
The Latest Techniques in
Deploying VFP Applications

Doug Hennig
Stonefield Software Inc.

Email: dhennig@stonefield.com
Corporate Web sites: www.stonefieldquery.com

and www.stonefieldsoftware.com
Personal Web site : www.DougHennig.com

Blog: DougHennig.BlogSpot.com
Twitter: DougHennig

Deployment of your application is easily as important as the rest of the development cycle
since it’s the first encounter your users have with the application. This document looks at
some new ideas for application deployment, including creating a workstation-only installer,
installing your application on a server without requiring a workstation installation (zero
footprint deployment), installing the .NET framework, and how to update your applications
over the Internet.

mailto:dhennig@stonefield.com
http://www.stonefieldquery.com/
www.stonefieldsoftware.com
http://www.doughennig.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 2 of 28

Introduction
Although it’s sometimes a last-minute consideration, deploying your application is an
extremely important part of the development process. After all, if the user can’t install your
software, you won’t get paid. The installer is often the first interaction the user has with
your software; if something goes wrong, it gives them a bad impression about the software
and your company in general. Also, problems during installation can be the cause of a lot of
technical support calls. So, creating the best possible installation experience for the user is
as important as creating the best possible application usage experience.

Application deployment is such a huge subject that books could be written on it, and in fact
have been. Deploying Visual FoxPro Solutions, by Rick Schummer, Rick Borup, and Jacci
Adams (available from Hentzenwerke, http://www.hentzenwerke.com), is the go-to book
for everything related to deploying VFP applications. Rather than covering all things
deployment related, this document focuses on some new techniques for deploying Visual
FoxPro applications. Specifically, we’ll look at:

• What files really need to be installed and where should they go.

• Why you should digitally sign your executable and your setup application.

• What’s involved in installing the application on a server and running it on a
workstation.

• What registration-free installation is and how to do it.

• Automating the deployment process.

• Installing the appropriate version of the .NET framework if your VFP application
uses .NET components.

• Automatically updating your application when a new version is released.

Before we begin, I should mention that I’ve been using Inno Setup to create installers for
applications for about a decade. Inno Setup is free, fast, lightweight, and uses text-based
scripts so it’s easy to work with and you can even generate scripts programmatically,
something I do frequently. For more information about Inno Setup, see my white paper
titled “Installing Applications Using Inno Setup,” available from the Technical Papers page
of my web site (http://doughennig.com/papers/default.html). This document uses Inno
Setup scripts to illustrate deployment concepts, but they’re equally applicable to your
installation tool of choice.

What really needs to be installed and where
For many years, VFP developers installed the VFP runtime files in the Windows System
folder because that’s what the old Setup Wizard did and we didn’t know any better.
However, as operating systems became more locked down and developers started running
into version conflicts when multiple applications using different runtimes files were
installed, we started refining the locations of the files, and even which files are really
needed.

http://www.hentzenwerke.com/
http://doughennig.com/papers/default.html

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 3 of 28

As an example of the latter point, until recently my setup executable used to install
ASycFilt.DLL, ComCat.DLL, OLEAut32.DLL, OLEPro32.DLL, StdOLE2.TLB, HH.EXE,
HHCtrl.OCX, ITIRCL.DLL, and ITSS.DLL. While these are all files that VFP applications need
to run, they’ve been core operating system files for a really long time so they can be
assumed to be present. Why did I install them then? Because I always had and hadn’t taken
a close look at what really needs to be installed and where.

Table 1 lists the files usually mentioned as required by a VFP application and where they
should be installed on a user’s system, such as at http://tinyurl.com/krc6fjf. (The list
doesn’t include the app files themselves or any ActiveX controls used by the application.) In
the Location column, “Win” means the Windows folder (usually C:\Windows), “Sys” means
the Windows system folder (usually C:\Windows\System32 on a 32-bit system and
C:\Windows\SysWOW64 on a 64-bit system), “Common” means the VFP common files
folder (usually C:\Program Files\Common Files\Microsoft Shared\VFP on a 32-bit system
and C:\Program Files (x86)\Common Files\Microsoft Shared\VFP on a 64-bit system), and
“App” means the application folder. In the Register column, Yes means this is a COM
component that needs to be registered using RegSvr32 as part of the installation process.

Table 1. Files installed as part of a VFP application installation.

File Location Purpose Register Required

MSVCR71.dll Sys Visual C++ runtime No Yes

GDIPlus.dll Sys GDI+ graphics support No Yes

VFP9R.dll Common VFP 9 runtime Yes Yes

VFP9T.dll Common VFP 9 runtime Yes If multithreaded DLL

VFP9REnu.dll Common VFP 9 English resource No Yes

VFP9R*.dll VFP 9 language resource
files (such as VFP9RDeu.dll
for German)

No If necessary

FoxHHelp9.exe Common VFP 9 help support Yes If CHM used

FoxHHelpPS9.dll Common VFP 9 help support Yes If CHM used

MSXML3.dll Sys XML support Yes If XMLTOCURSOR and
CURSORTOXML used

MSXML3R.dll Sys XML support No If XMLTOCURSOR and
CURSORTOXML used

MSXML4.dll Sys XML support Yes If XMLAdapter used

MSXML4R.dll Sys XML support No If XMLAdapter used

ReportBuilder.app App Report designer No If MODIFY REPORT
used

ReportPreview.app App Report preview No If REPORT FORM
PREVIEW used

ReportOutput.app App Report output No If REPORT FORM used

Let’s look at this list critically. First, it turns out that you don’t actually need to install
MSXML3*.* since those files have been part of the operating system since Windows XP and
I’m going to assume that’s the oldest operating system we’ll support. If you must support
older systems such as Windows 2000 and you use CURSORTOXML() or XMLTOCURSOR()
in your application, feel free to install these files.

http://tinyurl.com/krc6fjf

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 4 of 28

Second, as noted in the table, MSXML4 is only required if you use the XMLAdapter class; if
you don’t, you can skip those files.

Next, let’s look at the VFP runtime files. You don’t need VFP9T.DLL unless your application
includes a multi-threaded COM server, so you may be able to drop that from the list. Also, it
turns out you can install the runtimes in the application folder rather than the Common
folder, and in that case, you don’t have to register them. Why would you want to do that?
After all, putting them in the Common folder means any VFP application can use them,
saving on disk space. First, disk space is cheap these days and the VFP runtimes don’t take
up a lot of room: less than 6 MB. Second, as hard as it is to believe, there are still lots of
developers out there using a variety of VFP 9 runtimes: the original release, SP1, SP2, and
the SP2 patches. If your application uses the features of the latest SP2 build and the user
installs another VFP application that overwrites the runtimes in the Common folder with
the original release version, your application breaks. Also, what if the user uninstalls the
other application and part of that process removes the VFP 9 runtimes? That shouldn’t
happen but you can’t guarantee what their uninstaller does. That also kills your application.
So, putting the VFP 9 runtimes in the application folder removes the requirement to
register the files and protects you from version-itis or uninstalled runtimes.

