
Introduction to ADO

By Doug Hennig

Microsoft’s latest data access strategy is focused on ActiveX Data Objects (ADO), a COM-based data engine
that acts as a front end for OLE DB. OLE DB is bound to replace ODBC as the defacto data connectivity
standard and ADO is the interface that most applications will use to access data functionality. ADO
provides an object-based approach to data access and through COM allows the ability to pass data as
objects between components. A subset of ADO – Remote Data Service (RDS) – also allows access to ADO
recordsets over an HTTP connection. This document discusses the technology involved with ADO and
provides examples of how you can implement and use ADO in a VFP environment.

OLE DB and ADO
OLE DB is part of Microsoft’s Universal Data Access strategy, in which data of any type stored anywhere in
any format, not just in relational databases on a local server, can be made available to any application
requiring it. It will ultimately replace ODBC as the preferred mechanism for accessing data.

OLE DB providers are similar to ODBC drivers: they provide a standard, consistent way to access data
sources. A variety of OLE DB providers are available today (SQL Server, Oracle, Access/Jet, etc.) and more
will become available with time. In addition, Microsoft provides an OLE DB provider for ODBC data
sources, so anything you can access with ODBC today can be accessed from OLE DB.

Because OLE DB is a set of low-level COM interfaces, it’s not easy to work with in languages like Visual
FoxPro and Visual Basic. To overcome this, Microsoft created ActiveX Data Objects, or ADO, a set of COM
objects that provides an object-oriented front-end to OLE DB. As a result, this session will focus on ADO
rather than OLE DB, since that’s what we’ll be working with directly.

Why Use ADO in VFP

ADO isn’t a replacement for native data access in VFP. Manipulating VFP tables and cursors is faster and
more feature-rich than using ADO in a VFP application. However, ADO does have its place in VFP
components:

 Only VFP knows how to open a VFP table while ADO provides a DBMS-independent mechanism. If your

VFP component needs to send data to or receive data from non-VFP components, ADO is the logical
choice.

 A VFP cursor only “lives” in the datasession it was opened in. Not only can’t you pass a cursor to a

non-VFP object, you can’t even pass it to a VFP object in another VFP session or the same VFP session
but a different datasession.

 ADO makes it easy to pass data over the Internet. While you can also do this with VFP tables (for

example, using tools provided in West Wind Technologies’ West Wind Web Connection or described in
Rick Strahl’s book “Internet Applications with Visual FoxPro 6.0”), it’s a lot more work.

When VFP is used in an n-tier application, ADO makes it easy to transfer data between the tiers. Also, ADO
provides an object-oriented interface to data, something VFP developers have asked for almost since VFP
was released.

Installing ADO

ADO is included with the Microsoft Data Access Components (MDAC), which are automatically installed by
a number of applications, including Microsoft Visual Studio and Microsoft Office 2000. You can also
download the latest version of MDAC (MDAC_TYP.EXE) from www.microsoft.com/data. Other tools and
documentation can also be downloaded from there.

http://www.microsoft.com/data

ADO Object Model

The diagram below shows the object model for ADO. The main objects we work with are Connection and
RecordSet, although Command is frequently used as well. The other objects are collections that belong to
the main objects, and get used as required.

ADO uses a lot of enumerated properties and parameters (those which accept a pre-defined range of
values; the DataSession property of VFP forms, which can be either 1 for default or 2 for private, is an
example of an enumerated property). Enumerated values are often defined as constants in the type library
of a COM object. Languages like VB can read the type library and automatically allow the use of these
constants. VFP, on the other hand, needs an include file of constants if you want to use them in your code.
A file accompanying this document, ADOVFP.H, provides the constants used in the ADO object model.

The Connection Object
The ADO Connection object provides the mechanism to access a data source. Where you instantiate a
Connection object depends on how you’ll use it. In a PRG, you’ll instantiate the object into a variable. In a
form or class, where you likely want the Connection object to persist beyond a single method, you’ll
instantiate it into a form property. You might also want to create an ADO manager object that maintains
one or more Connection objects for all the components in your application. Here are a couple of examples:

oConn = createobject('ADODB.Connection')

This.oConnection = createobject('ADODB.Connection')

Connecting to a Data Source

To connect to a data source, use the Open method of the Connection object. There are several ways you
can do this.

To use an ODBC data source (which means using the OLE DB Provider for ODBC), pass the Open method
the DSN (data source name), user name, and password:

oConn.Open('Northwind')

oConn.Open('MyDataSource', 'MyUserName', 'MyPassword')

If an ODBC data source doesn’t exist, you don’t want to create one on every machine that’ll run your
application, or you want to use an OLE DB provider for a specific database, pass a connection string to the
Open method (this is sometimes called a “DSN-less” connection):

oConn.Open('Provider=MSDASQL.1;Data Source=northwind')

How do you know what to pass for the connection string? There are several ways you can determine it:

 If you’re using ODBC, create an ODBC data source (even just temporarily), connect to it, then look at
the ConnectionString property of the Connection object. For example, when I connect to the sample
NWind database (based on the Microsoft Jet engine) that comes with VB through a DSN called
“Northwind”, this is what the ConnectionString property contains:

