
Calling .NET Code from VFP the Easy Way  20
th

 European Visual FoxPro DevCon 2013 

© 2013 Doug Hennig (Group .NET) E-CALL • 1 

 

Session E-CALL 

Calling .NET Code from VFP the 
Easy Way 

Doug Hennig 
Stonefield Software Inc. 

Email: dhennig@stonefield.com 
Corporate Web site: www.stonefieldquery.com 

Personal Web site : www.DougHennig.com 
Blog: DougHennig.BlogSpot.com 

Twitter: DougHennig 
 

Overview 
At the German DevCon 2011, Doug’s “Creating ActiveX Controls for VFP Using .NET” session showed how to 

create .NET components that can be used in Visual FoxPro applications. However, these types of controls suffer 

from a couple of issues: they have to be registered for COM on the customer’s system and there are limitations 

in working with .NET Interop in VFP that prevent many things from working correctly. This session shows how 

Rick Strahl’s wwDotNetBridge eliminates these issues and provides some practical examples of how this tool 

can be used in your applications. 

mailto:dhennig@stonefield.com
http://www.stonefieldquery.com/
http://www.doughennig.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig


20th
 European Visual FoxPro DevCon 2013  Calling .NET Code from VFP the Easy Way 

2 • E-CALL  (Group .NET) © 2013 Doug Hennig 

Introduction 
The Microsoft .NET framework has a lot of powerful features that aren’t available in VFP. For example, dealing 

with Web Services is really ugly from VFP but is simple in .NET. .NET also provides access to most operating 

system functions, including functions added in newer version of the OS. While these functions are also available 

using the Win32 API, many of them can’t be called from VFP because they require callbacks and other features 

VFP doesn’t support, and accessing this functions via .NET is easier anyway. 

Fortunately, there are various mechanisms that allow you to access .NET code from VFP applications. For 

example, at the German DevCon 2011, my “Creating ActiveX Controls for VFP Using .NET” session showed 

how to create .NET components that can be used in VFP applications. However, these types of controls suffer 

from a couple of issues: they have to be registered for COM on the customer’s system and there are limitations 

in working with .NET Interop in VFP that prevent many things from working correctly. 

Recently, Rick Strahl released an open source project called wwDotNetBridge. You can read about this project 

on his blog (http://tinyurl.com/cgj63yk). wwDotNetBridge provides an easy way to call .NET code from VFP. It 

eliminates all of the COM issues because it loads the .NET runtime host into VFP and runs the .NET code from 

there. I strongly recommend reading Rick’s blog post and white paper to learn more about wwDotNetBridge and 

how it works. 

.NET COM interop 
Let’s start with an overview of how .NET supports COM interoperability. .NET components by default can’t be 

accessed from a COM client, but you can turn this on by adding some attributes to the .NET class and registering 

the resulting DLL using the RegAsm.exe utility that comes with the .NET framework. RegAsm is like 

RegSvr32, which you may know is used to register COM objects, but is used to register .NET assemblies for 

COM.) Of course, this means you need access to the source code for the .NET component, which is fine if it was 

written in-house but won’t be the case for a native .NET class or a third-party component. 

Let’s create a simple class to see how .NET COM interop works. Start Microsoft Visual Studio (VS) as an 

administrator; if you don’t, you’ll get an error later when VS tries to register the component we’ll build as a 

COM object. Create a new project and choose the “Class Library” template from the C# templates. Let’s call the 

project “InteropSample.” Put the code shown in Listing 1 into the default Class1.cs. 

Listing 1. The code for Class1.cs. 

using System.Collections.Generic; 

using System.Runtime.InteropServices; 

using System.Linq; 

  

namespace InteropSample 

{ 

    [ComVisible(true)] 

    [ClassInterface(ClassInterfaceType.AutoDual)] 

    public class Class1 

    { 

        public string HelloWorld(string name) 

        { 

            return "Hello, " + name; 

        } 

    } 

} 

 

Although we could manually use RegAsm to register this class as a COM component, there’s an easier way. 

Select the project in the Solution Explorer, right-click, and choose Properties. In the Build page, turn on 

“Register for COM interop” (Figure 1). Of course, this only works on your system; you have to use RegAsm to 

register it on another machine. 

http://tinyurl.com/cgj63yk


Calling .NET Code from VFP the Easy Way  20
th

 European Visual FoxPro DevCon 2013 

© 2013 Doug Hennig (Group .NET) E-CALL • 3 

 
Figure 1. Turn on "Register for COM interop" to automatically register the control on your system. 

Build a DLL by choosing Build Solution from the Build menu. 

Let’s try it out. Start VFP and type the following in the Command window: 

loClass = createobject('InteropSample.Class1') 

messagebox(loClass.HelloWorld('Doug')) 

 

You should see “Hello, Doug” in a window. Pretty easy, right? Let’s take a look at a more complicated example. 

Add the code in Listing 2 to the Class1 class and the code in Listing 3 to the end of Class1.cs (before the final 

closing curly brace). 

Listing 2. Add this code to the existing code in the Class1 class. 

public List<Person> People = new List<Person>(); 

  

public Person AddPerson(string firstName, string lastName) 

{ 

 Person person = new Person(); 

 person.FirstName = firstName; 

 person.LastName = lastName; 

 People.Add(person); 

 return person; 

} 

 

public Person GetPerson(string lastName) 

{ 

 Person person = People.Where(p => p.LastName == lastName) 

  .FirstOrDefault(); 

 return person; 

} 

 

Listing 3. Add this code to the end of Class1.cs. 