It also turns out that you can put MSVCR71.DLL and GDIPlus.DLL in the application folder,
and I think you should for the same reasons outlined above.

The FoxHHelp*.* files should be installed in a common location because FoxHHelp9.EXE
has to be registered so it can’t be in an application-specific folder if more than one VFP
application is installed. However, in testing, it turns out that FoxHHelpPS9.DLL doesn’t
have to be registered.

Listing 1 shows the contents of a text file named VFPCoreFiles.txt that can be #INCLUDEd
in an Inno Setup script to install the core set of VFP 9 runtime files every VFP application
needs. To this set of files, you can add MSXML4*.* if your application uses XMLAdapter,
MSXML3*.* if your application uses CURSORTOXML() or XMLTOCURSOR() and needs to
run on Windows 2000 or earlier, VFP9T.DLL if you have any multi-threaded COM servers,
Report*.APP depending on your reporting needs, and any of the VFP9R resource DLLs
beside the English one. You can also remove the FoxHHelp*.* files and the [Run] section if
your application doesn’t use CHM-based help.

Listing 1. VFPCoreFiles.txt specifies the core set of runtime file every VFP application needs.

[Files]
Source: "{#VFPCoreFiles}\msvcr71.dll"; DestDir: "{app}";
 Flags: ignoreversion
Source: "{#VFPCoreFiles}\gdiplus.dll"; DestDir: "{app}";
 Flags: ignoreversion
Source: "{#VFPCoreFiles}\vfp9r.dll"; DestDir: "{app}";
 Flags: ignoreversion
Source: "{#VFPCoreFiles}\vfp9renu.dll"; DestDir: "{app}";
 Flags: ignoreversion
Source: "{#VFPCoreFiles}\foxhhelp9.exe"; DestDir: "{cf}\Microsoft Shared\VFP";

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 5 of 28

 Flags: sharedfile uninsneveruninstall
Source: "{#VFPCoreFiles}\foxhhelpps9.dll"; DestDir: "{cf}\Microsoft Shared\VFP";
 Flags: sharedfile uninsneveruninstall

[Run]
Filename: "{cf}\Microsoft Shared\VFP\foxhhelp9.exe"; Parameters: /regserver

If you don’t have them handy, you can download VFP runtimes from Christof Wollenhaupt’s
web site: http://www.foxpert.com/runtime.htm.

Related to the question of where files should go is where should your application be
installed. Because security changes starting with Windows Vista made it impossible to
write to the program folder without elevating to administrator, some developers whose
applications store their data files in the program folder think the solution is to install the
application somewhere other than C:\Program Files (x86), such as C:\MyApplication.
Unfortunately, doing that opens a security hole on your customer’s machine: since the
application folder is writable, malware can easily infect the EXE and DLL files in that folder,
and now you get to explain to your customer why you did that to their system. The correct
solution is to install the program where Microsoft says programs should go—in
C:\Program Files (x86)—and fix the application so it doesn’t need to write to that folder,
such as storing the data somewhere else.

The setup executable
Not unreasonably, users expect application installation to be smooth and error-free. Inno
Setup makes it easy to create such an installer with features such as:

• Allowing them to choose the program group and folder to install the application in. I
don’t know about you but I hate installers that don’t allow me to choose both the
drive and the folder as I usually install applications on my D: drive.

• Displaying a license agreement and any special notes or instructions the user needs
to be aware of.

• Optionally creating a desktop icon and optionally running the application after
installation is complete.

• Displaying the correct information for the application in the Add or Remove
Programs dialog.

Listing 2 is the content of MyApp.ISS, an Inno Setup script for an application named MyApp
included with the sample files for this document.

Listing 2. MyApp.ISS is an Inno Setup script to create an installer for a simple application.

; These two lines go in every installer.
#define VFPCoreFiles "..\..\Runtimes"
#include VFPCoreFiles + "\VFPCoreFiles.txt"

; Define the location of the application files.
#define AppFiles "..\"

http://www.foxpert.com/runtime.htm

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 6 of 28

; Define the application name, executable, company, copyright, etc.
#define MyAppRoot "myapp"
#define MyApplication MyAppRoot + ".exe"
#define MyHelp MyAppRoot + ".chm"
#define MyAppName "My Application"
#define MyAppID MyAppName
#define MyURL "http://www.stonefieldquery.com"
#define MyVersion GetFileVersion(MyApplication)
#define MyCompany "Stonefield Software Inc."
#define MyCopyright "Copyright © 2014 Stonefield Software Inc. All rights
 reserved."

[Setup]
AppName={#MyAppName}
AppID={#MyAppID}
AppVerName={#MyAppName}
AppVersion={#MyVersion}
AppPublisher={#MyCompany}
AppPublisherURL={#MyURL}
AppSupportURL={#MyURL}
AppUpdatesURL={#MyURL}
AppendDefaultDirName=no
DefaultDirName={pf}\{#MyAppName}
DefaultGroupName={#MyAppName}
DisableProgramGroupPage=false
LicenseFile=eula.rtf
Compression=lzma
SolidCompression=true
PrivilegesRequired=admin
UninstallDisplayIcon={#AppFiles}Source\myapp.ico
OutputBaseFilename=setup
AppCopyright={#MyCopyright}
VersionInfoDescription={#MyAppName} Setup
VersionInfoVersion={#MyVersion}
VersionInfoTextVersion={#MyVersion}
VersionInfoCompany={#MyCompany}
VersionInfoCopyright={#MyCopyright}
ShowLanguageDialog=yes
WizardImageFile=InstallLogo.bmp
WizardSmallImageFile=compiler:WizModernSmallImage-IS.bmp
InfoBeforeFile=beforefile.rtf

[Tasks]
Name: desktopicon; Description: Create a &desktop icon; GroupDescription: Icons

[Files]
Source: "{#AppFiles}\{#MyApplication}"; DestDir: "{app}"; Flags: ignoreversion
Source: "{#AppFiles}\{#MyHelp}"; DestDir: "{app}"; Flags: ignoreversion
Source: "{#AppFiles}\ComServer.dll"; DestDir: "{app}"; Flags: ignoreversion
 regserver

; Needed because we're using the TreeView control.
Source: "{#VFPCoreFiles}\MSComCtl.ocx"; DestDir: "{sys}"; Flags: onlyifdoesntexist
 sharedfile regserver noregerror

