the IntelliSense Manager provides IntelliSense on the Dialogs
class.

http://tinyurl.com/2weng6a
http://tinyurl.com/36n3fsp

Creating ActiveX Controls for VFP Using .Net 27

Create a form, drop a CommandButton on it, and enter the following code in its Click
method:

local loDialog as DotNetControls.Dialogs, ;
 lcFile
loDialog = createobject('DotNetControls.Dialogs')
loDialog.FileName = 'test.bmp'
loDialog.InitialDir = home()
loDialog.Filter = 'Image Files (*.bmp, *.jpg, *.gif)|*.bmp;*.jpg;' + ;
 '*.gif|All files (*.*)|*.*'
loDialog.Title = 'Select Image'
lcFile = loDialog.ShowOpenDialog()
if not empty(lcFile)
 messagebox(lcFile)
endif not empty(lcFile)

Add another CommandButton with similar code but call ShowSaveDialog() instead. Run the
form and click each button to see how the dialogs look. They’re a lot nicer than GETFILE()
and PUTFILE() and you have more control over the dialogs as well.

Subclassing controls directly
So far, we’ve been using a UserControl container to host .Net controls. What about
subclassing a control directly? That’s possible too. The benefit of this approach is that you
don’t have to expose properties of the control; that’s already taken care of. You do have to
expose events, however.

The following class named MyButton is a subclass of Button:

using System;
using System.Windows.Forms;
using System.Runtime.InteropServices;

namespace MyNamespace
{
 [Guid("DD26B13D-F956-4898-8786-AA8D30C86DF0")]
 [InterfaceType(ComInterfaceType.InterfaceIsIDispatch)]
 public interface ButtonControlEvents
 {
 [DispId(1)]
 void ButtonClick();
 }

 [Guid("D32AFCD9-EA53-4AA5-AE75-308D618C450D")]
 [ClassInterface(ClassInterfaceType.AutoDual)]
 [ComSourceInterfaces(typeof(ButtonControlEvents))]
 public class MyButton : Button
 {
 public delegate void ButtonClickEventHandler();
 event ButtonClickEventHandler ButtonClick;
 private void Button_Click(object sender, EventArgs e)
 {
 ButtonClick();
 }

Creating ActiveX Controls for VFP Using .Net 28

 public MyButton()
 {
 this.Click += new System.EventHandler(this.Button_Click);
 }

 [ComRegisterFunction()]
 public static void RegisterClass(string key)
 {
 COMRegistration.RegisterClass(key);
 }

 [ComUnregisterFunction()]
 public static void UnregisterClass(string key)
 {
 COMRegistration.UnregisterClass(key);
 }
 }
}

Most of this code should be clear to you by now. However, you’re likely wondering why we
don’t just expose the Click event itself directly in the ButtonControlEvents interface but
instead have Click handled by Button_Click and have Button_Click raise the ButtonClick
event. Unfortunately, that doesn’t work; if you try that and put code in the Click event of the
ActiveX control in VFP, you’ll get an error. The Click event needs an event handler.

Unfortunately, this approach has some limitations, the biggest of which is that, like we saw
earlier when accessing components, some properties are difficult to work with. For
example, although you can’t see Font in the Properties window, it does show up in
IntelliSense. However, Font is an object (System.Drawing.Font) with Name and Size
properties, and code like this doesn’t work (it doesn’t cause an error, but the font isn’t
changed):

This.Font.Name = 'Segoe UI'
This.Font.Size = 24

The same is true for other properties that are objects, such as Image and Dock (in fact, Dock
doesn’t even show up in IntelliSense). If you want to expose those properties, you have to
create methods or other properties that get or set their values.

Other controls
The DotNetControls project that accompanies this document has several other ActiveX
controls.

The .Net DateTimePicker control is a very nice date/time picker with several formats
available and a cool dropdown calendar. I’ve exposed it as DotNetControls.DateTimePicker
with Value, Format (1 = long, which displays the day as well as date, 2 = date only, 4 = time,
and 8 = custom), CustomFormat (see http://tinyurl.com/34nyy9u for the possible values),
FontName, and FontSize properties. See Figure 15 for an example.

http://tinyurl.com/34nyy9u

Creating ActiveX Controls for VFP Using .Net 29

Figure 15. DotNetControls.DateTimePicker is a nice datetime picker control.

DotNetControls.ProgressBar is a progress bar that displays a modern Vista/Windows 7
progress bar rather than the older XP-style bar the ActiveX progress bar control that comes
with VFP uses. Set its Value property to the desired value (the range is 0 to 100). Set
Marquee to .T. to display a continuously moving bar.

Figure 16. DotNetControls.ProgressBar is a modern-looking progress bar.

