
Multi-User and Data Buffering Issues

Doug Hennig

Partner

Stonefield Systems Group Inc.

1112 Winnipeg Street, Suite 200

Regina, SK Canada S4R 1J6

Phone: (306) 586-3341

Fax: (306) 586-5080

Email: dhennig@stonefield.com

World Wide Web: www.stonefield.com

Overview

In FoxPro 2.x, developers edited records using scatter memvar, editing the memory variables, and gather

memvar. The purpose of this indirect editing of fields was to protect the record by buffering it. With Visual FoxPro,

data buffering is built in, so fields can be edited directly. This session will discuss how data buffering works and

explores strategies for selecting which buffering mechanism to use and how to handle multi-user conflicts.

Introduction

If you’ve spent any time at all working with VFP, one of the things you’ve probably learned is that while you can

continue to do things the “old” way if you wish, VFP provides you with a better way to perform the same task. How

records are edited in forms is a perfect example of this.

Here’s the “old” way I used to write code to edit a record in a data entry screen:

 The screen has get objects for memory variables with the same names as the table’s fields (for example,

M.CUST_ID and M.NAME).

 When the user positions the table to a particular record (for example, using the “Next” button), use

scatter memvar to transfer the record to the memory variables and show gets to refresh the values

shown on the screen. The user cannot edit the variables (they’re either disabled or have when clauses

that evaluate to .F.) because the user is currently in “view” mode.

 When the user chooses the “Edit” button, try to lock the record; display an appropriate message if we

can’t. Check the value of each field against its memory variable—if they don’t match, another user must

have edited and saved the record since we first displayed it. In that case, display an appropriate message

and use scatter memvar and show gets again so the user sees the current contents of the record.

 If the fields and memory variables match, either enable the get objects or make their when clauses

evaluate to .T. so the user can edit the variables.

 When the user chooses the “Save” button, do some validation to ensure everything was entered

according to our rules, then gather memvar to update the record from the memory variables and

unlock the record. Disable the get objects or make their when clauses evaluate to .F. so the user is once

again in “view” mode.

Notice in this scheme we don’t do a direct read against the record. Instead, we allow the user to edit memory

variables and only write those memory variables back to the record if everything went OK. The reason for using this

method is it protects the table; we don’t allow any data to be stored unless it passes all the rules. Also notice the

record is locked while the user is editing the memory variables. This prevents another user from editing the same

record at the same time. It does, however, suffer from the “out to lunch” syndrome—if the user starts the edit, then

goes for lunch, the record stays locked, unavailable to other users for editing.

This isn’t the only way to edit records, of course. You could do the lock just before saving the record instead of

when the edit mode starts. This minimizes the time the record is locked, allowing other users access to it. This has its

own drawback, though: if the user edits the variables and clicks on “Save”, what happens if some other user edited

the record in the meantime? Do you overwrite their changes? Do you prevent the record from being saved? This is a

design issue you must handle on a case-by-case basis.

The whole purpose of all this effort is to protect the data. If you were writing an application that only you would ever

use, you’d probably make it a lot simpler—just read against the fields in the record directly. This makes the screen

act like the “form” equivalent of a browse, since everything you type goes directly into the record. However, since

we can’t trust those pesky users to know what they can and can’t enter, we have to protect the data by building a

“firewall” between the user and the table. Creating this “firewall” in FoxPro 2.x took a significant amount of coding.

VFP provides a built-in “firewall” mechanism that gives us the best of both worlds: direct read against a record

while only permitting the data to be written after it passes all the tests. This mechanism is buffering.

Buffering

Using memory variables to hold the contents of a record can be considered like creating a buffer of data. The data is

transferred from the record to the “buffer” by using scatter memvar and from the “buffer” to the record with

gather memvar.

Not only can VFP do this type of single record buffering (called record or row buffering) automatically, it also

supports another type of buffering (called table buffering) in which multiple records are accessed through a buffer.

Record buffering is normally used when you want to access or update single records at a time. This is common in

data entry mechanisms like that described above: the user can display or edit a single record in the form. Table

buffering would be the choice for updating several records at a time. A common example of this is an invoice

header-detail screen. By using table buffering for the invoice detail table, you can allow the user to edit detail lines as

long as they wish, and then save or cancel all the detail records at once.