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 7 of 28

; Needed because we're using XMLAdapter.
Source: "{#VFPCoreFiles}\MSXML4.dll"; DestDir: "{sys}"; Flags: onlyifdoesntexist
 sharedfile regserver noregerror
Source: "{#VFPCoreFiles}\MSXML4R.dll"; DestDir: "{sys}"; Flags: onlyifdoesntexist
 sharedfile

; Needed because we have a multi-threaded DLL.
Source: "{#VFPCoreFiles}\VFP9T.dll"; DestDir: "{app}"; Flags: ignoreversion

[Icons]
Name: "{group}\{#MyAppName}"; Filename:
 "{app}\{#MyApplication}"; WorkingDir: "{app}"
Name: "{group}\{#MyAppName} Help"; Filename: "{app}\{#MyHelp}"
Name: "{group}\{cm:UninstallProgram,{#MyAppName}}"; Filename: "{uninstallexe}"
Name: "{commondesktop}\{#MyAppName}"; Filename:
 "{app}\{#MyApplication}"; WorkingDir: "{app}"; Tasks: desktopicon

[Run]
Filename: "{app}\{#MyApplication}"; Description: "{cm:LaunchProgram,{#MyAppName}}";
 Flags: nowait postinstall skipifsilent

Here are some things to note about this script:

• It’s as generic as possible. Note the use of #DEFINEs to define those things that
change from application to application. That means that other than the [Files]
section, most of this script can be reused for other applications by changing the
#DEFINE statements as necessary.

• This script expects a directory structure in which the installer-related files
(BeforeFile.rtf, EULA.rtf, InstallLogo.bmp, and MyApp.ISS) are in a subdirectory of
the folder containing the application files. Figure 1 shows the directory structure
for the samples accompanying this application (there are actually additional folders,
but they’re left out of this image for simplicity). The MyApp folder contains all of the
application files (EXE, DLL, CHM, etc.) plus the PJX files. Source contains the source
code for the EXE and DLL and HTMLHelp contains the source for the CHM. Installer
contains the installer-related files.

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 8 of 28

Figure 1. The installer script expects a directory structure with the installer-related files in a subdirectory of
the application files.

• The setup executable created by this script displays a custom image on the first page
of the wizard (the WizardImageFile setting), a license agreement on the second page
(the LicenseFile setting), information about the application (the InfoBeforeFile
setting), allows the user to choose where to install the program, allows them to
choose the program group, has an option to create a desktop icon (the Tasks section
and last item in the Icon section), includes an option to run the application after
installation is complete (the item in the Run section), and creates shortcuts for the
application, its help file, and the uninstaller in the program group (the first three
items in the Icons section).

• The AppPublisher, AppSupportURL, and AppUpdatesURL settings allow the Add or
Remove Programs dialog to display the correct information for the application as
shown in Figure 2.

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 9 of 28

Figure 2. The settings in MyApp.ISS ensure the correct information about the application is displayed.

• The setup installs the files shown in Figure 3 in the application folder. In addition to
these files, it installs and registers MSComCtl.OCX and MSXML4*.* in the Windows
system folder and registers those files as well as ComServer.DLL in the application
folder.

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 10 of 28

Figure 3. The file installed by the setup executable created by MyApp.ISS.

• If you instantiate an ActiveX control programmatically (that is, using
CREATEOBJECT) rather than dropping it on a form, you may run into a licensing
issue. For example, the ActiveX controls that ship with VFP, such as the TreeView
and Date and Time Picker controls, require a license. Fortunately, there’s a simple
way to deal with this, at least with the Microsoft controls: install the license as part
of the installation process. Add the following to the ISS file to install the license for
the controls in MSComCtl.OCX:

 [Registry]
 ; License for MSCOMCTL.OCX classes
 Root: HKCR; Subkey: "Licenses\ED4B87C4-9F76-11D1-8BF7-0000F8754DA1";
 ValueType: string; ValueData: "knlggnmntgggrninthpgmnngrhqhnnjnslsh"

The net result is a professional installer with all of the features expected by users.

Well, almost all. Figure 4 shows what happens when we install it on Windows Vista and
later (in this case, Windows 7). (The left image appears when the installer is run from a
remote location.) The “unknown publisher” message doesn’t exactly inspire confidence. To
make those go away, we need to digitally sign our setup executable.

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 11 of 28

Figure 4. Running Setup.EXE results in these “unknown publisher” dialogs.

Digital signatures
Wikipedia defines a digital signature as “a mathematical scheme for demonstrating the
authenticity of a digital message or document. A valid digital signature gives a recipient
reason to believe that the message was created by a known sender, such that the sender
cannot deny having sent the message (authentication and non-repudiation) and that the
message was not altered in transit (integrity).” One white paper I found useful for
understanding digital signatures is “Securing Your Private Keys as Best Practice for Code
Signing Certificates” by Larry Seltzer, http://tinyurl.com/nu35py3.

You apply a digital signature to something using a certificate generated by a trusted
authority. There are numerous certificate authorities you can deal with: DigiCert (which
recently took over Symantec’s certificate business; Symantec owned VeriSign, Thawte, and
GeoTrust), Comodo, GoDaddy, and others. To obtain a certificate from one of these
companies, you contact the company and provide them the information they require to
confirm that you are who you say you are. This means a time-consuming process of
jumping through numerous hoops, such as providing incorporation documentation, but it’s
for a good reason and you only have to do it once. You then purchase the type of certificate
you need. In the case of signing Windows executables, it’s a Microsoft Authenticode
certificate. Certificates aren’t cheap; for example, Thawte charges $499 US for a two-year
certificate.

Once you’ve purchased the certificate, you’ll likely get an email with a link to download the
certificate into the certificate store on your machine. Normally, you’ll want the certificate in
file form to make signing easier, so you need to get it out of the certificate store after you’ve
downloaded it. To do so, do the following:

• Start the Certificate Manager snap-in by running CertMgr.msc.

• The downloaded certificate is in the Personal\Certificates section. Right-click the
certificate and select All Tasks, Export to bring up the Certificate Export Wizard.

• In the Export Private Key step, choose Yes, export the private key.

http://tinyurl.com/nu35py3

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 12 of 28

• In the Export File Format step, Personal Information Exchange (.PFX) is already
selected; turn on the Export all extended properties options.

• In the Security step, turn on Password and enter a password.

• In the File to Export step, enter the name of the PFX file to create.