 Provider=MSDASQL.1;

 Data Source=northwind;

 Extended Properties="DSN=northwind;

 DBQ=D:\Program Files\Microsoft Visual Studio\VB98\NWIND.MDB;

 DriverId=281;

 FIL=MS Access;

 MaxBufferSize=2048;

 PageTimeout=5;"

 If you have VB, fire it up, create a DataProject, select the DataEnvironment from the Project window,

select the Connection1 object, right-click and select Properties, and step through the process of
specifying the properties for the Connection, selecting the appropriate OLE DB provider and database.
Then look at the ConnectionSource property in the Properties window. When I connect to the NWind
database using the Microsoft Jet 4.0 OLE DB Provider, this is what the ConnectionSource property
contains:

 Provider=Microsoft.Jet.OLEDB.4.0;

 Data Source=D:\Program Files\Microsoft Visual Studio\VB98\Nwind.mdb;

 Persist Security Info=False

 You can create a data link file, which contains the connection information for a data source. To create a

data link file, which has a UDL extension, right-click in a folder in Windows Explorer, select New, and
choose Microsoft Data Link. If this option doesn’t appear in the menu, create a text file and give it a
UDL extension, then right-click on it and choose Properties. In either case, you’ll get a dialog in which
you can select the desired provider and data source. After you close the dialog, you can either open the
file in Notepad and copy the information from this file or tell the Connection object to use it with the
Open method:

 oConn.Open('mydata.udl')

The connection string determined using these techniques often has more information than is required to
open a connection, so you can either use it as is or use trial and error to determine the minimum
information to pass. Here’s an example of using the connection string determined from VB:

oConn.Open('Provider=Microsoft.Jet.OLEDB.4.0;' + ;

 'Data Source=D:\Program Files\Microsoft Visual Studio\VB98\Nwind.mdb')

As an alternative to passing a connection string to the Open method, you can set the Connection object’s
Provider and ConnectionString properties, and then call Open with no parameters:

oConn.Provider = 'Microsoft.Jet.OLEDB.4.0'

oConn.ConnectionString = 'Data Source=D:\Program Files\Microsoft ' + ;

 'Visual Studio\VB98\Nwind.mdb'

oConn.Open()

Error Handling

What if the connection fails for some reason? ADO doesn’t return an error code; instead, it throws an
exception, which causes error number 1429 to occur in VFP. So, you must be sure your error handler
handles errors coming from ADO.

In addition to the usual information about the error you can get from the AERROR() function, you can also
use the Errors collection of the Connection object. The Errors collection consists of Error objects, which
have several properties containing information about the errors that occurred. Here’s a simple program
that demonstrates this (ADOERRORS.PRG in the sample files for this session):

on error do ErrHandler

oConn = createobject('ADODB.Connection')

oConn.Open('Provider=Some bad provider;Data Source=Some non-existent file')

oConn.Open('Provider=Microsoft.Jet.OLEDB.4.0;' + ;

 'Data Source=Some non-existent file')

on error

procedure ErrHandler

aerror(laErrors)

clear

display memory like laErrors

?

? oConn.Errors.Count, 'error(s) occurred'

for each loError in oConn.Errors

 ? 'Error #: ' + transform(loError.Number, '9999999999999999')

 ? 'Description: ' + loError.Description

 ? 'Native error #: ' + transform(loError.NativeError, '9999999999999999')

 ? 'Source: ' + loError.Source

 ? 'SQL state: ' + transform(loError.SQLState, '9999999999999999')

next loError

wait

Properties

Besides ConnectionString and Provider, some of the other properties of the Connection object are:

 CommandTimeout: the timeout value (in seconds) for a command to execute.

 ConnectionTimeout: the timeout value for a connection to be made.

 CursorLocation: we’ll discuss cursor locations when we discuss the RecordSet object.

 Version: the ADO version number (as of this writing, 2.5 is the latest release version).

See the ADO help file for details on these and other properties.

Methods

Besides Open, some of the other methods of the Connection object are:

 BeginTrans, CommitTrans, and RollbackTrans: similar to the BEGIN TRANSACTION, END

TRANSACTION, and ROLLBACK commands in VFP, these methods provide control over transaction
processing in ADO. Not all OLE DB providers support transaction processing. We’ll look at these in
more detail later.

 Close: closes the connection.

 Execute: creates a Command object (we’ll talk about these objects later) and has it execute a SQL

statement, stored procedure, or other command.

 OpenSchema: creates a RecordSet object containing meta data about the data source. We’ll discuss

this method in more detail later.

See the ADO help file for details on these and other methods.

The RecordSet Object
Suppose you have a VFP form with a private datasession that opens a cursor. Objects outside the form
can’t work with the cursor directly, but they can call methods of the form to move the record pointer in the
cursor, find a specific record in the cursor, filter or sort the cursor, etc. Properties of the form would hold
the values of the fields in the cursor for the current record; changing the values of the properties and then
calling an Update method of the form would save the changes made.