In addition to two buffering mechanisms, there are two locking mechanisms. The “old” way I described earlier can

be considered to be a pessimistic locking scheme—the record is locked as soon as the user chooses “Edit”, and stays

locked until they choose “Save”. This ensures no one else can change the record while this user is doing so, which

may or may not be a good thing, depending on your application. The other method I described earlier is an optimistic

locking mechanism—the record is only locked for the brief amount of time it takes to write the record, and is

immediately unlocked. This maximizes the availability of the record (this is also known as maximizing concurrency)

but means we have to handle conflicts that occur if two users edit the record at the same time. As we’ll see in a

moment, this is actually easy to do in VFP, so optimistic buffering will probably be the mechanism of choice for

most applications.

Since records can be automatically buffered, there’s no longer a need to use the “manual buffer” mechanism. In other

words, now we can read directly against the fields in the record and not worry about maintaining memory variables

for each one. To save the changes, we simply tell VFP to write the buffer to the table, and to cancel the changes, we

tell it not to. We’ll see how to do that in a moment.

VFP implements buffering by creating a “cursor” whenever a table is opened. The cursor is used to define properties

for the table. In the case of local tables, the only property for the cursor is how buffering is performed; views and

remote tables have additional properties beyond the scope of this session. These properties are set using the

cursorsetprop() function and examined with cursorgetprop(). We’ll see the use of these functions shortly.

Table buffering has an interesting implementation regarding appended records: as records are added to the buffer,

they’re assigned a negative record number. recno() returns -1 for the first appended record, -2 for the second, and

so on. You can use go with a negative number to position the buffer to the appropriate appended record. This has an

implication for routines handling record numbers—instead of testing for between(lnRecno, 1, reccount())

to ensure lnRecno is a valid record number, you’ll now have to test for between(lnRecno, 1, reccount()) or

lnRecno < 0.

Using Buffering

Buffering is turned off by default, so VFP acts just like FoxPro 2.x in terms of how updates are written to a table. To

use buffering, you must specifically turn it on. Buffering is available for both free tables and those attached to a

database. Buffering requires that you set multilocks on since by default it too is set off; you’ll get an error

message if you forget to do this. You can put multilocks = on in your CONFIG.FPW or use the Options function

under the Tools pad to save this setting as the default.

Buffering is controlled using cursorsetprop('Buffering', <n>, <Alias>). You don’t have to specify

<Alias> if you’re setting buffering for the current table. <n> is one of the following values depending on the

buffering and locking method you wish to use:

Buffering/Locking Method <n>

no buffering 1

record, pessimistic 2

record, optimistic 3

table, pessimistic 4

table, optimistic 5

For example, to enable optimistic record buffering, use cursorsetprop('Buffering', 3). To determine what

buffering is currently in use for a table, use cursorgetprop('Buffering').

To enable buffering in a form, you could specify cursorsetprop() for each table in the form’s Load method, but

the preferred approach is to set the form’s BufferMode property to either optimistic or pessimistic (the default is

“none”). The form will then automatically use table buffering for tables bound to grids and row buffering for all

other tables. If you use a DataEnvironment for the form, you can override the form’s BufferMode for a particular

table by setting its BufferModeOverride property as desired.

While the user is changing the data in the buffered record (they’re in the middle of editing the record), you have

access to not only the value they’ve entered into each field, but also the former value of each field and its current

value (the value actually on disk). Two new functions, oldval() and curval(), were added for this purpose.

Here’s how you obtain the appropriate values:

To Get: Use:

the value the user entered (the value in the buffer) <fieldname> or <alias.fieldname>

the value before the user changed anything oldval('<fieldname>')

the current value in the record curval('<fieldname>')

curval() and oldval() can only be used with optimistic buffering.