[ComVisible(true)] 

[ClassInterface(ClassInterfaceType.AutoDual)] 

public class Person 

{ 

 public string FirstName { get; set; } 



20th
 European Visual FoxPro DevCon 2013  Calling .NET Code from VFP the Easy Way 

4 • E-CALL  (Group .NET) © 2013 Doug Hennig 

 public string LastName { get; set; } 

} 

 

Close VFP; we need to do that when we make changes and rebuild our .NET project because VFP holds a 

reference to the COM object which prevents the build from succeeding. Build the solution, then start VFP and 

type the following in the Command window: 

loClass = createobject('InteropSample.Class1') 

loClass.AddPerson('Doug', 'Hennig') 

loClass.AddPerson('Rick', 'Schummer') 

loClass.AddPerson('Tamar', 'Granor') 

loPerson = loClass.GetPerson('Granor') 

messagebox(loPerson.FirstName + ' ' + loPerson.LastName) 

 

Everything is still working as expected. Now try this: 

messagebox(loClass.People.Count) 

 

First, notice that although there’s a People member of Class1, it doesn’t show up in VFP IntelliSense. Second, 

you’ll get an OLE “Not enough storage is available to complete this operation” error when you execute this 

command. The reason for both of those is that People is of type List<Person>, which is a .NET generic type. 

Generics aren’t available to COM clients. That’s a huge limitation because generics are used a lot in .NET 

classes. 

Here are some other commonly-used .NET things that aren’t available through COM interop: 

 Value types 

 Structures 

 Enumerations (also known as “enums”) 

 Static methods and properties 

 Guids 

 

There are other problems as well. 

 Arrays are marshaled by value into VFP as VFP arrays rather than .NET arrays, so they lose some 

functionality and changes to the array aren’t reflected back in the .NET copy. 

 COM doesn’t support constructors (like the Init of a VFP class) that accept parameters. 

 

Fortunately, these are all issues wwDotNetBridge can easily handle for us. Let’s check it out. 

Getting wwDotNetBridge 
The first thing to do is download wwDotNetBridge from GitHub: http://tinyurl.com/ce9trsm. If you’re using Git 

(open source version control software), you can clone the repository. Otherwise, just click the “Download ZIP” 

button on that page to download wwDotnetBridge-master.ZIP. Unzip this file to access all of the source code or 

just pull out the following files from the Distribution folder: 

 ClrHost.DLL 

 wwDotNetBridge.DLL 

 wwDotNetBridge.PRG 

 

Note that since wwDotNetBridge.DLL is downloaded, you’ll likely have to unblock it to prevent an “unable to 

load Clr instance” error when using wwDotNetBridge. Right-click the DLL, choose Properties, and click the 

Unblock button shown in Figure 2. 

http://tinyurl.com/ce9trsm


Calling .NET Code from VFP the Easy Way  20
th

 European Visual FoxPro DevCon 2013 

© 2013 Doug Hennig (Group .NET) E-CALL • 5 

 

Figure 2. Unblock wwDotNetBridge.DLL to prevent errors when using it. 

Using wwDotNetBridge 
Start by instantiating the wwDotNetBridge wrapper class using code like: 

loBridge = newobject('wwDotNetBridge', 'wwDotNetBridge.prg', '', 'V4') 

 

The last parameter tells wwDotNetBridge which version of the .NET runtime to load. By default, it loads version 

2.0; this example specifies version 4.0. Note that you can only load one version at a time and it can’t be unloaded 

without exiting VFP. That’s why Rick recommends instantiating wwDotNetBridge into a global variable in your 

applications and using that global variable everywhere you want to use wwDotNetBridge. 

The next thing you’ll likely do is load a custom .NET assembly (you don’t have to do this if you’re going to call 

code in the .NET base library) and instantiate a .NET class. For example, this code loads the InteropSample 

assembly we were working with earlier and instantiates the Class1 class which lives in the InteropSample 

namespace: 

loBridge.LoadAssembly('InteropSample.dll') 

loClass = loBridge.CreateInstance('InteropSample.Class1') 

 

Note that you need to specify the correct path for the DLL (for example, 

“InteropSample\InteropSample\bin\Debug\InteropSample.dll” if the current folder is the Samples folder included 

with the sample files for this document) and you should check the lError and cErrorMsg properties of 

wwDotNetBridge to ensure everything worked. 

Now you can access properties and call methods of the .NET class. The following code is the same as we used 

earlier: 

loClass.AddPerson('Doug', 'Hennig') 



20th
 European Visual FoxPro DevCon 2013  Calling .NET Code from VFP the Easy Way 

6 • E-CALL  (Group .NET) © 2013 Doug Hennig 

loClass.AddPerson('Rick', 'Schummer') 

loClass.AddPerson('Tamar', 'Granor') 

loPerson = loClass.GetPerson('Granor') 

messagebox(loPerson.FirstName + ' ' + loPerson.LastName) 

 

However, we still can’t access the People member without getting an error for the same reasons we saw earlier. 

In that case, use the GetPropertyEx method of wwDotNetBridge: 

loPeople = loBridge.GetPropertyEx(loClass, 'People') 

messagebox(loBridge.GetPropertyEx(loPeople, 'Count')) 

loPerson = loBridge.GetPropertyEx(loClass, 'People[1]') 

messagebox(loPerson.FirstName + ' ' + loPerson.LastName) 

 

Here’s another way to access People: convert it to an array by calling CreateArray and then FromEnumerable: 

loPeople = loBridge.CreateArray() 

loPeople.FromEnumerable(loClass.People) 

lcPeople = '' 

for lnI = 0 to loPeople.Count - 1 

 loPerson = loPeople.Item[lnI] 

 lcPeople = lcPeople + loPerson.FirstName + ' ' + ; 

  loPerson.LastName + chr(13) 

next lnI 

messagebox(lcPeople) 

 

To set the value of a property, call SetPropertyEx. For a static property, use GetStaticProperty and 

SetStaticProperty: 

loBridge.GetStaticProperty('MyNameSpace.MyClass', 'SomeProperty') 

loBridge.SetStaticProperty('MyNameSpace.MyClass', 'SomeProperty', ; 

 'SomeValue') 

 

To call a method that can’t be accessed directly, use InvokeMethod or InvokeStaticMethod: 

loBridge.InvokeMethod(loClass, 'SomeMethod') 

loBridge.InvokeStaticMethod('MyNameSpace.MyClass', 'SomeStaticMethod') 

 

For example, here’s a call to a static method that returns .T. if you’re connected to a network: 

llConnected = loBridge.InvokeStaticMethod( ; 

'System.Net.NetworkInformation.NetworkInterface', 

'GetIsNetworkAvailable') 

 

Note that no COM registration is required. To demonstrate this, quit VFP and comment out the two sets of COM 

attributes in Class1.cs: 

//[ComVisible(true)] 

//[ClassInterface(ClassInterfaceType.AutoDual)] 

public class Class1 

... 