You can then use SignTool to sign EXEs using the PFX file. SignTool comes with Microsoft
Visual Studio and the Microsoft Windows SDK. If you don’t have Visual Studio, you can
download the SDK from Microsoft’s web site; search Microsoft.com for “download
Windows SDK” to find the appropriate download page. You can typically find SignTool.exe
in C:\Program Files\Microsoft SDKs\Windows\v7.1a\Bin (the version number may be
different depending on what version of the SDK you download and it may be in C:\Program
Files (x86) instead). Here’s an example of a command to sign an EXE:

"C:\Program Files\Microsoft SDKs\Windows\v7.1a\Bin\signtool.exe" sign
 /fd SHA256 /tr timestampServer /td SHA256
 /f certificatePath /p password /d "description" fileToSign

where timestampServer is the URL to your certificate provider’s timestamp server so the
certificate can be timestamped (see your provider’s documentation), certificatePath is the
path to the PFX file, password is the password for the PFX, description is the description for
the digital signature, and fileToSign is the path to the EXE to sign. Remember to add quotes
around any path containing spaces.

It’s actually even easier than that to sign the installer generated by Inno Setup. You can do
it one of two ways:

• In the Inno Setup Compiler, choose Configure Sign Tools from the Tools menu, click
Add, specify a name (I use “Standard”), and enter something like the following for
the command:

 C:\Program Files\Microsoft SDKs\Windows\v7.1A\Bin\signtool.exe sign
 /fd SHA256 /tr timestampServer /td SHA256
 /f certificatePath /p password $p

Note there are no quotes in the path and that $p is a placeholder for the SignTool
parameters specified in the [Setup] section. Then add the following to the [Setup]
section of your ISS file:

 SignedUninstaller=yes
 SignTool=Standard /d $q{#MyAppName}$q $f

$q is a special symbol meaning insert a quote (you can’t use actual quotes here) and
$f is a placeholder for the name of the file to be signed. This assumes you have a
constant defined for MyAppName. If not, use whatever you wish for the description.

• If you compile your ISS file using the Inno command line compiler, pass the
following parameter to the compiler:

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 13 of 28

 "/sStandard=C:\Program Files\Microsoft SDKs\Windows\v7.1A\Bin\ signtool.exe
 sign /fd SHA256 /tr timestampServer /td SHA256
 /f certificatePath /p password"

Be sure to put the certificate in a path with no spaces in any of the folder names or you’ll
get unhelpful error messages when you build the setup.

Figure 5 shows the results when running a digitally signed installer.

Figure 5. These dialogs appear when running a digitally signed installer.

Running the application on a workstation
Often applications are installed on a file server and run on workstations from the server
folder. With a simple VFP application, it’s possible to do that without installing anything on
the workstation. For example, the main form in the sample MyApp.EXE that comes with the
file accompanying this document works just fine in that case. However, there are several
gotchas for this type of setup:

• If the application uses any ActiveX controls or COM servers, they have to be
registered on the workstation. Registering them on the server isn’t good enough.

• CHM-based help doesn’t appear properly due to Window security for remote CHM
files (Figure 6).

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 14 of 28

Figure 6. CHM-based help doesn’t appear properly when the CHM is on a remote machine.

• The XMLAdapter class can’t be used if MSXML4 isn’t installed and registered on the
workstation.

• The user has to manually create a shortcut to the application’s executable on the
server.

The workaround for these issues is to create a workstation installer. This installer is
installed by the main installer on the file server along with the other application files. To
use the application on a workstation, the user navigates Windows Explorer to the server
folder and runs the workstation installer (WSSetup.EXE). This installer does the following:

• Installs and registers any ActiveX controls or COM servers used by the application.

• Adds to the Windows Registry the values necessary to allow CHM files located on a
file server to display properly on a workstation; see http://tinyurl.com/3798vq for
details.

• Creates shortcuts in a program group.

• Optionally creates a shortcut on their desktop to the main executable on the file
server.

Listing 3 shows the script for WSSetup.ISS, a mostly generic workstation installer.
WSSetup reads the application and executable names from Setup.INI, which is installed
(along with WSSetup.EXE generated by WSSetup.ISS) as part of the full installer. It assumes
the help file is the same name as the main executable but with a CHM extension. To create a
workstation installer specific for an application, edit the [Files] section of WSSetup.ISS.

http://tinyurl.com/3798vq

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 15 of 28

Listing 3. WSSetup.ISS is a mostly generic workstation installer.

; Define the location of the runtime files.
#define VFPCoreFiles "..\..\Runtimes"

; Define the location of the application files.
#define AppFiles "..\"

[Setup]
OutputBaseFilename=WSSetup
OutputDir=.

AppName={code:GetAppName}
AppVerName={code:GetAppName}
AppVersion={code:GetAppVersion}
AppendDefaultDirName=no
DefaultDirName={pf}\{code:GetAppName}
UsePreviousAppDir=no
DefaultGroupName={code:GetAppName}
Compression=lzma
SolidCompression=true
PrivilegesRequired=admin
VersionInfoDescription=Workstation Installer
; VersionInfoProductName and VersionInfoProductTextVersion are just here to avoid
; compiler warnings
VersionInfoProductName=.
VersionInfoProductTextVersion=.
UsePreviousLanguage=no
SignTool=Standard /d $qWorkstation Installer$q $f

[Messages]
WelcomeLabel2=This setup will install the necessary runtime files on your
computer.%n%nIt is recommended that you close all other applications before
continuing.
FinishedLabel=Setup has finished the workstation-only install on your computer. The
application may be launched by running one of the installed icons.
SelectTasksLabel2=Select any additional tasks that you would like to perform during
setup.
ReadyLabel1=Setup is now ready to begin the workstation-only install on your
computer.

[Tasks]
Name: desktopicon; Description: Create a &desktop icon; GroupDescription: Icons

[Code]
var
 SourceDirectoryPage: TOutputMsgWizardPage ;

function GetEXEName(Dummy: String): String;
begin
 Result := GetINIString('Setup', 'EXEName', '', ExpandConstant('{src}') +
 '\setup.ini') + '.exe';
end;

function GetCHMName(Dummy: String): String;

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 16 of 28

begin
 Result := GetINIString('Setup', 'EXEName', '', ExpandConstant('{src}') +
 '\setup.ini') + '.chm';
end;

function GetAppName(Dummy: String): String;
begin
 Result := GetINIString('Setup', 'AppName', '', ExpandConstant('{src}') +
 '\setup.ini');
end;

function GetAppVersion(Dummy: String): String;
var
 MyVersion: String;
begin
 GetVersionNumbersString(ExpandConstant('{src}') + '\' + GetEXEName(''), MyVersion);
 Result := MyVersion
end;

procedure InitializeWizard();
begin
 SourceDirectoryPage := CreateOutputMsgPage(wpInfoBefore,
 'Information', 'Setup will create a shortcut to the file listed below.',
 'Target Application: ' + ExpandConstant('{src}') + '\' + GetEXEName(''));
end;

function NextButtonClick(CurPageID: Integer): Boolean;
var
 bValidTarget: Boolean;

begin
 bValidTarget := true;
 if (CurPageID = SourceDirectoryPage.ID) and (FileExists(ExpandConstant('{src}') +
 '\' + GetEXEName('')) = false) then
 begin
 MsgBox('The application file does not exist in the ' + ExpandConstant('{src}') +
 ' directory. Please run this workstation-only setup file from the server
 directory where the program is already installed.', mbCriticalError, MB_OK);
 bValidTarget := false;
 end;
 Result := bValidTarget;
end;