DotNetControls.ContextMenu is similar to MenuBar but for shortcut menus (Figure 17).
Since it doesn’t have pads, it doesn’t have an AddPad method, just AddBar, to which you
pass the name, caption, shortcut key, and image file. To display the menu, call ShowMenu,
usually from the RightClick method of an object. Call Clear to remove all menu items. Like
MenuBar, the ItemClick method receives the name of the clicked menu item. Because it
doesn’t have a visual representation like the other controls, ContextMenu displays as a
small menu icon at design time. You have to set Visible to .F. so it doesn’t display at run
time.

Creating ActiveX Controls for VFP Using .Net 30

Figure 17. DotNetControls.ContextMenu displays a shortcut menu.

Of course, you don’t have to use just native .Net controls. Many companies, such as Telerik
and Infragistics, sell Windows Forms controls, and there are thousands of free ones
available. For example, a CodePlex project, VistaControls (http://tinyurl.com/29mjbqe),
has a TreeView control that uses the Vista/Windows 7 style rather than the older style
used by the ActiveX controls that comes with VFP and even the native .Net version. I
created DotNetControls.TreeView that uses this control. It has the following members:

 CheckBoxes: set this property to .T. if you want node checkboxes.

 LoadImage(Key, ImageFile): adds the specified image to the contained ImageList
control so nodes can have images.

 AddNode(Key, Text, ImageKey): adds a top-level node to the TreeView using the
specified key, text, and image key from the ImageList, and returns a reference to the
node so you can set additional properties such as Checked or ToolTipText.

 AddChildNode(ParentKey, Key, Text, ImageKey): adds a node as a child of the
specified node. I originally created a second AddNode method with a different
signature that accepts ParentKey but since COM doesn’t allow two methods with the
same name, its name appeared as AddNode_2, which isn’t very intuitive.

 Clear: removes all nodes.

 NodeClick(Key): this event is raised when the user clicks a node. It’s passed the key
of the node.

Of course, this TreeView isn’t fully functional yet because it doesn’t expose all of the
members of the TreeView or raise all of the events, but it’s a start. Figure 18 shows a
sample form with a DotNetControls.TreeView on it.

http://tinyurl.com/29mjbqe

Creating ActiveX Controls for VFP Using .Net 31

Figure 18. DotNetControls.TreeView displays a Windows Vista/7 style TreeView control.

Interop Forms Toolkit
Everything we’ve done so far is manual: adding the COM attributes to our classes, creating
GUIDs, turning on project properties to create the ActiveX control, and so on. However,
several years ago, Microsoft released a free VS add-in that automates this process: the
Interop Forms Toolkit. Although its name implies it’s for creating forms, it can also create
UserControl-based ActiveX controls. You can download and install the Interop Forms
Toolkit from http://tinyurl.com/5pa5gg.

One potential downside of the Interop Forms Toolkit is that its templates are in Visual
Basic rather than C#. Of course, that isn’t a problem if you’d rather work in Visual Basic or
don’t mind working in two languages. Although I haven’t tried it, someone has created a C#
version at http://tinyurl.com/3yf7uc3. Another downside is that it doesn’t work in the free
VS Express versions.

Let’s try it out. Create a new project, but select Visual Basic as the language and “VB6
Interop UserControl” as the template. Name the project “FirstInteropControl” (see Figure
19).

http://tinyurl.com/5pa5gg
http://tinyurl.com/3yf7uc3

Creating ActiveX Controls for VFP Using .Net 32

Figure 19. Use the "VB6 Interop UserControl" template to create an ActiveX control using the Interop Forms
Toolkit.

After project creation is complete, open InteropUserControl.vb. This is essentially the same
as a Windows UserControl, so drag a CheckedListBox to it and name it listBox. Size the user
control to fit the listbox, then set the listbox’s Anchor property to Top, Bottom, Left, and
Right.

Right-click InteropUserControl.vb in the Solution Explorer and choose View Code. Notice
the ComClass attribute at the top of the file. The syntax is a little different than the
ClassInterface attribute we used in C# but the purpose is the same. Expand the “VB6
Interop Code” region and then expand the “COM Registration” region. Again, the code is
different but its purpose is obvious: registering and unregistering the ActiveX control just
like we did with the C# classes. Right-click the InteropLibrary project and choose
Properties. On the Application page, click Assembly Information and notice that “Make
assembly COM-visible” is already turned on. On the Compile page, you’ll see that “Register
for COM interop” is already turned on. In other words, the Interop Forms Toolkit is doing
the same thing we were doing manually in our C# project; it just does most of the work for
us.