//[ComVisible(true)] 

//[ClassInterface(ClassInterfaceType.AutoDual)] 

public class Person 

 

Build the solution again, start VFP, and type: 

loClass = createobject('InteropSample.Class1') 

 

You’ll get a “Class definition INTEROPSAMPLE.CLASS1 is not found” error. However, the wwDotNetBridge 

commands work just fine. This is actually a very important reason to use wwDotNetBridge; as I mentioned 

earlier, you can access just about any .NET component, whether in the .NET framework or a third-party 

assembly, without having to add COM attributes to the source code and rebuilding the component. It also makes 

deployment easier: no need to use RegAsm to register the assembly on another computer. 



Calling .NET Code from VFP the Easy Way  20
th

 European Visual FoxPro DevCon 2013 

© 2013 Doug Hennig (Group .NET) E-CALL • 7 

How wwDotNetBridge works 
wwDotNetBridge consists of the following components: 

 wwDotNetBridge.PRG: a program containing the wwDotNetBridge class. This class mostly wraps the 

methods in the .NET wwDotNetBridge class in wwDotNetBridge.DLL, but also loads the .NET runtime 

contained in ClrHost.dll. 

 wwDotNetBridge.DLL: a .NET DLL that handles all of the interop stuff. 

 ClrHost.DLL: a custom version of the .NET runtime host. 

 

The architecture of wwDotNetBridge is shown in Figure 3, an updated version of the diagram that appears in 

Rick’s documentation. 

 

Figure 3. The architecture of wwDotNetBridge. 

The first time you instantiate the wwDotNetBridge class in wwDotNetBridge.prg, it loads ClrHost. ClrHost 

loads wwDotNetBridge.dll, creates an instance of the wwDotNetBridge class in that DLL, and returns that 

instance to the calling code as a COM object, stored in the oDotNetBridge member of the VFP wwDotNetBridge 

class. When you call a method of the wwDotNetBridge wrapper class, such as GetPropertyEx, it calls an 

equivalent method of the .NET wwDotNetBridge to do the actual work. For example, the GetPropertyEx method 

has this simple code: 

FUNCTION GetPropertyEx(loInstance,lcProperty) 

RETURN this.oDotNetBridge.GetPropertyEx(loInstance, lcProperty) 

 

Your code may also call methods or access properties of a .NET object directly once you’ve created an instance 

of it using CreateInstance. 

Now that we covered the basics, let’s look at some practical examples. 

Example #1: sending email 
There are lots of ways to send email from VFP, all of them using external components since VFP doesn’t 

natively support that. However, not all of them support using Secure Sockets Layer, or SSL, or sending emails 



20th
 European Visual FoxPro DevCon 2013  Calling .NET Code from VFP the Easy Way 

8 • E-CALL  (Group .NET) © 2013 Doug Hennig 

formatted as HTML. Since .NET supports both of those, it’s an easy matter to use wwDotNetBridge to provide 

that capability to VFP. 

One of the examples in the Examples folder of the wwDotNetBridge downloads shows how to do this. Listing 4 

shows a simplified example. 

Listing 4. Sending an email is easy using wwDotNetBridge. 

loBridge = newobject('wwDotNetBridge', 'wwDotNetBridge.prg', '', 'V4') 

loBridge.LoadAssembly('InteropExamples.dll') 

loSmtp = loBridge.CreateInstance('Westwind.wwSmtp') 

 

loSmtp.MailServer  = 'myserver.server.net' 

loSmtp.UseSsl      = .T. 

loSmtp.Username    = 'itsme@whatever.com' 

loSmtp.Password    = 'mypassword' 

loSmtp.Recipient   = 'whoever@whereever.com' 

loSmtp.SenderEmail = 'itsme@whatever.com' 

loSmtp.Subject     = 'Email subject' 

loSmtp.Message     = 'Body of the message' 

 

loSmtp.SendMail() 

 

You can also call SendMailAsync to send the message asynchronously. See Rick’s documentation for examples 

of how to handle events in that case. 

To send an HTML-formatted message, set loSmtp.ContentType to “text/html” and Message to the HTML 

content. 

Example #2: XML processing 
While VFP is normally very fast at string handling, one thing that’s very slow is converting XML into a cursor, 

using either XMLToCursor() or the XMLAdapter class, when there are a lot of records in the XML. For 

example, People.XML, included with the samples files for this document, contains 64,000 names and addresses. 

It takes a whopping 995 seconds, or more than 16 minutes, to convert it to a VFP cursor using XMLToCursor(). 

(Run TestXMLToCursor.PRG to see for yourself.) Let’s see how wwDotNetBridge can help. 

One of the things I’ve learned over the past few years is that .NET’s XML parser is very fast. It just takes a few 

lines of code to read an XML file into a DataSet. If you aren’t familiar with a DataSet, it’s like an in-memory 

database consisting of one or more DataTables. Each DataTable has a Columns collection providing information 

about the columns, such as name, data type, and size, and a Rows collection that contains the actual data. 

wwDotNetBridge.PRG has a method called DataSetToCursors that takes a DataSet returned from some .NET 

code and converts it to one or more VFP cursors. However, in testing, I found it to be very slow as well. Looking 

at the code, it was obvious why: DataSetToCursors uses XMLAdapter, which is what we’re trying to get away 

from. 

I decided to try a different approach: have .NET read the XML into a DataSet and have the VFP code create a 

cursor with the same structure as the first DataTable in the DataSet (which we can get by going through the 

Columns collection) and fill the cursor with the contents of each object in the Rows collection. 

Listing 5 shows the code for the Samples class in Samples.CS. It has a single GetDataSetFromXML method 

that, when passed the filename for an XML file, reads that file into a DataSet and returns the DataSet. If 

something goes wrong, such as the XML not being suitable for a DataSet, ErrorMessage contains the text of the 

error. 