You may be wondering how the value returned by curval() would differ from the one returned by oldval(). It

obviously wouldn’t if only a single user is running the application. However, on a network and with optimistic

locking, it’s possible that after the user started editing the record, another user edited the same record and saved their

changes. Here’s an example:

Bob brings up record #2 in CONTACTS.DBF and clicks on the “Edit” button:

Field Value oldval() curval()

LAST_NAME Jones Jones Jones

FIRST_NAME Bill Bill Bill

Bob changes the first name to Sam but doesn’t save the record yet:

Field Value oldval() curval()

LAST_NAME Jones Jones Jones

FIRST_NAME Sam Bill Bill

Mary brings up record #2 in CONTACTS.DBF, clicks on the “Edit” button, changes the first name to Eric, and

saves. At Bill’s machine:

Field Value oldval() curval()

LAST_NAME Jones Jones Jones

FIRST_NAME Sam Bill Eric

Notice FIRST_NAME, oldval('FIRST_NAME'), and curval('FIRST_NAME') all return different values. By

having access to the original value, the buffered value, and the current value for each field in a record, you can:

 determine which fields the user changed by comparing the buffered value to the original value; and

 detect whether other users on a network made changes to the same record after the edit had started by

comparing the original value to the current value.

If you don’t care about the old and current values but only wish to detect if a field was edited by the user, use

getfldstate(). This new function returns a numeric value indicating if something about the current record has

changed. getfldstate() is called as follows:

getfldstate(<FieldName> | <FieldNumber> [, <Alias> | <WorkArea>])

and returns one of the following values:

Value Description

1 No change

2 The field was edited or the deletion status of the record was changed

3 A record was appended but the field was not edited and the deletion

status was not changed.

4 A record was appended and the field was edited or the deletion

status of the record was changed.

Changing the deletion status means either deleting or recalling the record. Note deleting and then immediately

recalling the record will result in a value of 2 or 4 even though there’s no net effect to the record.

If you don’t specify an alias or workarea, getfldstate() operates on the current table. Specify 0 for

<FieldNumber> to return the append or deletion status of the current record. If you specify -1 for

<FieldNumber>, the function will return a character string with the first digit representing the table status and one

digit for the status of each field.

In the example mentioned earlier, where Bill edits the second field, getfldstate(-1) would return “112”. The

first digit indicates the record was not appended or deleted, the second that the first field was unchanged, and the

third that the second field was changed.

Writing a Buffered Record

Continuing with the previous example, now Bill clicks on the “Save” button. How do we tell VFP to write the buffer

to the record? With record buffering, the table is updated when you move the record pointer or issue the new

tableupdate() function. With table buffering, moving the record pointer doesn’t update the table (since the whole

point of table buffering is that several records are buffered at once), so the usual way is to issue tableupdate().

It’s best to use tableupdate() even for record buffering since you have more control over what happens when.

tableupdate() returns .T. if the buffer was successfully written to the record. If the record buffer hasn’t changed

(the user didn’t edit any fields, add a record, or change the deleted status for the record), tableupdate() returns

.T. but actually does nothing.

tableupdate()can take a few optional parameters:

tableupdate(<AllRows>, <Forced>, <Alias> | <Workarea>)

The first parameter indicates what records to update: .F. tells it to only update the current record, while .T. means

update all records (only effective if table buffering is used). If the second parameter is .T., any changes by another

user will be overwritten by the current user’s changes. Unless the third parameter is specified, tableupdate() will

update the current table.

How do you cancel the changes the user made? With the memory variable approach, you’d just scatter memvar

again to restore the memory variables to the values stored on disk. With buffering, use the tablerevert() function

to do the same for the buffer.

Handling Errors

Continuing on with the “Bill and Mary” example, the code executed when Bill clicks the “Save” button uses the

tableupdate() function to try to write the buffer to the record. Remember Mary edited the record and saved her

changes as Bill was editing the same record. When Bill clicks on “Save”, tableupdate() will return .F., meaning

it didn’t write the buffer. Why?

VFP will not write the buffer to the record under the following conditions:

 Another user changed and saved the record while this user was editing it (as happened in this example).

VFP automatically compares oldval() and curval() for each field. If it detects any differences, we

have a conflict.

 The user entered a duplicate primary or candidate key value.

 A field or table rule was violated, or a field that doesn’t support null values is null.

 A trigger failed.

 Another user has the record locked. This can be minimized by avoiding manually locking records with

rlock() and using the same buffer locking mechanism for a table in all forms and programs that access

it.

 Another user deleted the record.

You must decide what to do when tableupdate() fails. Also, if your application allows the user to click on the

“Next” or “Previous” buttons while editing a record and those functions don’t issue a tableupdate(), you must

handle the error that will occur when the automatic save is attempted. In both of these cases, the proper place to

handle this is in an error trapping routine.