This is kind of what an ADO RecordSet is like. It exposes an object-oriented interface to a set of records.
Like the analogy above, there’s an underlying cursor that we can’t access directly (in fact, believe it or not,
this cursor is based on the VFP cursor engine!) but instead through properties and methods of the
RecordSet object.

Like a Connection object, you first instantiate a RecordSet object, then call the Open method to create the
cursor. Here’s the syntax:

oRS = createobject('ADODB.RecordSet')

oRS.Open(Source, Connection, CursorType, LockType, Options)

In this example, Source is the source of data (such as a SQL SELECT statement, although we’ll see other
types later) and Connection is usually a Connection object (although other things can be passed, such as a
Command object or a connection string). Instead of passing the Connection object as a parameter, you
could set the ActiveConnection property of the RecordSet object before calling Open.

Let’s take a look at various options for opening a recordset (by the way, in this document, I’ll use the
terms “recordset” and “cursor” interchangeably, whereas “RecordSet” refers to an ADO RecordSet object).

Cursor Types

ADO supports four types of cursors, shown in the table below (the Constant column shows the constant
defined in ADOVFP.H). The type can be specified as a parameter in the RecordSet object’s Open method or
by setting the object’s CursorType property prior to calling Open. You’ll get an error if you try to change
the cursor type after the recordset is open.

Cursor Type Constant Value Description

Forward-only adOpenForwardOnly 0 The recordset can only be navigated in a
forward direction, so it’s typically used
to fill a control (such as a combobox) or
when processing records in a single
pass. It provides the fastest access, and
is the default cursor type.

Keyset adOpenKeyset 1 The recordset can be freely navigated.
The number of records doesn’t change
(hence the term “keyset”), but the data
in them can, so changes to records, but
not additions or deletions, made by
other users are visible.

Dynamic adOpenDynamic 2 The recordset can be freely navigated.
Both the number of records and the
data in them can change (hence the
term “dynamic”), so all changes
(including additions and deletions)
made by other users are visible.

Static adOpenStatic 3 The recordset can be freely navigated.
Both the number of records and the
data in them are fixed, so no changes
made by other users are visible.

Cursor Location

The cursor can reside on either the client or the server, as shown in the table below. The location is
specified by setting the CursorLocation property of the Connection or RecordSet objects prior to calling
Open. You can change the cursor location after opening a connection, but you’ll get an error if you try to
change the cursor location after the recordset is open.

Location Constant Value Description

Server adUseServer 2 The cursor resides on the server. This is
the default setting.

Client adUseClient 3 The cursor resides on the client
workstation. Many operations on
recordsets, including filtering, sorting,
and disconnecting the recordset from
the server, only work with client-side
recordsets.

For client-side cursors, the cursor type is automatically forced to static.

Record Locking

ADO supports four types of record locking, shown in the table below. The locking type can be specified as
a parameter in the RecordSet object’s Open method or by setting the object’s LockType property prior to
calling Open. You’ll get an error if you try to change the locking type after the recordset is open.

Lock Type Constant Value Description

Read-only adLockReadOnly 1 The recordset is read-only. This type
provides the fastest access, and is the
default type.

Pessimistic adLockPessimistic 2 Like VFP’s pessimistic row buffering, a
lock is attempted as soon as the record
is edited. This locking type is only
available for server-side recordsets.

Optimistic adLockOptimistic 3 Like VFP’s optimistic row buffering, a
lock in attempted when the record is
updated.

Batch
Optimistic

adLockBatchOptimistic 4 Like VFP’s optimistic table buffering, a
lock is attempted on each modified
record when the entire batch is updated.

Command Type

You can use one of the six command types shown in the table below to open a recordset. The command
type tells ADO how to interpret the command text. It can be specified as a parameter in the recordset
object’s Open method, as a parameter in a Command object’s Execute command, or by setting the
Command object’s CommandType property prior to calling its Execute method (we’ll look at the Command
object later). You’ll get an error if you try to change the command type after the recordset is open.

Command
Type

Constant Value Description

SQL SELECT adCmdText 1 The command text is a SQL SELECT
statement.

Table adCmdTable 2 The command text specifies the name of
a table to open using SELECT * FROM
[tablename].

Stored
Procedure

adCmdStoredProc 4 The command text is the name of a
stored procedure to execute.

Unspecified adCmdUnknown 8 The command type isn’t specified but is
assumed to be a SQL SELECT
statement.

File adCmdFile 256 The command text is the filename of a
disconnected recordset.

Table direct adCmdTableDirect 512 The command text specifies the name of
a table to open directly.