Listing 5. The Samples class loads an XML file into a DataSet. 

public class Samples 

{ 

  public string ErrorMessage { get; private set; } 

  

  public DataSet GetDataSetFromXML(string path) 

  { 

    DataSet ds = new DataSet(); 

    FileStream fsReadXml = new FileStream(path, FileMode.Open); 

    try 

    { 



Calling .NET Code from VFP the Easy Way  20
th

 European Visual FoxPro DevCon 2013 

© 2013 Doug Hennig (Group .NET) E-CALL • 9 

      ds.ReadXml(fsReadXml); 

    } 

    catch (Exception ex) 

    { 

      ErrorMessage = ex.Message; 

    } 

    finally 

    { 

      fsReadXml.Close(); 

    } 

    return ds; 

  } 

} 

 

Listing 6 shows the VFP code, taken from TestXML.PRG, that uses the C# class to do the conversion of the 

XML into a DataSet, then calls the CreateCursorFromDataTable function to use the approach I mentioned earlier 

to create a VFP cursor from the first DataTable in the DataSet. 

Listing 6. TestXML.PRG loads the DataSet returned from the .NET class into a cursor. 

local lnStart, ; 

  loBridge, ; 

  loFox, ; 

  loDS, ; 

  lnEnd1, ; 

  loTable, ; 

  lnEnd2 

 

* Save the starting time. 

 

lnStart = seconds() 

 

* Create the wwDotNetBridge object. 

 

loBridge = newobject('wwDotNetBridge', 'wwDotNetBridge.prg', '', 'V4') 

 

* Load our assembly and instantiate the Samples class. 

 

loBridge.LoadAssembly('Samples.dll') 

loFox = loBridge.CreateInstance('Samples.Samples') 

 

* Get a DataSet from the People.XML file, get the first table, and 

* convert it to a cursor. 

 

loDS    = loFox.GetDataSetFromXML('people.xml') 

lnEnd1  = seconds() 

loTable = loBridge.GetPropertyEx(loDS, 'Tables[0]') 

CreateCursorFromDataTable(loBridge, loTable, 'TEMP') 

 

* Display the elapsed time and browse the cursor. 

 

lnEnd2 = seconds() 

messagebox(transform(lnEnd1 - lnStart) + ' seconds to create a ' + ; 

  'DataSet from the XML and ' + transform(lnEnd2 - lnEnd1) + ; 

  ' seconds to create a cursor, for a total of ' + ; 

  transform(lnEnd2 - lnStart) + ' seconds.') 

browse 

 

 

function CreateCursorFromDataTable(toBridge, toTable, tcCursor, ; 

 tnRecords) 

lparameters toBridge, ; 

 toTable, ; 

 tcCursor, ; 

 tnRecords 



20th
 European Visual FoxPro DevCon 2013  Calling .NET Code from VFP the Easy Way 

10 • E-CALL  (Group .NET) © 2013 Doug Hennig 

local lnColumns, ; 

 lcCursor, ; 

 laColumns[1], ; 

 laMaxLength[1], ; 

 lnI, ; 

 loColumn, ; 

 lcColumnName, ; 

 lcDataType, ; 

 lcType, ; 

 lcAlias, ; 

 lnRecords, ; 

 lnRows, ; 

 loRow, ; 

 lnJ, ; 

 luValue 

 

* Figure out how many columns there are. 

 

lnColumns = toBridge.GetPropertyEx(toTable, 'Columns.Count') 

 

* Store each column name in an array and create a CREATE CURSOR 

* statement. 

 

lcCursor = '' 

dimension laColumns[lnColumns, 2], laMaxLength[lnColumns] 

laMaxLength = 0 

for lnI = 0 to lnColumns - 1 

 loColumn     = toBridge.GetPropertyEx(toTable, 'Columns[' + ; 

  transform(lnI) + ']') 

 lcColumnName = loColumn.ColumnName 

 lcDataType   = toBridge.GetPropertyEx(loColumn.DataType, 'Name') 

 do case 

  case inlist(lcDataType, 'Decimal', 'Double', 'Single') 

   lcType = 'B(8)' 

  case lcDataType = 'Boolean' 

   lcType = 'L' 

  case lcDataType = 'DateTime' 

   lcType = 'T' 

  case lcDataType = 'Int' 

   lcType = 'I' 

  case loColumn.MaxLength = -1 

   lcType = 'M' 

  otherwise 

   lcType = 'C (' + transform(loColumn.MaxLength) + ')' 

 endcase 

 lcCursor = lcCursor + iif(empty(lcCursor), '', ',') + ; 

  lcColumnName + ' ' + lcType + ' null' 

 laColumns[lnI + 1, 1] = lcColumnName 

 laColumns[lnI + 1, 2] = left(lcType, 1) 

 local &lcColumnName 

next lnI 

 

* Create the cursor. 

 

lcAlias  = sys(2015) 

lcCursor = 'create cursor ' + lcAlias + ' (' + lcCursor + ')' 

&lcCursor 

 

* Go through each row, get each column, and populate the cursor. 

 

lnRecords = evl(tnRecords, 9999999999) 

lnRows    = toBridge.GetPropertyEx(toTable, 'Rows.Count') 

for lnI = 0 to min(lnRows, lnRecords) - 1 

 loRow = toBridge.GetPropertyEx(toTable, 'Rows[' + transform(lnI) + ; 



Calling .NET Code from VFP the Easy Way  20
th

 European Visual FoxPro DevCon 2013 

© 2013 Doug Hennig (Group .NET) E-CALL • 11 

  ']') 

 for lnJ = 0 to lnColumns - 1 

  luValue = toBridge.GetPropertyEx(loRow, 'ItemArray[' + ; 

   transform(lnJ) + ']') 

  store luValue to (laColumns[lnJ + 1, 1]) 

  if vartype(luValue) = 'C' or laColumns[lnJ + 1, 2] $ 'CM' 

   luValue = transform(luValue) 

   laMaxLength[lnJ + 1] = max(laMaxLength[lnJ + 1], len(luValue)) 

  endif vartype(luValue) = 'C' ... 

 next lnJ 

 insert into (lcAlias) from memvar 

next lnI 

 

* Do a final select to get the correct column lengths. 