[Files]
; This lists any ActiveX controls or COM servers that need to be registered to work.
Source: "{#VFPCoreFiles}\MSXML4.dll"; DestDir: "{sys}"; Flags: onlyifdoesntexist
 sharedfile regserver noregerror
Source: "{#VFPCoreFiles}\MSXML4R.dll"; DestDir: "{sys}"; Flags: onlyifdoesntexist
 sharedfile
Source: "{#VFPCoreFiles}\MSComCtl.ocx"; DestDir: "{sys}"; Flags: onlyifdoesntexist
 sharedfile regserver noregerror

; We need these files for CHM help to work.
Source: "{#VFPCoreFiles}\foxhhelp9.exe"; DestDir: "{cf}\Microsoft Shared\VFP";
 Flags: sharedfile uninsneveruninstall

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 17 of 28

Source: "{#VFPCoreFiles}\foxhhelpps9.dll"; DestDir: "{cf}\Microsoft Shared\VFP";
 Flags: sharedfile uninsneveruninstall

; A VFP COM server needs to be installed and registered locally, but that requires
; the VFP 9 runtimes too.
Source: "{#VFPCoreFiles}\MSVCR71.dll"; DestDir: "{pf}\My Application";
 Flags: ignoreversion deleteafterinstall
Source: "{#VFPCoreFiles}\VFP9R.dll"; DestDir: "{pf}\My Application";
 Flags: ignoreversion
Source: "{#VFPCoreFiles}\VFP9T.dll"; DestDir: "{pf}\My Application";
 Flags: ignoreversion
Source: "{#VFPCoreFiles}\VFP9REnu.dll"; DestDir: "{pf}\My Application";
 Flags: ignoreversion
Source: "{#AppFiles}COMServer.dll"; DestDir: "{pf}\My Application";
 Flags: ignoreversion regserver

[Registry]
; These keys allow remote CHM files to be viewed properly.
Root: HKLM; Subkey: "SOFTWARE\Microsoft\HTMLHelp\1.x\ItssRestrictions";
 ValueType: dword; ValueName: "MaxAllowedZone"; ValueData: 3
Root: HKLM; Subkey: "SOFTWARE\Wow6432Node\Microsoft\HTMLHelp\1.x\ItssRestrictions";
 ValueType: dword; ValueName: "MaxAllowedZone"; ValueData: 3

[Run]
Filename: "{src}\{code:GetEXEName}"; Description: "{cm:LaunchProgram,application}";
 Flags: nowait postinstall skipifsilent

[Icons]
Name: "{group}\{code:GetAppName}"; Filename: "{src}\{code:GetEXEName}";
 WorkingDir: "{src}"
Name: "{group}\{code:GetAppName} Help"; Filename: "{src}\{code:GetCHMName}"
Name: "{commondesktop}\{code:GetAppName}"; Filename: "{src}\{code:GetEXEName}";
 WorkingDir: "{src}"; Tasks: desktopicon

The following line in the [Files] section of the main installer’s ISS file installs the
WSSetup.EXE generated by WSSetup.ISS into the application’s folder:

; This is the workstation installer.
Source: "WSSetup.exe"; DestDir: "{app}"; Flags: ignoreversion

The following lines generate the Setup.INI used by WSSetup.EXE:

; Generate SETUP.INI so the workstation installer has information it needs
[INI]
Filename: "{app}\Setup.ini"; Section: "Setup"; Key: "AppName";
 String: "{#MyAppName}"
Filename: "{app}\Setup.ini"; Section: "Setup"; Key: "EXEName";
 String: "{#MyApplication}"
Filename: "{app}\Setup.ini"; Section: "Setup"; Key: "Company";
 String: "{#MyCompany}"

Keeping the footprint on the workstation as light as possible has the benefit that when a
new version of the application is installed, you may not have to update anything on the

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 18 of 28

workstation at all. Only if the ActiveX controls or COM servers have changed would the user
need to re-run WSSetup.EXE.

Registration-free installations
The two main things WSSetup.EXE does are update the Windows Registry so a remote CHM
file is displayed properly and install and register the ActiveX controls and COM servers
used by the application. If we could somehow deal with those two issues differently, there’d
be nothing to do on the workstation at all except creating a shortcut to the application on
the server.

We can deal with the help issue by using actual HTML help rather a CHM file. West Wind
HTML Help Builder, the tool I’ve used for over a decade to create help files for my
applications, can generate both CHM and HTML-based help. The latter is handy for posting
the documentation on a web site but we can also use it to resolve the remote CHM issue: we
can include both the CHM file and the HTML files when the application is installed and use
whichever one is appropriate. When the CHM file is local, use it; otherwise, use the HTML
files.

A West Wind HTML Help Builder source file is a VFP table with an HBP extension. Although
you could deploy the entire table, all we really need is the mapping from the help ID to the
name of the HTML file for that topic. The following code creates a table named Help.dbf
included in the PJX for MyApp:

select helpid, pk from myapp into table source\help
index on helpid tag helpid

The code shown in Listing 4, taken from ShowHelp.PRG, displays either the specified help
topic in the application’s CHM file or the appropriate HTML file for that topic. To make it
generic, it uses a global variable named plUseHTMLHelp to determine whether CHM or
HTML help is used; in this example, that variable is set to .T. in Main.PRG if the application’s
help file doesn’t exist. To use it, put something like ShowHelp(Thisform.HelpContextID)
into the Click method of a help button. Because this code launches the browser with the
specified help file, there’s no security issue with the CHM file.

Listing 4. ShowHelp.PRG displays either the specified topic in the CHM file or the HTML file for that topic.

lparameters tnTopic
local lcTopic

* If we're supposed to use HTML help, open the Help mapping table if necessary,
* look up the specified ID, and get the topic to display. Use ShellExecute to
* display the help file.

if plUseHTMLHelp
 if not used('HELP')
 use HELP in 0 shared again
 endif not used('HELP')
 if seek(tnTopic, 'HELP', 'HELPID')
 lcTopic = trim(HELP.PK) + '.htm'

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 19 of 28

 else
 lcTopic = ''
 endif seek(tnTopic, 'HELP', 'HELPID')
 declare integer ShellExecute in SHELL32.DLL ;
 integer nWinHandle, ; && handle of parent window
 string cOperation, ; && operation to perform
 string cFileName, ; && filename
 string cParameters, ; && parameters for the executable
 string cDirectory, ; && default directory
 integer nShowWindow && window state

* This is how you display a particular topic in a CHM file without needing
* FoxHHelp. However, due to Windows security, that won't work on a remote system.