Opening a Recordset

OK, with all those issues out of the way, let’s look at some examples of opening a recordset. This one
creates a recordset of all records in the NWind CUSTOMERS table (this assumes you’ve already
instantiated Connection and RecordSet objects):

oConn.Open('Provider=Microsoft.Jet.OLEDB.4.0;' + ;

 'Data Source=D:\Program Files\Microsoft Visual Studio\VB98\Nwind.mdb')

oRS.Open('select * from customers', oConn)

Alternatively:

oRS.ActiveConnection = oConn

oRS.Open('select * from customers')

Here’s a different way of doing the same thing:

oConn.Open('Provider=Microsoft.Jet.OLEDB.4.0;' + ;

 'Data Source=D:\Program Files\Microsoft Visual Studio\VB98\Nwind.mdb')

oRS = oConn.Execute('select * from customers')

Rather than creating a Connection object, you can pass a connection string as the second parameter to the
Open method. ADO will still create a Connection object; the ActiveConnection property of the RecordSet
object contains a reference to it. The downside to this approach is that ADO will create a new connection
every time you do this, whereas creating your own Connection object allows you to share that connection.

Fields in a Recordset

The fields in a recordset are accessed through the Fields collection, a collection of Field objects that
contain the data for a record. You can access members of the collection either by their index number
(which is zero-based, so the first item in the collection has index 0, not 1) or by name. Using index
numbers is more convenient when you’re processing all fields (although you can also use the FOR EACH
syntax) while using field names is easier when working with a specific field. For example:

? oRS.Fields(0).Value

? oRS.Fields('Company').Value

would display the same thing if the first field in the collection is Company. Note that unlike a field in a VFP
cursor, which you can get the value of by simply referring to the field, you must request the Value
property of the field object to get the value for the field in the current record. Here are the more common
properties of the Field object:

 Name: the name of the field.

 Value: the value of the field in the current record.

 OriginalValue: like the VFP OLDVAL() function, this property contains the value of the field as it was

before any changes were made.

 UnderlyingValue: like the VFP CURVAL() function, this property contains the current value of the field

in the data source. This is only applicable in a server-side cursor.

 Type: the data type of the field. Unlike VFP’s data types, which are a single character, ADO’s data

types are a numeric value. See ADOVFP.H for a list of the constants and their values.

 DefinedSize: the size of the field.

 ActualSize: the value of this property is like using LEN(TRIM(FIELD)) in VFP; that is, it returns the

length of the actual data, not the length of the field. However, the value you get might be double what
you’re expecting (for example, a value of 25 characters might give ActualSize of 50). I believe this is
caused by Unicode.

 Precision: the number of digits in a numeric field.

 NumericScale: the number of decimal places.

 Properties: like the Properties collection of a Connection object, this is a dynamic collection of
additional properties for a Field. Because not all data providers support all features, the properties in
this collection will vary from provider to provider.

Navigating, Sorting, and Filtering a Recordset

Like a VFP cursor, the fields in an ADO recordset contain the values of the current record only. So, we
need to navigate through the recordset to access more than one record.

The table below lists navigation-related properties of a RecordSet object. In the Cursor Type column, “F”
means forward-only cursors, “K” means keyset cursors, “D” means dynamic cursors, and “S” means static
cursors. In the Cursor Location column, “C” means client-side cursors. Unless otherwise specified, all
properties are applicable to all cursor types and locations.

Property Description Cursor
Type

Cursor
Location

AbsolutePosition The relative position of a record in the
recordset. This can change as records are
sorted and filtered. Like VFP’s GO command,
setting AbsolutePosition moves the record
pointer to the desired record.

K, S

BOF Like VFP’s BOF(), this property is .T. if the
record pointer is moved before the first
record in the recordset.

Bookmark Similar to VFP’s RECNO(), except it doesn’t
necessarily start with 1 or increment by 1
when you’re using server-side cursors. This
value doesn’t change for a record during the
life of the recordset. Setting Bookmark is like
using GO in VFP.

K, S

EOF Like VFP’s EOF(), this property is .T. if the
record pointer is moved past the last record
in the recordset.

Filter Like VFP’s SET FILTER command, setting this
property to an expression filters the
recordset.

 C

RecordCount Similar to VFP’s RECCOUNT(), except it
contains the count of records currently
visible, so this number will change if a filter is
set, for example.

K, S

Sort Determines how a recordset is sorted. S C

The next table shows some of the navigation-related methods of a RecordSet object. The Cursor Type and
Cursor Location columns have the same meaning as they do in the previous table.

Method Description Cursor
Type

Cursor
Location

Find Locates the next record matching the desired
criteria (specified similar to the WHERE
clause in a SQL SELECT statement).

K, D, S

Move Similar to VFP’s GO command, but accepts
two parameters: the number of records to
move and the position from which to begin
the move.

MoveFirst Like VFP’s GO TOP, moves to the first record
in the recordset.

MoveLast Like VFP’s GO BOTTOM, moves to the last
record in the recordset.

K, D, S

MoveNext Like VFP’s SKIP 1 command, moves to the

next record in the recordset.

MovePrevious Like VFP’s SKIP –1 command, moves to the
previous record in the recordset.

K, D, S

Requery Like requerying a VFP view, this refreshes the
recordset (losing any pending changes as a
result) by in effect closing and reopening the
recordset.