 

lcCursor = '' 

for lnI = 1 to alen(laColumns, 1) 

 lcColumnName = laColumns[lnI, 1] 

 lcType       = laColumns[lnI, 2] 

 if lcType $ 'CM' and laMaxLength[lnI] < 255 

  lcType = 'C (' + transform(max(laMaxLength[lnI], 1)) + ')' 

 endif lcType $ 'CM' ... 

 lcCursor = lcCursor + iif(empty(lcCursor), '', ',') + ; 

  lcColumnName + ' ' + lcType + ' null' 

next lnI 

lcCursor = 'create cursor ' + tcCursor + ' (' + lcCursor + ')' 

&lcCursor 

append from dbf(lcAlias) 

use in (lcAlias) 

go top 

return 

 

On my machine, this code takes just 1.6 seconds to load the XML into a DataSet and then 14.8 seconds to 

convert the first DataTable in the DataSet into a VFP cursor, for a total time of 16.4 seconds. That’s 60 times 

faster than using XMLToCursor()! I love taking out the slow parts to make my code faster! 

Example #3: file dialogs 
VFP developers have relied on GETFILE() and PUTFILE() for years to display file selection dialogs. However, 

these dialogs have several shortcomings: 

 You don’t have much control over them: you can specify the file extensions, the title bar caption, and a 

few other options, but these functions hide most of the settings available in the native Windows dialogs. 

For example, you can’t specify a starting folder or default filename for GETFILE(). 

 These functions return file names in upper-case rather than the case the user entered or the file actually 

uses. 

 GETFILE() returns only a single filename even though the native dialogs optionally support selecting 

multiple files. 

 

The most important issue, however, is that the dialogs displayed are from the Windows XP era and don’t support 

new features added in Windows Vista and later. Figure 4 shows the dialog presented by GETFILE(). Although 

this dialog does have a Recent Places button, it still looks like a dialog from an older operating system. 



20th
 European Visual FoxPro DevCon 2013  Calling .NET Code from VFP the Easy Way 

12 • E-CALL  (Group .NET) © 2013 Doug Hennig 

 
Figure 4. The VFP GETFILE() function is an older-looking dialog. 

As you can see in Figure 5, the Windows 7 open file dialog not only has a more modern interface, it has several 

features the older dialog doesn’t, including back and forward buttons, the “breadcrumb” folder control, and 

access to Windows Search. 

 
Figure 5. The Windows 7 open file dialog looks modern and has features the older dialog doesn’t. 

Again, wwDotNetBridge to the rescue. The Dialogs class in Samples.CS, shown in Listing 7, has a 

ShowOpenDialog method that sets the properties of the native file dialog based on properties of the class you 

can set, such as InitialDir and MultiSelect, displays the dialog, and returns the path of the selected file (multiple 

files are separated with carriage returns) or blank if the user clicked Cancel. 

Listing 7. The Dialogs class provides modern, native file dialogs. 

public class Dialogs 

{ 

  public string DefaultExt { get; set; } 

  public string FileName { get; set; } 

  public string InitialDir { get; set; } 

  public string Title { get; set; } 

  public string Filter { get; set; } 

  public int FilterIndex { get; set; } 

  public bool MultiSelect { get; set; } 

 

  public string ShowOpenDialog() 

  { 

    string fileName = ""; 



Calling .NET Code from VFP the Easy Way  20
th

 European Visual FoxPro DevCon 2013 

© 2013 Doug Hennig (Group .NET) E-CALL • 13 

    OpenFileDialog dialog = new OpenFileDialog(); 

    dialog.FileName = FileName; 

    dialog.DefaultExt = DefaultExt; 

    dialog.InitialDirectory = InitialDir; 

    dialog.Title = Title; 

    dialog.Filter = Filter; 

    dialog.FilterIndex = FilterIndex; 

    dialog.Multiselect = MultiSelect; 

  

    if (dialog.ShowDialog() == DialogResult.OK) 

    { 

    if (dialog.FileNames.Length > 0) 

    { 

      foreach (string file in dialog.FileNames) 

      { 

        fileName += file + "\n"; 

      } 

    } 

      else 

      { 

        fileName = dialog.FileName; 

      } 

    } 

    else 

    { 

      fileName = ""; 

    } 

    return fileName; 

  } 

} 

 

Listing 8 shows some VFP code, taken from TestOpenFile.PRG, which uses the Dialogs class. It sets the initial 

folder to the FFC\Graphics folder in the VFP home directory and turns on MultiSelect so you can select multiple 

files. 

Listing 8. TestOpenFile.prg uses Dialogs to display a file dialog. 

local loBridge, ; 

  loFox, ; 

  lcFile 

 

* Create the wwDotNetBridge object. 

 

loBridge = newobject('wwDotNetBridge', 'wwDotNetBridge.prg', '', 'V4') 

 

* Load our assembly and instantiate the Dialogs class. 

 

loBridge.LoadAssembly('Samples.dll') 

loFox = loBridge.CreateInstance('Samples.Dialogs') 

 

* Set the necessary properties, then display the dialog. 

 

loFox.FileName    = 'add.bmp' 

loFox.InitialDir  = home() + 'FFC\Graphics' 

loFox.Filter      = 'Image Files (*.bmp, *.jpg, *.gif)|*.bmp;*.jpg;' + ; 

    '*.gif|All files (*.*)|*.*' 

loFox.Title       = 'Select Image' 

loFox.MultiSelect = .T. 

lcFile            = loFox.ShowOpenDialog() 

if not empty(lcFile) 

  messagebox('You selected ' + lcFile) 

endif not empty(lcFile) 

 

The dialog displayed when you run this program is based on the operating system. Under Windows XP, it’ll look 

like an XP dialog. Under Windows 8, it’ll look like a Windows 8 dialog. 



20th
 European Visual FoxPro DevCon 2013  Calling .NET Code from VFP the Easy Way 

14 • E-CALL  (Group .NET) © 2013 Doug Hennig 

Example #4: writing to the Windows Event Log 
Although I prefer to log diagnostic information and errors to text and/or DBF files, some people like to log to the 

Windows Event Log, as system administrators are used to looking there for issues. Doing that from a VFP 

application is ugly because the Win32 API calls are messy. Using .NET via wwDotNetBridge, on the other hand, 

is very easy. The code in Listing 9, taken from WindowsEventLog.prg that accompanies this document, shows 

how to do it in just a few lines of code. 