Error handling has been improved in VFP. The old way to set an error trap (which you can still use in VFP) is to use

the on error command to specify a procedure to execute when an error occurs. This error routine would typically

look at error() and message() to determine what happened, and take the appropriate action.

VFP now provides an automatic error handling mechanism: the Error method. If an Error method exists for an object

or form, it will automatically be executed when an error occurs without having to manually set the trap. aerror() is

a new function that helps in figuring out what went wrong. You pass it an array name and it creates or updates the

array with the following elements:

Element Type Description

1 Numeric The error number (same as error()).

2 Character The error message (same as message()).

3 Character The error parameter (for example, a field name) if the

error has one (same as sys(2018)) or .NULL. if not.

4 Numeric or

Character

The work area in which the error occurred if appropriate,

.NULL. otherwise.

5 Numeric or

Character

The trigger that failed (1 for insert, 2 for update, or 3 for

delete) if a trigger failed (error 1539), or .NULL. if not.

6 Numeric or

Character

.NULL. (used for OLE and ODBC errors).

7 Numeric .NULL. (used for OLE errors).

For example, aerror(laERROR) will create or update an array called laERROR.

Here are the common errors that may occur when VFP attempts to write the buffer to the table:

Error # Error Message Comment

109 Record is in use by another

1539 Trigger failed Check element 5 to determine which trigger failed.

1581 Field does not accept null values Check element 3 to determine which field was involved.

1582 Field validation rule is violated Check element 3 to determine which field was involved.

1583 Record validation rule is violated

1585 Record has been modified by another

1884 Uniqueness of index violated Check element 3 to determine which tag was involved.

Handling most of these errors is straightforward: tell the user the problem and leave them in edit mode to correct the

problem or cancel. For error #1585 (record has been modified by another), there are several ways you could handle

the error:

 You could tell them someone else modified the record and then cancel their edits using

tablerevert(). I suspect most users wouldn’t be too thrilled by this approach <g>.

 You can force the update of the record by using tableupdate(.F., .T.). This causes the other

user’s changes to be overwritten by the current user’s. This user might be happy, but the other user

probably won’t be.

 You can display the changes the other user made to the record in another copy of the same form (easy to

do with VFP’s ability to create multiple instances of the same form). The user can then decide whether

the changes the other user made should be kept or not, and you can either use tableupdate(.F.,

.T.) to force the update or tablerevert() to cancel.

 A more intelligent scheme involves determining if we have a “real” conflict or not. By “real”, I mean:

did both users change the same field or not. If the fields they updated are different, we could tell VFP to

just update the field this user changed, leaving the other user’s changes intact. An example might be in

an order processing system. One user may have edited the description of a product while another user

entered an order for the product, thereby decreasing the quantity on hand. These changes aren’t mutually

exclusive—if we make our table update less granular (that is, we don’t update an entire record at a time,

just the fields we changed), we can satisfy both users.

Here’s the logic of how that works:

 Find a field where oldval() is different than curval(), meaning this field was edited by

another user. If the field’s buffered value is the same as oldval(), this user didn’t change the

field, so we can prevent overwriting its new value by setting the buffered value to curval().

 Find a field where the buffered value is different than oldval(). This is a field this user

edited. If oldval() equals curval(), the other user didn’t change this field, so we can safely

overwrite it.

 If we find a field where the buffered value is different than oldval() but the same as

curval(), both users made the same change. While this may seem unlikely, one example

would be when someone sends a change of address notice to a company and somehow two

users decide to update the record at the same time. Since the changes were identical, we might

be able to overwrite the field. However, in the case of a quantity being updated by the same

amount (for example, two orders for the same quantity were entered at the same time), you

wouldn’t want to overwrite the field, and would consider this to be a “real” conflict.

 If we have a case where the buffered value of a field is different than both oldval() and

curval(), and oldval() and curval() aren’t the same either, both users changed the same

field but to different values. In this case, we have a “real” conflict. You have to decide how to

handle the conflict.

 In the case of inventory quantity on hand or account balances, one possibility is to apply the

same change the other user made to the buffered value. For example, if oldval() is 10 and

curval() is 20, the other user increased the amount by 10. If the buffered value is 5, this user

is decreasing the amount by 5. The new buffered value should therefore be value +

curval() - oldval(), or 15.