Navigating

The Move methods, along with the EOF and BOF properties, are typically used to navigate through a
recordset. Here’s an example of processing all the records in a recordset:

oRS.MoveFirst()

do while not oRS.EOF

 * do something with the record

 oRS.MoveNext()

enddo while not oRS.EOF

If you need to process some records, then come back to one you were on previously, save the value of the
Bookmark property (you can also use AbsolutePosition) to a variable and restore it later. Note that this
property is only available for certain cursor types.

lnBookmark = oRS.Bookmark && save the current record position

* do something navigating and processing

oRS.Bookmark = lnBookmark && go back to the record

Interestingly, for forward-only cursors, MoveFirst is allowed (so you can move through the cursor more
than once), but MoveLast is not.

Try this out in the ADO Test Bench form and see how different types and locations of cursors affect
navigation abilities and how AbsolutePosition and Bookmark change as you navigate.

Sorting

How a recordset is sorted determines the order in which records are navigated. Set the Sort property of
the recordset to a comma-delimited list of fields and sort order (“asc” for ascending or “desc” for
descending). Here are some examples:

oRS.Sort = 'City, Company'

oRS.Sort = 'OrderDate desc'

Note that only client-side cursors can be sorted.

To try this out in the ADO Test Bench form, select a client-side cursor, enter the sort expression, and tab
out of the Sort editbox. Then choose First and Next to see how the sort order has changed. Notice that
AbsolutePosition now reflects a record’s position within the sorted recordset.

Searching

ADO’s Find method is similar to LOCATE. Pass Find an expression similar to the WHERE clause in a SQL
SELECT statement to find the next record meeting that expression (to find the first record, call MoveFirst
before Find). Note that only a single expression is allowed.

oRS.Find("Country = 'Canada'")

oRS.Find("City like 'B%'")

If the current record matches the condition, it stays the current record. If the search fails, the EOF
property of the RecordSet object is .T.

To try this out in the ADO Test Bench form, select something other than a forward-only cursor, enter a
search expression, and tab out of the Find editbox.

Note that ADO is picky about quotes. For example, searching for Country = "Canada" will fail while
Country = 'Canada' works.

Filtering

Filtering an ADO recordset is very similar to filtering a VFP cursor. Set the Filter property to the filter
expression; the recordset is automatically positioned to the first matching record.

oRS.Filter = "Country = 'Canada' and Title = 'Manager'"

Note that only client-side cursors can be filtered.

To try this out in the ADO Test Bench form, select a client-side cursor, enter a filter expression, and tab
out of the Filter editbox. Notice that the RecordCount property now reflects the number of records that
match the filter condition, and AbsolutePosition represents the position within the set of visible records.

Indexing

Indexes in ADO are used to optimize searches and sorts, not to determine the order records are accessed.
Setting the Optimize property of a Field object creates a temporary index on that field. Optimize is one of
the properties in the dynamic Properties collection of a field object; it’s only available for cursor-side
recordsets. Here’s an example:

oRS.Fields('Company').Properties('Optimize').Value = .T.

Try this out in the ADO Test Bench form by select a client-side cursor, selecting a field, and checking the
Optimize checkbox. Notice that the navigation order of the recordset doesn’t change (actually, since the
recordset is small, you won’t really see any change in any operation).

Data Editing
Data editing with ADO recordsets works a lot (at least in concept) like it does with VFP tables. For
example, you can bind controls in a form to fields in an ADO RecordSet. Typically, the RecordSet object
will be referenced through a form property, so you’d set the ControlSource of a textbox to something like
this:

Thisform.oRS.Fields('Company').Value

Be sure to set the InputMask or MaxLength properties of controls so the user can’t enter a value longer
than the field can hold; unlike VFP, which would simply truncate the data, ADO will give an error.

One exception to this is Grids: they can only be bound to VFP cursors, not ADO RecordSets. Fortunately,
there are two solutions to this problem. One is to use Microsoft FlexGrid or Hierarchical FlexGrid controls,
ActiveX controls that come with Visual Studio. These grids are more powerful than VFP’s Grid (for
example, you can select ranges of cells like a spreadsheet rather than just one cell at a time) and have a
DataSource property you can set to an ADO RecordSet object. See FLEXGRID.SCX for an example. The
other solution is to use the VFPCOM RSToCursor method to convert a RecordSet to a VFP cursor, and then
bind the cursor to a VFP Grid. We’ll talk about VFPCOM later.

You can add a new record to a recordset using the AddNew method, and delete a record using Delete. The
Update and Cancel methods are like the VFP TABLEUPDATE() and TABLEREVERT() functions, respectively:
they write or cancel changes to the current record. UpdateBatch and CancelBatch are the batch
equivalents; they write or cancel changes to all modified records (these methods are only applicable when
optimistic batch locking is used).

As in VFP, an update can fail for a variety of reasons, such as invalid values or contention issues. Your
code must handle such failure just as it must with VFP data: detect the failure (rather than returning .F.,
the Update and UpdateBatch methods will cause an error to occur), check what went wrong (use the
Errors collection of the Connection object), and try to resolve the problem (in the case of contention,

perhaps use the OriginalValue, Value, and UnderlyingValue properties of each field to determine if
mutually exclusive changes occurred or not).