Let’s expose a few things so we make the class useful. Add the following code to the class:

Public Sub AddItem(ByVal Text As String, ByVal Checked As Boolean)
 ListBox.Items.Add(Text, Checked)

Creating ActiveX Controls for VFP Using .Net 33

End Sub

Public ReadOnly Property CheckedItems As CheckedListBox.CheckedItemCollection
 Get
 Return ListBox.CheckedItems
 End Get
End Property

Public Property FontName As String
 Get
 Return ListBox.Font.Name
 End Get
 Set(ByVal value As String)
 ListBox.Font = New System.Drawing.Font(value, ListBox.Font.Size)
 End Set
End Property

Public Property FontSize As Single
 Get
 Return ListBox.Font.Size
 End Get
 Set(ByVal value As Single)
 ListBox.Font = New System.Drawing.Font(ListBox.Font.Name, value)
 End Set
End Property

The AddItem method adds an item to the listbox and accepts two parameters: the text for
the item and whether it’s initially checked or not. The CheckItems property returns a
collection of those items in the listbox that are checked. The FontName and FontSize
properties allow you to set the font for the listbox.

Sidebar: Properties in .Net

Properties in .Net aren’t really like properties in VFP. For one thing, they don’t actually
store values. Instead, they’re a special type of method with “get” and “set” components to
read from and write to something. Typically, a property is the public interface to private
underlying variables known as “fields.” So used in that way, a .Net property is similar to a
VFP property with Access and Assign methods. You can code any behavior you wish in
those methods, even choosing to not store a value but instead calculate it on the fly. In our
code above, the CheckedItems, FontName, and FontSize properties are really wrappers for
other, more difficult to access properties.

Notice that CheckedItem doesn’t have a “set” component, so it’s a read-only property. You
can also create write-only properties by having a set without a get.

To try it out, build the project, start VFP, create a form, and add
FirstInteropControl.InteropUserControl. Name it oList, set Anchor to 15, and put the
following code into Init:

This.AddItem('Apples', .F.)
This.AddItem('Bananas', .T.)
This.AddItem('Oranges', .F.)

Creating ActiveX Controls for VFP Using .Net 34

This.AddItem('Peaches', .F.)
This.AddItem('Plums', .T.)

This.FontName = 'Segoe UI'
This.FontSize = 9

Add a command button, set Anchor to 4, and add this code to Click:

lcItems = ''
for each lcItem in Thisform.oList.Object.CheckedItems
 lcItems = lcItems + iif(empty(lcItems), '', chr(13)) + lcItem
next lcItem
messagebox('You selected: ' + chr(13) + chr(13) + lcItems)

Run the form, check some items, and click the command button to see which items you
checked. See Figure 20 for the result.

Figure 20. This VFP form hosts a .Net CheckedListBox control.

If you’re interested in reading more about the Interop Forms Toolkit, Bernard Bout created
a six-entry blog series about his experiences at http://tinyurl.com/39m5opf.

Deploying .Net ActiveX controls
So far, we’ve been using the .Net ActiveX controls on the same machine as VFP. To deploy
on another system, you need to do two things: copy the control’s files to the system and
register the control for COM access.

In the project folder on your development system, you’ll find a “bin” folder. That folder has
a Debug folder (although if you change the Configuration in the Build page of the project
properties dialog to Release, you’ll find a Release folder) that contains three files: your
project’s DLL, PLB (program database file which contains debugging information), and TLB

http://tinyurl.com/39m5opf

Creating ActiveX Controls for VFP Using .Net 35

(type library) files. We don’t need the PLB file and even the TLB is optional since we can
regenerate it on the user’s system as you’ll see in a moment. So, copy either just the DLL or
both the DLL and TLB files to the user’s system. Normally, you’ll do this as part of your
application’s installation process.

Because we configured the project so VS automatically registers our control for COM
access, we didn’t have to do anything special to get it to work with VFP. However, on
another machine, you need to register the control before it can be used. You do that using
the utility RegAsm.exe that comes with the .Net framework. RegAsm is like RegSvr32,
which you may know is used to register COM objects, but is used to register .Net assemblies
for COM.

RegAsm.EXE is located in one of these directories:

 C:\Windows\Microsoft.NET\Framework\v2.0.50727 to register an ActiveX control
targeted for the .Net framework 2.0, 3.0, or 3.5.

 C:\Windows\Microsoft.NET\Framework\v4.0.30319 for assemblies targeting .Net
4.0.

To manually register the control, use the following syntax:

RegAsm <path and name of DLL> /codebase

If you didn’t copy the TLB file, use this syntax instead to both register the controls and
regenerate that file:

RegAsm <path and name of DLL> /codebase /tlb

Note that if you’re running on Windows Vista or Windows 7 or on an earlier version of
Windows under a limited account, you need to run RegAsm as administrator or it’ll fail. In
that case (assuming you’re doing that manually and not part of an installer), create a BAT
file with the appropriate command and run it as administrator. If you run the BAT file
several times, you may wish to deregister the control before registering it, so use this
syntax:

RegAsm <path and name of DLL> /u

For example, here’s the content of a BAT file to register DotNetControls.DLL which is
copied to my Visual FoxPro Projects folder:

rem Unregister
C:\Windows\Microsoft.NET\Framework\v2.0.50727\regasm "C:\Users\Win7\Documents\Visual
FoxPro Projects\DotNetControls.dll" /u

rem Register
C:\Windows\Microsoft.NET\Framework\v2.0.50727\regasm "C:\Users\Win7\Documents\Visual
FoxPro Projects\DotNetControls.dll" /codebase /tlb

pause

Creating ActiveX Controls for VFP Using .Net 36

(The PAUSE command is just there so I can see the results of the RegAsm call.)