 In the case of Date fields, business rules and common sense might help. For example, in a

patient scheduling program with a field containing the date of a patient’s next visit, the earlier

of the two dates in conflict is probably the correct one to use, unless it’s prior to the current

date, in which case the later date is the correct one.

 Other types of fields, especially Character and Memo fields, often can’t be resolved without

asking the user to make a decision about overwriting the other user’s changes or abandoning

their own. Allowing the user to see the other user’s changes (as mentioned earlier) can help

them make this decision.

Here’s some code that will do this type of conflict resolution (this code assumes we’ve already

determined the problem is error #1585, the record had been modified by another user):

* Check every field to see which ones have a conflict.

llConflict = .F.

for lnI = 1 to fcount()

 lcField = field(lnI)

 llOtherUser = oldval(lcField) <> curval(lcField)

 llThisUser = evaluate(lcField) <> oldval(lcField)

 llSameChange = evaluate(lcField) == curval(lcField)

 do case

* Another user edited this field but this user didn't, so grab the

* new value.

 case llOtherUser and not llThisUser

 replace (lcField) with curval(lcField)

* Another user didn't edit this field, or they both made the same

* change, so we don't need to do anything.

 case not llOtherUser or llSameChange

* Uh-oh, both users changed this field, but to different values.

 otherwise

 llConflict = .T.

 endcase

next lnI

* If we have a conflict, handle it.

if llConflict

 lnChoice = messagebox('Another user also changed this ' + ;

 'record. Do you want to overwrite their changes (Yes), ' + ;

 'not overwrite but see their changes (No), or cancel ' + ;

 'your changes (Cancel)?', 3 + 16, 'Problem Saving Record!')

 do case

* Overwrite their changes.

 case lnChoice = 6

 = tableupdate(.F., .T.)

* See the changes: bring up another instance of the form.

 case lnChoice = 7

 do form MYFORM name oName

* Cancel the changes.

 otherwise

 = tablerevert()

 endcase

* No conflict, so force the update.

else

 = tableupdate(.F., .T.)

endif llConflict

Writing a Buffered Table

As we saw earlier, tableupdate(.T.) attempts to write all records in a table buffer to disk. As with the row

buffered version, it will return .F. if it couldn’t update a record because another user changed it (among other

reasons).

The error trapping routine we saw earlier works fine for row buffering, since we’re only concerned with a single

record at a time. However, with table buffering, we have to look at each record one at a time. Since we might have a

mixture of modified and unmodified records in the buffer, how do we know which records will be updated? To make

matters more complicated, if tableupdate(.T.) fails, we don’t know which record it failed on; some records may

have been saved and there could be more than one record in conflict.

The new getnextmodified() function will tell us exactly what we need to know: the record number for the next

modified record. If it returns 0, there are no more modified records in the buffer. This function accepts two

parameters: the first is the record number after which to search for the next modified records, and the second is the

alias or workarea to search in. Initially, you should pass 0 as the first parameter so getnextmodified() finds the

first modified record. To find the next one, pass the record number for the current record.

Here’s an example of the earlier conflict management routine, modified to handle table buffered changes when

tableupdate(.T.) fails:

* Find the first modified record, then process each one we find.

lnChanged = getnextmodified(0)

do while lnChanged <> 0

* Move to the record and try to lock it.

 go lnChanged

 if rlock()

* Check every field to see which ones have a conflict.

 llConflict = .F.

 for lnI = 1 to fcount()

 lcField = field(lnI)

 llOtherUser = oldval(lcField) <> curval(lcField)

 llThisUser = evaluate(lcField) <> oldval(lcField)

 llSameChange = evaluate(lcField) == curval(lcField)

 do case

* Another user edited this field but this user didn't, so grab the

* new value.

 case llOtherUser and not llThisUser

 replace (lcField) with curval(lcField)

* Another user didn't edit this field, or they both made the same

* change, so we don't need to do anything.

 case not llOtherUser or llSameChange

* Uh-oh, both users changed this field, but to different values.

 otherwise

 llConflict = .T.

 endcase

 next lnI

* If we have a conflict, handle it. If we don't, unlike the row buffering

* case, we don't do anything now since all records will be written later.

 if llConflict

 lnChoice = messagebox('Another user also changed ' + ;

 'record ' + ltrim(str(lnChanged)) + '. Do you want to ' + ;