ADO supports transactions via the BeginTrans, CommitTrans, and RollbackTrans methods of the
Connection object. As with VFP transactions, it’s a good idea to wrap updates in transactions, especially if
multiple records are involved in the update. Here’s a simple example:

llError = .F.

on error llError = .T.

oConn.BeginTrans()

* do some changes to the data

oRS.UpdateBatch()

if llError

 oConn.RollbackTrans()

 oRS.CancelBatch()

else

 oConn.CommitTrans()

endif llError

You can test data editing in the ADO Test Bench form by setting the desired locking type, editing the data
in the textboxes provided, and using the Update, Update Batch, Cancel, and Cancel Batch buttons. You’ll
notice that, as you might expect, when you make a change to a record when pessimistic locking (which is
only available for server-side cursors) is used, the change is written to the record right away. If you use
optimistic locking, the change is written when you choose Update or move off the record.

By default, ADO will return the entire recordset to the server when you update. However, you can set the
MarshalOptions property to return only modified records. See ADOVFP.H for the values for these two
choices.

Other Properties and Methods
The RecordSet object’s Supports method is useful to determine what capabilities the recordset has so you
don’t try to perform some action that isn’t allowed. These capabilities are based on both the type of
recordset and the OLE DB provider used. Pass this method the appropriate value for the capability you’re
interested in (see the CursorOptionEnum section of ADOVFP.H) and it’ll return .T. if the recordset supports
that feature. As an example, the ADO Test Bench form only enables the Previous button when
Thisform.oRS.Supports(adMovePrevious) returns .T.

The Connection object’s OpenSchema method creates a recordset containing meta data for the open
connection. This is useful for generic routines where, for example, you want to display field captions rather
than field names to a user. Pass the appropriate value for the items of interest, such as adSchemaTables
(20) for tables and adSchemaColumns (4) for fields. The ADO Test Bench form demonstrates this method.

The RecordSet object’s GetRows method converts a recordset into an array. Such an array could be useful
for a lot of things, such as providing the RecordSource for a listbox or combobox. Also, because VFP’s
array handling functions are somewhat limited, an interesting idea is to use an ADO RecordSet in place of
an array. This allows you to filter and sort on multiple columns (and control ascending vs. descending
order), and quickly convert it to an array for those things (like the RecordSource of a listbox) where VFP
can’t use a RecordSet object. You can even use a fabricated recordset (we’ll talk about those in a moment)
as the source of data for the array. One issue: the array returned by GetRows is in column-major rather
than VFP’s usual row-major order, so you’ll need to flip it around to make it useful. See
ADOGETROWS.PRG for an example of using GetRows and a function to flip the array.

The GetString method is similar to GetRows, but puts the records into a string rather than an array. You
can specify both row and column delimiters.

Disconnected Recordsets
There are times when having a recordset connected to its data source may not be convenient:

 You’re using SQL Server or some other database for which you pay license fees per seat. In this case,
you want to minimize concurrent connections.

 You want to send the recordset to another computer that may not be connected to the data source

(such as over the Internet).

 The typical “road warrior” scenario: you want a traveling salesperson to take a set of data with them

so they can place orders, view or modify customer records, etc., and then update the head office data
when they get back.

Disconnected ADO RecordSets are similar to offline views in VFP: you have a set of data, just no
connection to the source of that data.

A RecordSet is disconnected from its data source by setting its ActiveConnection property to .NULL.; the
RecordSet must use batch optimistic locking for obvious reasons. While it’s disconnected, you can make
changes to records, add and delete records, sort, filter, search, and anything else you might do with a
connected recordset except, of course, write the changes back to the data source or requery the recordset.
To reconnect the RecordSet, simply establish a connection and set the RecordSet’s ActiveConnection
property to the Connection object.

If you want a disconnected recordset to persist beyond the current session of the form or application it was
created in, use the Save method to write the recordset to disk. Pass this method the name of the file to
create. The default format is a proprietary one called ADTG, but you can also save it in XML or HTML by
passing the appropriate value for the second parameter; see the table below for the choices.

File Type Constant Value

ADTG adPersistADTG 0

XML adPersistXML 1

HTML adPersistHTML 2

To load a saved recordset, pass the name of the file as the first parameter to the Open method. For
example:

oRS.Open('customer.rs', , adOpenStatic, adLockBatchOptimistic)

The ADO Test Bench form has an optiongroup of these file types and a Save button so you can try this out.
If you have IE 5.0 or later, you can view an XML-persisted recordset as a formatted document; otherwise,
you can use Notepad to view the file.

Command Object
The Command object is mainly used to execute commands that either don’t return a recordset (such as a
SQL DELETE or UPDATE statement or a stored procedure) or require parameters (such as a parameterized
query). The ProgID for the Command object is ADODB.Command.

The ActiveConnection property contains a reference to a Connection object. The CommandText property is
the command to execute, such as a SQL statement or the name of a stored procedure. The CommandType
property defines what type of command CommandText contains; the choices are the same as those for the
RecordSet CommandType property we looked at earlier.