* ShellExecute(0, '', 'hh.exe', 'mk:@MSITStore:' + set('HELP', 1) + ;
 '::' + lcTopic, '', 1)

* Let's display the HTML help files generated by West Wind HTML Help Builder.
* You can, of course, specify "http://url" instead of "file://file" if the
* files are on a web site.

 ShellExecute(0, 'open', 'iexplore', 'file://' + ;
 fullpath('htmlhelp\index.htm') + '?page=' + lcTopic, '', 1)

* We're using CHM help so display the specified topic.

else
 help id tnTopic
endif plUseHTMLHelp

The second issue, ActiveX controls and COM servers, is trickier. Because of the way COM
works, VFP expects to look in the Windows Registry to find out where an ActiveX control or
COM server is located. Since we want a zero-footprint install, we want to avoid having to
register the control. There’s actually another reason why a registration-free installation is a
good thing: version-itis. There can only be one file registered with a particular ClsID (class
ID) value in the Windows Registry. If your application needs one version of the file and
another application needs a different one, and they have the same ClsID, one of you will be
unhappy. However, if your application can find the files it needs without looking in the
Windows Registry, that issue goes away and the application always uses the correct file.

It turns out that there’s a way to get VFP to not look in the Windows Registry for an ActiveX
control or COM server. There are several articles online that discuss how to do this:

• Rick Strahl’s “Custom Manifest Files in Visual FoxPro EXEs,”
http://tinyurl.com/pvbzdg8

• Craig Boyd’s “PE Files, UAC, Reg-Free COM, and Other Crazy Stuff - Part 2,”
http://tinyurl.com/l6esm9m

• DBI Technologies’ “How to Implement Reg Free COM,” http://tinyurl.com/m55ayey

http://tinyurl.com/pvbzdg8
http://tinyurl.com/l6esm9m
http://tinyurl.com/m55ayey

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 20 of 28

• “Registration-Free Activation of COM Components: A Walkthrough” by Steve White,
http://tinyurl.com/yg5czbl (this isn’t VFP-specific but discusses registration-free
COM in general).

The mechanism discussed in all of these involves using a manifest file. A manifest file can
do a number of things for your application, such as telling Windows that it should
automatically elevate to administrator when running the application, but the thing we’re
interested in is specifying which ActiveX controls and COM servers the application uses so
they don’t have to be registered.

The bottom line is that you create an XML file named MyApplication.exe.manifest, where
MyApplication is the name of your executable, and put it in the same folder as the PJX file
for your application. When you build the executable, this manifest file is embedded in the
EXE rather than the one that VFP would normally generate.

Listing 5 is an example of a manifest file.

Listing 5. A manifest file.

<?xml version="1.0" encoding="utf-8"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1"
 manifestVersion="1.0">
 <assemblyIdentity name="myapp.exe"
 version="1.0.0.0"
 processorArchitecture="x86"
 type="win32" />
 <file name="comserver.dll">
 <comClass clsid="{A0EB9AED-CEAA-41DF-A471-FD3C63FA1214}"
 threadingModel="Apartment"
 progid="comserver.comserver" />
 </file>
 <file name="msxml4.dll">
 <comClass clsid="{88D969C0-F192-11D4-A65F-0040963251E5}"
 threadingModel="Both"
 progid="Msxml2.DOMDocument.4.0" />
 </file>
 <file name="mscomctl.ocx">
 <comClass clsid="{C74190B6-8589-11D1-B16A-00C0F0283628}" />
 threadingModel="Apartment"
 progid="MSComctlLib.TreeCtrl" />
 </file>
</assembly>

The name attribute of the assemblyIdentity element contains the name of your executable.
The file elements contain information about ActiveX controls or COM servers. You can have
as many file elements as you need. The name attribute is the name of the file containing the
control; this file, and any of its dependencies, should be in the program folder.
COMServer.DLL contains the VFP COM server our sample application uses, MSComCtl.OCX
contains the TreeView control, and MSXML4.DLL contains the MS XML 4 DOM class that
XMLAdapter needs.

http://tinyurl.com/yg5czbl

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 21 of 28

Inside the file element is the comClass element specifying the ActiveX control or COM
server used in the application. If you use more than one class from the file, use as many
comClass elements as you need. The clsid attribute is the class ID. You can get that by
searching the Windows Registry for the class name. For example, the class name of the
TreeView control is MSComctlLib.TreeCtrl (you can see that if you drop a TreeView control
on a form and look at the OleClass property in the Properties window). The
threadingModel attribute is the threading model used by the class. To get that, search the
Windows Registry for the class ID and look for the ThreadingModel setting in one of the
subnodes of the found node. If you don’t know the name of the file containing the ActiveX
control, you can get it from the InProcServer32 subnode. The progid attribute contains the
class name.

Since nothing is registered on the workstation, you’ll have to use HTML help or some other
form of help instead of a CHM file.

The only difference in the Inno Setup script for a regular installation and a registration-free
one is that everything, including ActiveX controls and COM server, is installed in the
application folder and HTML help files are included as well.

The MyApp folder in the files accompanying this document contains the manifest file for
the sample application, myapp.exe.manifest. To test this in a registration-free environment,
do the following:

• Build MyApp.EXE from the MyApp project.

• Create a folder to hold the deployment files. For example, I created a folder named
MyApplication.

• Copy the application executable, any supporting files (data and otherwise), the VFP
runtimes, and any ActiveX and COM server files into that folder.

• On another system connected to this system (such as another system on the
network or a virtual machine), navigate Windows Explorer to the deployment folder
and run MyApp.EXE.

While testing this, I ran into a few issues:

• A VFP COM server works best if built as a multi-threaded DLL, which means the
folder must contain VFP9T.DLL. If you build it as an EXE, you’ll get an error when
you instantiate the COM object. If you build it as a single-threaded DLL, instantiating
the COM object creates another DLL, ComServerR1.DLL; see
http://tinyurl.com/kywdynw for the reason. In that case, the program folder needs
to be writable or you’ll get an error because that DLL can’t be created. Since it’s a
bad idea to make the program folder writable, it’s best to just use a multi-threaded
DLL.

• Although the TreeView control worked fine in a Windows XP client, clicking it
caused a C5 error in Windows 7. I found a lead to a solution at

http://tinyurl.com/kywdynw

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 22 of 28

http://tinyurl.com/qzu5t68: setting the AutoActivate property of the control to 3-
Automatic. The weird thing about this solution is that AutoActivate appears in the
VFP help but not in the Properties window or IntelliSense, and it crashes in
Windows XP unless you surround it with a TRY structure.