Listing 9. wwDotNetBridge makes it easy to write to the Windows Event Log. 

local loBridge, ; 

 lcSource, ; 

 lcLogType, ; 

 lcClass, ; 

 loValue 

 

* Create the wwDotNetBridge object. 

 

loBridge = newobject('wwDotNetBridge', 'wwDotNetBridge.prg', '', 'V4') 

 

* Define the source and log types. 

 

lcSource  = 'MyApplication' 

lcLogType = 'Application' 

 

* Put the name of the .NET class we'll use into a variable so we don't 

* have to type it on every method call. 

 

lcClass = 'System.Diagnostics.EventLog' 

 

* See if the source already exists; create it if not. 

 

if not loBridge.InvokeStaticMethod(lcClass, 'SourceExists', lcSource) 

 loBridge.InvokeStaticMethod(lcClass, 'CreateEventSource', lcSource, ; 

  lcLogType) 

endif not loBridge.InvokeStaticMethod ... 

 

* Create an information message. 

 

loBridge.InvokeStaticMethod(lcClass, 'WriteEntry', lcSource, ; 

 'Some application event that I want to log') 

 

* For an error message, we need to use an enum. Normally we'd use this: 

 

*loValue = ; 

* loBridge.GetEnumValue('System.Diagnostics.EventLogEntryType.Error') 

 

* However, that doesn't work in this case due to the way WriteEntry 

* works, so we'll use this method instead. 

 

loValue = loBridge.CreateComValue() 

loValue.SetEnum('System.Diagnostics.EventLogEntryType.Error') 

loBridge.InvokeStaticMethod(lcClass, 'WriteEntry', lcSource, ; 

 'Error #1234 occurred', loValue, 4) 

 

* Display the last 10 logged events. 

 

loEventLog        = loBridge.CreateInstance(lcClass) 

loEventLog.Source = lcSource 

loEventLog.Log    = lcLogType 

loEvents          = loBridge.GetProperty(loEventLog, 'Entries') 

lcEvents          = '' 

for lnI = loEvents.Count - 1 to loEvents.Count - 10 step -1 

 loEvent  = loEvents.Item(lnI) 



Calling .NET Code from VFP the Easy Way  20
th

 European Visual FoxPro DevCon 2013 

© 2013 Doug Hennig (Group .NET) E-CALL • 15 

 lcEvents = lcEvents + transform(lnI) + ': ' + loEvent.Message + ; 

  chr(13) 

next lnI 

messagebox('There are ' + transform(loEvents.Count) + ' events:' + ; 

 chr(13) + chr(13) + lcEvents) 

 

This code calls static methods of the .NET System.Diagnostics.EventLog class. It starts by checking whether the 

event source, which is usually an application name or something equally descriptive, already exists or not; if not, 

it’s created using the specified type (Application, Security, or System; Application in this case). It then calls the 

WriteEntry method to write to the log. The first call to WriteEntry uses one of the overloads of that method: the 

one expecting the name of the source and the message. The second call uses a different overload: the one 

expecting the name of the source, the message, an enum representing the type of entry, and a user-defined event 

ID (4 in this case). Note the comment about how enums normally work but an alternative method that’s needed 

in this case. Figure 6 shows how the log entries appear in the Windows Event Viewer. 

 

Figure 6. The results of running WindowsEventLog.prg. 

To display the log entries, the code creates an instance of System.Diagnostics.EventLog and goes through the 

Entries collection. 

Example #5: starting and stopping processes 
The VFP RUN command allows you to run an external process but you don’t have much control over it. For 

example, it only supports running an EXE, so you can’t specify the name of a Microsoft Word document to have 

it open that document; you have to know the location of Word.exe and pass it the name of the document on the 

command line. Lots of developers like to use the Win32 API ShellExecute function because it does allow you to 

specify the name of a file to open that file in whatever application it’s associated with. However, again you don’t 

have a lot of control, such as the ability to kill the application once you’re done with it. 

.NET’s System.Diagnostics.Process class makes it easy to do as the code in Listing 10 illustrates. 

Listing 10. .NET makes it easy to start and stop a process. 

* Open a text file in Notepad. 

 

loBridge = newobject('wwDotNetBridge', 'wwDotNetBridge.prg', '', 'V4') 

loProcess = loBridge.CreateInstance('System.Diagnostics.Process') 

loBridge.InvokeMethod(loProcess, 'Start', 'text.txt') 

 

* Let the user tell use when to proceed. 

 

messagebox("Now we'll kill Notepad") 

 

* Find the process ID. 



20th
 European Visual FoxPro DevCon 2013  Calling .NET Code from VFP the Easy Way 

16 • E-CALL  (Group .NET) © 2013 Doug Hennig 

 

loProcesses = ; 

 loBridge.InvokeStaticMethod('System.Diagnostics.Process', ; 

 'GetProcesses') 

lnID        = -1 

for lnI = 0 to loProcesses.Count - 1 

 loProcess = loProcesses.Item(lnI) 

 if loProcess.ProcessName = 'notepad' 

  lnID = loProcess.ID 

  exit 

 endif loProcess.ProcessName = 'notepad' 

next lnI 

 

* If we found it, kill it. 

 

if lnID > -1 

 loProcess = ; 

  loBridge.InvokeStaticMethod('System.Diagnostics.Process', ; 

  'GetProcessById', lnID) 

 loProcess.Kill() 

endif lnID > -1 

 

* We can also do it this way, which has the advantage that we know the 

* process ID without having to look for it. 