 'overwrite their changes (Yes), not overwrite but see ' + ;

 'their changes (No), or cancel your changes (Cancel)?', 3 + 16, ;

 'Problem Saving Record!')

 do case

* Overwrite their changes: we don't actually need to do anything because we'll

* do them all later (this case is only here for clarity).

 case lnChoice = 6

* See the changes: bring up another instance of the form.

 case lnChoice = 7

 do form MYFORM name oName

* Cancel the changes in this record only.

 otherwise

 = tablerevert()

 unlock record lnChanged

 endcase

 endif llConflict

* We couldn't lock the record, so cancel the changes to this record only.

 else

 = messagebox("Sorry, we couldn't save record #" + ltrim(str(lnChanged)))

 = tablerevert()

 unlock record lnChanged

 endif rlock()

* Find the next modified record and process it.

 lnChanged = getnextmodified(lnChanged)

enddo while lnChanged <> 0

* Since we reverted any changes where we found a conflict and the user wanted

* to cancel their own changes, let's force the remainder of the updates.

= tableupdate(.T., .T.)

If a table has changes in a table buffer that haven’t been written out to disk and you attempt to close the table or

change the buffering mode, you’ll get an error (#1545): “Table buffer for alias <Alias> contains uncommitted

changes”.

Transactions

As we’ve seen, table buffering is a convenient way to buffer a number of changes to a table and then write or

abandon those changes all at once. However, there’s one flaw with this approach—what happens if one of the

records in the buffer is locked or has been edited by another user? In this case, tableupdate(.T.) will return .F.

and the error trapping routine can be called. The problem: some records were saved and some weren’t. Now you

have a fairly complicated mess on your hands if you need to back out those changes already made.

Here’s an example of such a problem: you go to the bank to transfer money from your savings account to your

checking account. The account update program reduces your savings account balance by the appropriate amount,

then tries to increase your checking account balance by the same amount. The program might look something like

this:

seek M.ACCOUNT1

replace BALANCE with BALANCE - M.AMOUNT

seek M.ACCOUNT2

replace BALANCE with BALANCE + M.AMOUNT

llSuccess = tableupdate(.T.)

if not llSuccess

 do ERROR_ROUTINE

endif not llSuccess

In the meantime, an automated check clearing program has been processing your checking account, and has reduced

its balance by the total of several checks. The program detects the conflict and decides to abandon the update by

issuing tablerevert(.T.). However, since the savings account was successfully updated, its change is no longer

in the buffer, and therefore it stays changed. Now the bank has an “out-of-balance” situation that will be difficult to

track down, and one very angry customer when you get your bank statement at the end of the month.

Fortunately, VFP provides a mechanism that can resolve this problem: the transaction. A transaction is a specific

group of changes that must either all be made at once or all abandoned. A transaction is started with the begin

transaction command. Any table changes after this command has been issued, even those made with

tableupdate(), are not written to the disk until an end transaction command is encountered. Think of a

transaction as a “buffer’s buffer”. The transaction is held until you determine all changes could be made successfully

and issue an end transaction. If the program crashes or the computer is rebooted before end transaction is

encountered, or if your program issues a rollback command because one of the changes couldn’t be made

successfully, none of the changes are actually written to disk.

Let’s look at the bank update example but this time use a transaction as a “wrapper” for the update:

begin transaction

seek M.ACCOUNT1

replace BALANCE with BALANCE - M.AMOUNT

seek M.ACCOUNT2

replace BALANCE with BALANCE + M.AMOUNT

llSuccess = tableupdate(.T.)

if llSuccess

 end transaction

else

 rollback

endif llSuccess

If the first account balance was changed but the second couldn’t be successfully, llSuccess will be .F., and the

rollback command will prevent the first change from being written to disk. If everything went OK, end

transaction will write out both changes at once.

Here are some other concepts regarding transactions:

 Transactions can only be used with tables attached to databases; free tables need not apply.

 Transactions apply to memo (FPT) and index (CDX) files as well as to the DBF.

 Commands and functions that alter the database, the table, or the table’s indexes cannot be used during a

transaction. For example, issuing alter table, delete tag, index on, tablerevert(), or

close databases during a transaction will generate an error. See the VFP documentation for a

complete list of restricted commands.