This technique takes a bit of work to get right—using the proper settings in the manifest
and architecting things like help differently—but it also means you could put a complex
VFP application on a memory stick and it’d work on any workstation you put it into.

Automating the build process
Deployment is often a complex job involving many steps. If any of those steps are forgotten
or done incorrectly, the user may end up with a faulty installer. That leads to extra support
work and even mistrust of your abilities. Getting this part of the application lifecycle right is
crucial.

I use a carefully crafted checklist to make sure I do all of the steps necessary to deploy my
applications. As they got more complicated, the list got longer and longer and therefore
more likely to be error-prone. Automating as many tasks as possible helps to ensure the
deployment process is both accurate and efficient.

Many of the tasks involved in deployment involve files: copying, moving, deleting, creating,
changing, digitally signing, and so on. Sounds like a perfect job for Windows PowerShell.

BuildSetup.PS1 (Listing 6), included with the sample files accompanying this document,
signs the main executable for the sample application (MyApp.EXE), builds the WSSetup.EXE
installer, and then builds Setup.EXE.

Listing 6. BuildSetup.PS1 helps automate the deployment process.

Taken from http://stackoverflow.com/questions/495618/how-to-normalize-a-path-in-
powershell
function Get-AbsolutePath($Path)
{
 $Path = [System.IO.Path]::Combine(((pwd).Path), ($Path));
 $Path = [System.IO.Path]::GetFullPath($Path);
 return $Path;
}

Find the location of Signtool.
$regEntry = Get-ItemProperty –Path
 "Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SDKs\Windows\v7.1A"
$value = $regEntry.'InstallationFolder'
$file = $value + "Bin\signtool.exe"
$signTool = Get-ChildItem $file

Get the password for the certificate.
$password = Get-Content ..\..\DontDeploy\certpw.txt
$parms = 'sign', '/f', "$(Get-AbsolutePath('..\..\DontDeploy\mycert.pfx'))", '/p',
 $password

http://tinyurl.com/qzu5t68

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 23 of 28

Sign the exe.
$signParms = $parms + '/d', 'My Application', '..\myapp.exe'
& $signTool $signParms

Find the location of the Inno Setup compiler.
$regEntry = Get-ItemProperty –Path
 Registry::HKEY_CLASSES_ROOT\InnoSetupScriptFile\Shell\Compile\Command
$value = $regEntry.'(default)'
$file = $value.Substring(1, $value.IndexOf('"', 2) - 1)
$exe = Get-ChildItem $file
$innoCompiler = $exe.DirectoryName + "\iscc"

Build WSSetup.exe and Setup.exe
$signParms = "/sStandard=$signTool $parms $" + "p"
& $innoCompiler $signParms WSSetup.iss | Out-Null
& $innoCompiler $signParms MyAppSignedWithWS.iss

See my “Windows PowerShell: Batch Files on Steroids” white paper for a more extensive
script that, in addition to building the setup, uploads it to an FTP site.

You may also want to look at a VFPX tool called Automated Build
(http://tinyurl.com/npa95pp). It’s an extension to another tool called CruiseControl.NET
that allows you to create a build server for VFP applications. I haven’t tried it but it’s
discussed in detail in the book “VFPX: Open Source Treasure for the VFP Developer,”
available from http://www.foxrockx.com/GetVFPX.htm.

Installing the .NET framework
Since we’re VFP developers, why would we care whether the .NET framework is installed
on the user’s machine or not? One very good reason is wwDotNetBridge. wwDotNetBridge
is a free utility from Rick Strahl that makes calling .NET code from VFP easy. It provides a
simple way to add new features to your VFP applications by leveraging the power of the
.NET framework. I discussed wwDotNetBridge in detail in a white paper called “Calling
.NET Code from VFP the Easy Way” you can download from my web site
(http://doughennig.com/papers/default.html).

Obviously, wwDotNetBridge requires that .NET be installed on the user’s system. Suppose
you want to use a feature in .NET 4 but you don’t know whether that version of the
framework is installed or not, and certainly don’t want to explain to the user how to install
it. Instead, we want to make installing the correct version of the .NET framework as
seamless as installing any other component.

DotNet2Install.ISS and DotNet45Install.ISS are two very similar Inno Setup scripts. They
check whether .NET 2 or 4.5, respectively, is installed and if not, download the installer
from the Microsoft web site and run it. They use ISXDL.DLL, included with the download
accompanying this document, to perform the .NET download. To use either of these scripts,
#INCLUDE it in your application’s ISS file.

http://tinyurl.com/npa95pp
http://www.foxrockx.com/GetVFPX.htm
http://doughennig.com/papers/default.html

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 24 of 28

Automatically updating your application
Some applications detect when a newer version is available and give the user the option to
download and install the new version. One technique for doing this is discussed in Rick
Strahl’s white paper “Automatic Code Updates for Visual FoxPro Applications”
(http://tinyurl.com/3grdvt7). Unfortunately, it doesn’t work in Windows Vista and later
because the application can’t write to the Program Files folder so the new version can’t be
installed; it fails with an “access denied” error. One solution to this is to have the user run
the application as administrator (right-click its icon and choose Run as Administrator) so it
has the privileges necessary to write to Program Files or ask the user to manually
download and install the update. However, I think that’s asking a lot of the user.

Here’s the mechanism we use:

• A function in the application checks whether a newer version is available by
downloading a file containing version information from our web server. We use Rick
Strahl’s wwFTP, which is part of West Wind Web Connection and West Wind Client
Tools, for file download. You can use a different FTP library if you wish but
unfortunately not Craig Boyd’s free VFPConnection.FLL
(http://tinyurl.com/333d4b5) because it doesn’t support passive FTP which is
required to function properly on Windows Server 2008 and later.

• If a newer version is available, we inform the user and ask them if they want to
download it. If so, we download it to a writable folder. We use the user’s temporary
files folder, which you can get from SYS(2023).

• Since you can’t write to the folder the application is running from without
administrative rights and even if you could, you can’t overwrite the running EXE,
you can’t copy the updated version to the program folder. Instead, we launch an
updater application using “RunAs” with ShellExecute. That brings up the User
Access Control (UAC) dialog, so before doing so, we display a message box informing
the user what’s about to happen if they’re running in Windows Vista or later. After
using ShellExecute, we terminate the current application so it isn’t running
anymore.

• The updater application copies the update files into the program folder. It can do
that because it has administrative rights and there’s no problem overwriting the
other files since they aren’t running. Obviously, you can’t use this mechanism to
overwrite the updater application itself or the VFP runtimes, since they’re in use,
but any other files can be updated.