Once these properties have been set, call the Execute method to execute the command. Here’s an
example that deletes certain records (it assumes a connection has already been made through the oConn
object):

oCommand = createobject('ADODB.Command')

oCommand.CommandText = "delete * from customers where country <> 'US'"

oCommand.CommandType = adCmdText

oCommand.ActiveConnection = oConn

oCommand.Execute()

Here’s an example that calls a stored procedure:

oCommand.CommandText = 'PurgeRecords'

oCommand.CommandType = adCmdStoredProc

oCommand.ActiveConnection = oConn

oCommand.Execute()

Like VFP, ADO supports parameterized queries (and some DBMS, like SQL Server, support parameterized
stored procedures). To define parameters for a command, add items to the Parameters collection of the
Command object and set the appropriate value for each Parameter item. To create a Parameter object, use
the Command object’s CreateParameter method. You can either pass it the name of the parameter, the
data type, the parameter “direction” (input, output, both input and output, or return value), the size, and
the value, or set the appropriate properties of the Parameter object after you create it. See ADOVFP.H for
the constants used for the data type and parameter direction. After creating the Parameter object, add it
to the Parameters collection using the Append method. Here’s an example:

oParameter = oCommand.CreateParameter('Country', adChar, adParamInput, 15)

oCommand.Parameters.Append(oParameter)

* get the value for the country into lcCountry

oParameter.Value = lcCountry

oCommand.CommandText = 'select * from customers where country = ?'

oRS = oCommand.Execute()

Notice the slight difference in syntax between ADO and VFP: the ? here isn’t followed by a variable name
as it would be in a VFP parameterized query. Also notice that unlike the previous examples, this time
Execute returns a recordset.

One problem with this approach: the recordset is read-only, server-side, and forward-only. If you want to
control the attributes of the recordset, create a RecordSet object, set its properties as desired, then pass
the Command object to the RecordSet’s Open method.

oRS = createobject('ADODB.RecordSet')

oRS.CursorLocation = adUseClient

oRS.CursorType = adOpenStatic

oRS.Open(oCommand)

You can create multiple parameter objects. The order in which they’re added to the Parameters collection
is the order in which they’re applied to ? in the command.

Fabricated RecordSets
In addition to opening a recordset from a data source, you can create a recordset on the fly. Use the
Append method to add fields to the Fields collection of the RecordSet object, passing it the name of the
field, the data type, and, if necessary, the size. As I mentioned earlier, data types are numeric values, so
use the constants defined in ADOVFP.H. Here’s an example that creates a recordset with three fields:

loRS = createobject('ADODB.RecordSet')

loRS.Fields.Append('Part', adChar, 30)

loRS.Fields.Append('Quantity', adUnsignedInt)

loRS.Fields.Append('Level', adUnsignedTinyInt)

loRS.Open()

You can then add records to the recordset and pass the recordset to other objects as desired. This is often
used in VFP to return a result set from some operation to something expecting an ADO RecordSet.

Hierarchical RecordSets
ADO has an incredibly cool capability: it can create hierarchical recordsets. A hierarchical recordset has
records from both parent and child (and grandchild and grandgrandchild, etc.) tables. The way it works is
that one of the fields in the recordset actually contains another recordset. Besides having all the records in
a single hierarchical object, hierarchical recordsets have another advantage: they only require one round-

trip to the server; getting individual recordsets would each require one round-trip. Also, it avoids sending
redundant data (if you do a join, fields from the parent table are repeated in every record).

To create a hierarchical recordset, use the MSDataShape provider. Here’s an example of how to open a
datasource using this provider:

oConn.Open('Provider = MSDataShape;' + ;

 'Data Source=D:\Program Files\Microsoft Visual Studio\VB98\Nwind.mdb;' + ;

 'Data Provider=Microsoft.Jet.OLEDB.4.0')

You then use the Shape language (similar to SQL) to open the recordset. Shape is beyond the scope of
this document, but here’s an example that opens a recordset showing all fields from the Customers table,
and within each customer record, all fields from the Orders table for orders for the customer, and within
each order, all fields from Order Details table for details for the order.

oRS.Open('shape {select * from Customers} as Customers ' + ;

 'append ((shape {select * from Orders} as Orders ' + ;

 'append ({select * from `Order Details`} as OrderDetails ' + ;

 'relate OrderID to OrderID) as OrderDetails) as Orders ' + ;

 'relate CustomerID to CustomerID) as Orders', oConn)

Like the Microsoft FlexGrid control I discussed earlier, the Hierarchical FlexGrid can be bound to an ADO
recordset. The difference between these controls is that the Hierarchical FlexGrid can properly displayed a
hierarchical recordset, using TreeView-like plus signs to drill down into a child recordset. Run the
HIERFLEXGRID sample form to see how this works.

RDS
ADO allows access to data on the same machine or network as the application. Remote Data Services
(RDS) allows access to data over the Internet via HTTP. RDS has a different object model than ADO, but
supports similar capabilities.