 

loProcess = loBridge.InvokeStaticMethod(lcClass, 'Start', 'text.txt') 

messagebox("Now we'll kill Notepad") 

loProcess.Kill() 

Example #6: how I use wwDotNetBridge 
I use wwDotNetBridge extensively in an application called Stonefield Query Studio.NET. Studio.NET is a VFP 

application that manages a data dictionary and other configuration files for Stonefield Query.NET, a new .NET 

version of our Stonefield Query product. (Studio.NET is currently a VFP application rather than a .NET 

application because it was easier to convert our existing Studio application than to write one from scratch in 

.NET.) We decided to use properties and methods of .NET classes to read from and write to the configuration 

files rather than doing it directly in VFP for a variety of reasons: 

 The data dictionary is stored in a SQLite database. Although SQLite can be used from VFP, it requires 

installing an ODBC driver to do so. .NET doesn’t use ODBC to access SQLite; it uses an assembly to 

talk directly to the database instead. So, by using the .NET class we already have to access the database, 

that’s one less thing to install on the user’s system. 

 Some of the access logic uses business rules. For example, some information is encrypted so the 

encryption and decryption login already in the .NET classes would have to be duplicated in VFP. 

Another example: when a table is deleted, the .NET data dictionary code automatically deletes all fields 

and joins belonging to that table. That code too would have to be duplicated in VFP if the data 

dictionary was accessed directly. By using the existing .NET code, it’s a simple matter of calling the 

appropriate method. 

 Partway through development, we changed how the data dictionary is stored; we originally stored it in a 

set of XML files. If we’d accessed the data dictionary directly in VFP, we’d have to rewrite all of the 

access code twice: once in .NET and once in VFP. By using .NET methods for the access, we only had 

to rewrite the .NET portion; the method calls in the VFP code stayed the same. 

 

Our code makes extensive use of wwDotNetBridge’s GetPropertyEx, SetPropertyEx, and InvokeMethod to 

access properties and methods. In some cases, we added helper methods to the .NET code to work better in VFP. 

For example, there’s a table collection in the .NET data dictionary. Normally, a .NET client can use LINQ to get 

any set of tables it wants, such as just tables in a specific database or only those that the user can see 

(“reportable” tables). However, VFP can’t use LINQ so we created a GetItems method that accepts a set of 

parameters to filter the collection and returns an array of the tables matching the filter. Listing 11 shows the 

code for GetItems. 



Calling .NET Code from VFP the Easy Way  20
th

 European Visual FoxPro DevCon 2013 

© 2013 Doug Hennig (Group .NET) E-CALL • 17 

Listing 11. The .NET GetItems method returns an array of just those tables matching the specified filter 
conditions. 

public ITable[] GetItems(string database, bool reportableOnly,  

 string filter, string updated) 

{ 

 bool checkFilter = !String.IsNullOrWhiteSpace(filter); 

 string upperFilter = checkFilter ? filter.ToUpper() : ""; 

 DateTime testDate = String.IsNullOrWhiteSpace(updated) ?  

  DateTime.MinValue : DateTime.Parse(updated); 

 bool checkDB = !String.IsNullOrWhiteSpace(database); 

 var tables = this.Where(t => (!checkFilter || t.Name.ToUpper() 

  .Contains(upperFilter) 

  || t.Caption.ToUpper().Contains(upperFilter)) 

  && (!reportableOnly || t.Reportable) 

  && t.Updated >= testDate 

  && (!checkDB || t.Database.ID.ToString() == database)) 

  .ToArray<ITable>(); 

 return tables; 

} 

 

Listing 12 shows part of the VFP code that calls the GetItems method. 

Listing 12. Part of the code used to populate an array with desired tables. 

lparameters taArray, ; 

 tcDatabase, ; 

 tlReportableOnly, ; 

 tcFilter, ; 

 tdUpdated 

loItems = oBridge.InvokeMethod(This.oMetaData, 'GetItems', ; 

 evl(tcDatabase, ''), tlReportableOnly, evl(tcFilter, ''), ; 

 evl(tdUpdated, '')) 

 

Although the .NET data dictionary objects could be accessed directly in VFP, doing so would be cumbersome 

because some of the properties in those objects aren’t accessible in VFP. For example, every object has an ID 

property that’s a Guid, and as we saw earlier, Guids aren’t available in VFP. So, we created VFP wrapper classes 

for the .NET classes and the GetObject and SaveItem methods take care of reading and writing the properties to 

and from the .NET and VFP objects. For example, Listing 13 shows some of the code in the GetObject method 

to convert the properties of a .NET Table object to a VFP wrapper object. Notice how Guids are handled: the 

GuidString property of the object returned by GetPropertyEx is something added by wwDotNetBridge; it 

contains the Guid value converted to a string. 

Listing 13. The VFP GetObject method reads .NET properties and writes them to a VFP wrapper class. 

lparameters toItem 

local loItem, ; 

 loID, ; 

 loDatabase, ; 

 loOriginalTable, ; 

 loDataGroups, ; 

 lnDataGroups, ; 

 lcDataGroups, ; 

 lnI, ; 

 loDataGroup 

loItem = This.Add() 

with loItem 

 loID            = oBridge.GetPropertyEx(toItem, 'ID') 

 .cID            = loID.GuidString 

 .cAlias         = oBridge.GetPropertyEx(toItem, 'Name') 

 .cCaption       = oBridge.GetPropertyEx(toItem, 'Caption') 

 loDatabase      = oBridge.GetPropertyEx(toItem, 'Database') 

 loID            = oBridge.GetPropertyEx(loDatabase, 'ID') 

 .cDatabase      = loID.GuidString 

 .lReportable    = oBridge.GetPropertyEx(toItem, 'Reportable') 

 loOriginalTable = oBridge.GetPropertyEx(toItem, 'OriginalTable') 

 if vartype(loOriginalTable) = 'O' 



20th
 European Visual FoxPro DevCon 2013  Calling .NET Code from VFP the Easy Way 

18 • E-CALL  (Group .NET) © 2013 Doug Hennig 

  loID            = oBridge.GetPropertyEx(loOriginalTable, 'ID') 

  .cOriginalTable = loID.GuidString 

 endif vartype(loOriginalTable) = 'O' 

 

* Handle datagroups. 