• After the copying is done, the updater launches the main application and terminates
itself.

The effect of this mechanism is that when the user checks for a newer version, it’s
downloaded, the main application closes for a moment, and then the new version opens.
The nice thing about this mechanism is that it works on older and newer versions of
Windows, doesn’t require the user to manually download and install anything, and doesn’t

http://tinyurl.com/3grdvt7
http://tinyurl.com/333d4b5

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 25 of 28

require the application to be run with administrative rights like I’ve seen other applications
require.

The source code for all of this except wwFTP.PRG (because that’s part of West Wind’s
commercial tools) is included with this document. Here’s how to use this in your own
applications:

• Copy CheckUpdate.EXE and UpdateApp.EXE into the application folder.
CheckUpdate.EXE checks for an updated version and UpdateApp.EXE is the program
that does the actually copying of files into the program folder. Note that
UpdateApp.EXE should be digitally signed because otherwise the UAC dialog
displays “unknown publisher” when that EXE is run.

• If the files to be downloaded are zipped, also copy VFPCompression.FLL (Craig
Boyd’s free zipping tool for VFP) into the folder.

• Create a file named Files.XML (you can give it a different name if you wish; pass the
name to CheckUpdate as described below) with content like the following:

<update>
<version>Version number of update</version>
<minversion>The minimum version number that can be updated</minversion>
<text>Information as formatted HTML for the user about the update e.g. new
features
</text>
<files>
<file minversion="The minimum version number that can be updated"
maxversion="The maximum version number that can be updated">File name</file>
...
</files>
</update>

• The minversion element allows you to specify the minimum version that can be
upgraded using this mechanism. If the user has a version older than the minimum,
they’ll have to download the current installer for the application manually.

• The minversion and maxversion attributes for files allow you to provide different
update mechanisms for different versions. For example, suppose version 1.0 is the
original application, version 1.1 uses a new ActiveX control, and version 1.2 just has
some minor new features. To upgrade from version 1.0 to 1.2 requires installing and
registering the new ActiveX control, which is best left to an installer, so if the user is
at 1.0, we’ll download and run Setup.EXE to install version 1.2. However, to upgrade
from version 1.1 to 1.2 just needs a new application EXE, so we’ll download and
copy MyApp.EXE into the application folder. The following content for Files.xml
specifies that:

<update>
<version>1.2</version>
<minversion>1.0</minversion>
<text><base target="_blank">
<p>My Application Version
1.2</p>

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 26 of 28

There are several new features in this release. Yada yada.

</text>
<files>
<file minversion="1.0" maxversion="1.0">setup.exe</file>
<file minversion="1.1">myapp.exe</file>
</files>
</update>

• Three types of files are supported in the list of files. If there’s only one file to
download and it’s an EXE file containing “setup” or “update” in the name, that file is
executed. For example, because of the minversion and maxversion attributes in the
listing above, if the user is running version 1.0, only Setup.EXE is downloaded. If the
file has a ZIP extension, its contents are extracted in the application folder.
Otherwise, the file is simply copied into the application folder.

• Upload Files.XML and any files listed in it to the appropriate folder on the FTP site
used for updates.

• To check if a new version is available, use code like this in your application:

do CheckUpdate with main EXE path, Registry key, FTP URL, user name, ;
 password, 'files.xml', .T. to always check

The parameters are:

• The full path to the main executable for the application. This is the EXE that is re-run
after an update is installed. You can either hard-code it or use something like
_vfp.ServerName to make it generic.

• A key for the Windows Registry where the date of the last time an update check was
done and the number of days to wait between checks (the default is 1) is stored. If
you want to change these values, update the LastUpdate and UpdateDays values in
the desired key.

• The URL for the FTP site where update files can be downloaded from, including the
folder where the files are located, such as www.mysite.com/Updates.

• The user name and password for the FTP site.

• The name of the file to download containing update information.

• .F. to only check for an update if a check was not done recently and to not display a
“connecting to site” dialog (typically used when this code is executed as part of
application startup) or .T. to always check and to display such a dialog (usually the
case when called from a Check for Updates menu item).

Listing 7 shows the code in CheckForUpdate.PRG, which is called from the main program
for the sample application that accompanies this document.

Listing 7. CheckForUpdate.PRG calls CheckUpdate.EXE to see if an update is available.

lparameters tlForceCheck

http://www.mysite.com/Updates

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 27 of 28

lcSettings = filetostr('..\DontDeploy\Update.txt')
alines(laSettings, lcSettings)
lcKey = 'Software\My Application'
do CheckUpdate with _vfp.ServerName, lcKey, laSettings[1], laSettings[2], ;
 laSettings[3], 'files.xml', tlForceCheck

Summary
Given how important deployment is in the application lifecycle, planning for deployment
needs to part of the overall development process. This document describes several
techniques for deployment that you may not have considered before so hopefully you can
use some of these ideas, or even code, in your own application efforts.

Biography
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-
winning Stonefield Database Toolkit (SDT); the award-winning Stonefield Query; the
MemberData Editor, Anchor Editor, and CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My namespace and updated Upsizing Wizard in
Sedna.

Doug is co-author of VFPX: Open Source Treasure for the VFP Developer, Making Sense of
Sedna and SP2, the What’s New in Visual FoxPro series, Visual FoxPro Best Practices For The
Next Ten Years, and The Hacker’s Guide to Visual FoxPro 7.0. He was the technical editor of
The Hacker’s Guide to Visual FoxPro 6.0 and The Fundamentals. All of these books are from
Hentzenwerke Publishing (http://www.hentzenwerke.com). He wrote over 100 articles in
10 years for FoxTalk and has written numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the annual Southwest Fox and Southwest Xbase++ conferences
(http://www.swfox.net). He is one of the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was a Microsoft Most Valuable
Professional (MVP) from 1996 through 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award (http://tinyurl.com/ygnk73h).

http://www.hentzenwerke.com/
http://www.foxrockx.com/
http://www.swfox.net/
http://vfpx.codeplex.com/
http://tinyurl.com/ygnk73h

The Latest Techniques in Deploying VFP Applications

Copyright 2014, Doug Hennig Page 28 of 28

http://www.hentzenwerke.com/catalog/hackfox7.htm
http://www.hentzenwerke.com/catalog/newin7.htm
http://www.hentzenwerke.com/catalog/wnvfp8.htm
http://www.hentzenwerke.com/catalog/wnvfp9.htm
http://www.hentzenwerke.com/catalog/vfpbp10.htm
http://www.hentzenwerke.com/catalog/makingsos.htm
http://www.stonefieldquery.com/sdt.html
http://www.stonefieldquery.com
http://vfpx.codeplex.com/
http://www.swfox.net
http://www.foxrockx.com/seite.htm