RegAsm displays a message that you should sign an assembly using a strong name if you
want to use the /CODEBASE parameter. In my experience, this isn’t necessary, but isn’t a
bad idea and is easy to do. See http://tinyurl.com/2dmfzsl for information.

This may be fine for testing on another system, but for a user’s system, you’ll want to do
this as part of your application’s installer. I use Inno Setup for my installations, so I use
something like this to install and register the ActiveX control:

[Files]
Source: "MyDotNetControl.dll"; DestDir: "{app}"; Flags: ignoreversion

[Run]
Filename: "{dotnet20}\Regasm.exe"; Parameters: "MyDotNetControl.dll /codebase /tlb";
WorkingDir: "{app}"; Flags: runhidden

The “runhidden” flag means the user won’t see the DOS window and the results of the
register process. “{dotnet20}” is an Inno Setup constant that points to the .Net 2.0
framework folder. Use “{dotnet40}” if you want .Net 4.0 instead.

If you’re not sure whether the .Net framework is installed on the user’s system, you can tell
Inno Setup to download and install it if necessary. Add this to your script:

#include "DotNet2Install.iss"

This tells Inno Setup to load another install script file, DotNet2Install.iss, and use its
contents as well. DotNet2Install.iss was modified from a script written by Priyank Bolia and
posted at http://tinyurl.com/3yf59sa. This script requires ISXDL.DLL, which along with
this script is included in the sample files accompanying this document. During the
installation process, if the .Net 2.0 framework isn’t found on the user’s system, it’s
downloaded from Microsoft’s web site and installed. The nice thing about this script is that
you don’t have to include the 22 MB .Net installer as part of your installer; it does, however,
require that the user have an Internet connection.

References
In addition to the references given throughout this document, here are some others you
may find useful:

 “Build and Deploy a .NET COM Assembly” by Phil Wilson,
http://tinyurl.com/25qk2uo

 “Creating Multi-threaded .NET Components for COM Interop with Visual FoxPro” by
Rick Strahl, http://tinyurl.com/3xozrhe

 “Interop Forms Toolkit - Your New Best Friend” by Beth Massie,
http://tinyurl.com/3amtvtb

http://tinyurl.com/2dmfzsl
http://tinyurl.com/3yf59sa
http://tinyurl.com/25qk2uo
http://tinyurl.com/3xozrhe
http://tinyurl.com/3amtvtb

Creating ActiveX Controls for VFP Using .Net 37

Summary
As you hopefully seen by now, creating ActiveX controls using .Net is fairly easy. It doesn’t
require a deep knowledge of .Net languages; what little you need to know is easy to pick up.
The benefit is that you can leverage the thousands of .Net controls that are available to not
only freshen the UI of your applications but also add functionality that would be difficult to
write using just VFP code.

I’m interested in hearing about the types of controls you’d like to see, so please contact me
and let me know about your ideas.

Biography
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-
winning Stonefield Database Toolkit (SDT); the award-winning Stonefield Query; the
MemberData Editor, Anchor Editor, and CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My namespace and updated Upsizing Wizard in
Sedna.

Doug is co-author of “Making Sense of Sedna and SP2,” the “What’s New in Visual FoxPro”
series (the latest being “What’s New in Nine”), “Visual FoxPro Best Practices For The Next
Ten Years,” and “The Hacker’s Guide to Visual FoxPro 7.0.” He was the technical editor of
“The Hacker’s Guide to Visual FoxPro 6.0” and “The Fundamentals.” All of these books are
from Hentzenwerke Publishing (http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written numerous articles in FoxPro Advisor,
Advisor Guide to Visual FoxPro, and CoDe. He currently writes for FoxRockX
(http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the annual Southwest Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community extensions Web site
(http://vfpx.codeplex.com). He has been a Microsoft Most Valuable Professional (MVP)
since 1996. Doug was awarded the 2006 FoxPro Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

http://www.hentzenwerke.com/
http://www.foxrockx.com/
http://www.swfox.net/
http://vfpx.codeplex.com/
http://tinyurl.com/ygnk73h

Creating ActiveX Controls for VFP Using .Net 38

Copyright, 2011 Doug Hennig.