 

 loDataGroups = oBridge.GetPropertyEx(toItem, 'DataGroups') 

 lnDataGroups = oBridge.GetPropertyEx(loDataGroups, 'Count') 

 lcDataGroups = '' 

 for lnI = 1 to lnDataGroups 

  loDataGroup  = oBridge.GetPropertyEx(toItem, ; 

   'DataGroups[' + transform(lnI - 1) + ']') 

  loID         = oBridge.GetPropertyEx(loDataGroup, 'ID') 

  lcDataGroups = lcDataGroups + loID.GuidString + ccCRLF 

 next lnI 

 .cDataGroup = lcDataGroups 

endwith 

return loItem 

 

Saving changes to an item is better handled in .NET, especially since a new item needs to be assigned a new 

Guid, so the SaveItemStudio method (Listing 14) takes care of that. It accepts the VFP wrapper object as a 

dynamic, meaning it doesn’t do compile-time data type checking. Notice how it handles a new object: if the cID 

property isn’t filled in, a new object is created. Otherwise, the object with the specified ID is retrieved from the 

collection. 

Listing 14. The SaveItemStudio method accepts a VFP wrapper classes and writes to a .NET object. 

public override ITable SaveItemStudio(dynamic item) 

{ 

 Table saveItem; 

 string name = item.cAlias; 

 if (String.IsNullOrWhiteSpace(item.cID)) 

 { 

  saveItem = (Table)New(name); 

 } 

 else 

 { 

  Guid id = Guid.Parse(item.cID); 

  saveItem = (Table)this[id]; 

 } 

 saveItem.Caption = item.cCaption; 

 saveItem.databaseGUID = item.cDatabase; 

 saveItem.OriginalTable = null; 

 saveItem.originalTableID = item.cOriginalTable; 

 saveItem.Reportable = item.lReportable; 

 DeserializeDataGroups(saveItem, item.cDataGroup); 

 SaveItem(saveItem); 

 return saveItem; 

} 

 

Because VFP can’t access .NET generics, it can’t create a List<string>, but some of the methods Studio.NET 

calls require one as a parameter. So, a GetList helper method takes care of that: 

public List<string> GetList() 

{ 

 return new List<string>(); 

} 

 

The VFP code calls GetList to create a list, then uses oBridge.InvokeMethod(loList, 'Add', 'SomeValue') to add a 

value to the list. For example, to browse the contents of a table, the VFP BrowseTable method calls GetList to 

create a list, adds the name of the fields to the list, calls the RetrieveDataForFields method of the .NET 

DataEngine object to retrieve a DataTable containing the results, then calls the same 

CreateCursorFromDataTable function we saw earlier to convert the DataTable to a VFP cursor so it can be 

browsed. 



Calling .NET Code from VFP the Easy Way  20
th

 European Visual FoxPro DevCon 2013 

© 2013 Doug Hennig (Group .NET) E-CALL • 19 

References 
Here are links to articles and documentation about wwDotNetBridge and .NET interop: 

 wwDotNetBridge home page: http://www.west-wind.com/wwDotnetBridge.aspx 

 wwDotNetBridge documentation: http://tinyurl.com/ltagjhk 

 wwDotNetBridge white paper: http://tinyurl.com/lclaflx  

 “Using .NET Components via COM from Visual FoxPro (or other COM client)”: 

http://tinyurl.com/ycn4bl 

Summary 
wwDotNetBridge makes it easy to call .NET code from VFP. It eliminates the need to add special directives to 

the .NET code so it can be used with COM and the need to register the component on the user’s system. It also 

takes care of the differences between .NET and VFP in dealing with arrays and other data types. This means you 

can create small .NET classes that accomplish tasks difficult to do or that run slowly in VFP and easily call them 

in your applications to add new capabilities or speed up processing. Download wwDotNetBridge and try it out 

for yourself. 

Biography 
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-winning Stonefield 

Database Toolkit (SDT); the award-winning Stonefield Query; the MemberData Editor, Anchor Editor, and 

CursorAdapter and DataEnvironment builders that come with Microsoft Visual FoxPro; and the My namespace 

and updated Upsizing Wizard in Sedna. 

Doug is co-author of VFPX: Open Source Treasure for the VFP Developer, Making Sense of Sedna and SP2, the 

What’s New in Visual FoxPro series, Visual FoxPro Best Practices For The Next Ten Years, and The Hacker’s 

Guide to Visual FoxPro 7.0. He was the technical editor of The Hacker’s Guide to Visual FoxPro 6.0 and The 

Fundamentals. All of these books are from Hentzenwerke Publishing (http://www.hentzenwerke.com). He wrote 

over 100 articles in 10 years for FoxTalk and has written numerous articles in FoxPro Advisor, Advisor Guide to 

Visual FoxPro, and CoDe. He currently writes for FoxRockX (http://www.foxrockx.com). 

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997 and at user groups and 

developer conferences all over the world. He is one of the organizers of the annual Southwest Fox and Southwest 

Xbase++ conferences (http://www.swfox.net). He is one of the administrators for the VFPX VFP community 

extensions Web site (http://vfpx.codeplex.com). He was a Microsoft Most Valuable Professional (MVP) from 

1996 through 2011. Doug was awarded the 2006 FoxPro Community Lifetime Achievement Award 

(http://tinyurl.com/ygnk73h). 

     

  

http://www.west-wind.com/wwDotnetBridge.aspx
http://tinyurl.com/ltagjhk
http://tinyurl.com/lclaflx
http://tinyurl.com/ycn4bl
http://www.hentzenwerke.com/
http://www.foxrockx.com/
http://www.swfox.net/
http://vfpx.codeplex.com/
http://tinyurl.com/ygnk73h
http://www.hentzenwerke.com/catalog/hackfox7.htm
http://www.hentzenwerke.com/catalog/newin7.htm
http://www.hentzenwerke.com/catalog/wnvfp8.htm
http://www.hentzenwerke.com/catalog/wnvfp9.htm
http://www.hentzenwerke.com/catalog/vfpbp10.htm
http://www.hentzenwerke.com/catalog/makingsos.htm
http://www.stonefieldquery.com/sdt.html
http://www.stonefieldquery.com


20th
 European Visual FoxPro DevCon 2013  Calling .NET Code from VFP the Easy Way 

20 • E-CALL  (Group .NET) © 2013 Doug Hennig 

   

 

 

http://vfpx.codeplex.com/
http://www.swfox.net
http://www.foxrockx.com/seite.htm