The main client-side object is the RDS DataControl (ProgID RDS.DataControl). You need to set three
properties of the DataControl object to connect to a remote data source:

 Server: the address for the server

 Connect: the connection string

 SQL: the command to execute

After setting these properties, call the Refresh method to connect to the server and create a recordset in
the RecordSet property. Behind the scenes, the following happens:

 The DataControl object instantiates an RDS.DataSpace object (the RDS equivalent of an ADO

Connection object).

 The DataSpace object by default instantiates an RDSServer.DataFactory object on the server (other

COM objects can also be used).

 The DataFactory object on the server creates an ADO recordset and converts it to a text stream which

is returned by the server to the client.

 The DataSpace object converts the text stream to a recordset object and returns it to the DataControl

object.

Here’s an example:

oDC = createobject('RDS.DataControl')

oDC.Server = 'http://www.myserver.com'

oDS.Connect = 'dsn=Northwind'

oDS.SQL = 'select * from customers'

oDS.Refresh()

? oDS.RecordSet.Fields('CompanyName').Value

You can work with the recordset as you would any other ADO client-side recordset. To update the data
source with changes made to the recordset, call the SubmitChanges method of the DataControl object.

Instead of working with the DataControl object, you can use the ADO Connection object by specifying MS
Remote as the provider and the server address in the connection string. Here’s an example:

oConn = createobject('ADODB.Connection')

oConn.Provider = 'MS Remote.1'

oConn.ConnectionString = 'Remote server=http://www.myserver.com;' + ;

 'dsn=Northwind'

oConn.Open()

oRS = createobject('ADODB.RecordSet')

oRS.Open('select * from customers', oConn)

VFPCOM.DLL
VFP 6 Service Pack 3 introduced a new tool for VFP developers: VFPCOM.DLL. This COM object has several
methods useful with ADO, including:

 RSToCursor: converts an ADO RecordSet to a VFP cursor, usually so it can be bound to a grid. Pass the

RecordSet object as the first parameter and the name of the cursor as the second. The Browse button
in the ADO Test Bench form shows an example of this.

 CursorToRS: converts a VFP cursor to an ADO RecordSet. The RecordSet object must already be

instantiated; pass a reference to it as the first parameter and the name of the cursor as the second.
Currently, CursorToRS has a bug in that it doesn’t respect filters, deleted records, or SET KEY settings
(it simply copies all records from the cursor to the RecordSet), so you’ll need to handle that if it’s an
issue.

 BindEvents: allows a VFP object to respond to events of COM objects. ADO fires events in lots of

places, such as while a recordset is being fetched and when it’s done. Unfortunately, by itself, VFP has
no mechanism to receive notification about such events because, unlike Visual Basic, it has no WITH
EVENTS command. VFPCOM’s BindEvents method allows you to bind a VFP object to a COM object so
when the COM object fires an event, a method of the VFP object with the same name as the event will
be called. BindEvents is beyond the scope of this document; see the documentation that accompanies
VFPCOM for more information.

The ProgID for VFPCOM is VFPCOM.ComUtil. Here’s an example of the RSToCursor method:

oCom = createobject('VFPCOM.ComUtil')

oCom.RSToCursor(oRS, 'tempcursor')

browse

Summary
Microsoft’s UDA strategy, including OLE DB, ADO, and RDS, is the data mechanism of choice for Windows
DNA applications. It’s easy to use in VFP, both for getting data from other platforms and for sending data
from VFP components. This document only scratched the surface of what’s in ADO today, so be sure to
look at the references listed below to learn more.

References
The “bible” of ADO information for VFP developers is John Petersen’s excellent “ADO Jumpstart for
Microsoft Visual FoxPro Developers”, available at msdn.microsoft.com/library/techart/adojump.htm.

Microsoft Data Access SDK documentation is available at www.microsoft.com/data.

http://msdn.microsoft.com/library/techart/adojump.htm
http://www.microsoft.com/data

“Microsoft Visual InterDev 6.0 Web Technologies Reference” from Microsoft Press has a large ADO
reference section.

A lot of books are now available on ADO. One good one is “ADO 2.1 Programmer’s Reference” from Wrox
Press, but there are a lot of others available.

Acknowledgements
I would like to acknowledge the following people who directly or indirectly helped with the information in
this document: John Petersen, Miriam Liskin, and John Koziol.

Copyright © 2000 Doug Hennig. All Rights Reserved

Doug Hennig
Partner
Stonefield Systems Group Inc.
1112 Winnipeg Street, Suite 200
Regina, SK Canada S4R 1J6
Phone: (306) 586-3341
Fax: (306) 586-5080
Email: dhennig@stonefield.com
World Wide Web: www.stonefield.com

Biography
Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the
author or co-author of Stonefield’s add-on tools for FoxPro developers, including Stonefield Database
Toolkit, Stonefield Query, and Stonefield Reports. He is also the author of “The Visual FoxPro Data
Dictionary” in Pinnacle Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at the 1997,
1998, and 1999 Microsoft FoxPro Developers Conferences (DevCon) as well as user groups and regional
conferences all over North America. He is a Microsoft Most Valuable Professional (MVP) and Microsoft
Certified Professional (MCP).

mailto:dhennig@stonefield.com
http://www.stonefield.com/