 You can nest transactions up to five levels deep (“The good news: you no longer have just five read

levels. The bad news: ...” <g>). When an inner level transaction is completed, its changes are added to

the cache of changes for the next transaction level rather than being written to disk. Only when the final

end transaction is issued are all the changes written out. You can use the txnlevel() function to

determine the current transaction level.

 Unlike other VFP structured programming constructs (such as for/next or scan/endscan), begin

transaction, end transaction, and rollback don’t have to be located in the same program. You

could, for example, have a common routine for starting transactions and another one for ending them.

Transactions should be kept as short as possible, however, since any records being updated during a

transaction are completely unavailable to other users, even just for reading.

 Records automatically locked by VFP during a transaction are automatically unlocked when the

transaction is complete. Any locks you set manually are not automatically unlocked; you are responsible

for unlocking those records yourself. If you use unlock during a transaction, the record actually stays

locked until the transaction is done, at which time all specified records are unlocked.

 Although transactions give you as much protection as they can, it’s still possible a hardware failure or

server crash during the end transaction disk writes could cause data to be lost.

 Transactions only apply to local tables. Transactions for remote tables are controlled using the

sqlsetprop(), sqlcommit(), and sqlrollback() commands. Transaction processing with remote

tables is beyond the scope of this session.

Here’s another look at the “save” routine and the error trapping routine (in the error routine, code in the do while

loop isn’t shown since it’s the same as the previous version):

begin transaction

if tableupdate(.T.)

 end transaction

else

 rollback

 do ERROR_ROUTINE

endif tableupdate(.T.)

procedure ERROR_ROUTINE

* Do setup stuff here, including checking what happened. If we found error

* #1585, do the following code.

lnChanged = getnextmodified(0)

do while lnChanged <> 0

...

enddo while lnChanged <> 0

* Since we reverted any changes where we found a conflict and the user wanted

* to cancel their own changes, let's force the remainder of the updates and

* then unlock all the records we manually locked.

begin transaction

if tableupdate(.T., .T.)

 end transaction

* Some other error occurred now, so rollback the changes and display an

* appropriate error message (you could also try to handle it here if you

* wish).

else

 = aerror(laError)

 rollback

 = messagebox('Error #' + ltrim(str(laError[1])) + ': ' + laError[2] + ;

 ' occurred while saving.')

endif tableupdate(.T., .T.)

Other Issues

As we saw earlier, getfldstate() can be used to determine if anything in the current record has changed. This

allows you to create forms that no longer need a “edit” mode; the data in the form is always available for editing.

Each field’s InteractiveChange event could enable the “Save” and “Cancel” buttons only if the user actually changed

something using code similar to:

if getfldstate(-1) = replicate('1', fcount() + 1)

 * disable the buttons, since nothing's changed

else

 * enable the buttons

endif getfldstate(-1) = replicate('1', fcount() + 1)

To create a form without an edit mode, you also need to have code that handles the case when the user closes the

window, exits the application, or moves to another record (if row buffering is used). The QueryUnload event can

help with the first two; this event occurs when the user clicks in the form’s close box or quits the application. You

could put code in this event that saves the record before closing the form. In the case of moving the record pointer,

you’d modify your record navigation routines (first, last, next, previous, find, etc.) to check if any fields were

changed (and if so, save the record) before moving the record pointer. You would likely have one common method

in the form that does all this checking and saving, and call it whenever required.

A related issue to this is that getfldstate() might erroneously indicate that nothing has changed when in fact the

user changed the value in a field. This can happen if you provide a menu choice or tool bar button to save the record

or move the record pointer. VFP only copies the value in a control (such as a Textbox) to the record buffer when the

control loses focus. If the user changes the value in a field and then clicks the Next button in the tool bar, the

Textbox doesn’t lose focus (since tool bars never receive focus), so the new value isn’t copied to the record buffer

and VFP doesn’t know the data has changed. The solution to this problem is to force the current control’s value to be

copied to the buffer before using getfldstate() using code similar to the following in the tool bar button’s Click

method:

with _screen.ActiveForm.ActiveControl

 if type('.ControlSource') <> 'U' and not empty(.ControlSource) and ;

 not evaluate(.ControlSource) == .Value

 replace (.ControlSource) with .Value

 endif type('.ControlSource') <> 'U' ...

endwith

