
Introduction to GDIPlusX 

Doug Hennig 
Stonefield Software Inc. 

2323 Broad Street 
Regina, SK Canada S4P 1Y9 

Email: dhennig@stonefield.com 
Web sites: www.stonefield.com 

www.stonefieldquery.com 
Blog: DougHennig.BlogSpot.com 

Twitter: DougHennig 
 

 

 

GDIPlusX is a VFPX project that exposes GDI+ to VFP applications as a set of VFP class 
libraries. GDIPlusX makes it easy to add new graphical abilities to your applications, allowing 
you to provide a fresher and more powerful user interface. This session provides an 
introduction to GDIPlusX, going through the basics of GDI+, looking at the classes in GDIPlusX, 
and going through various samples of how to use GDIPlusX in VFP applications. 

mailto:dhennig@stonefield.com
http://www.stonefield.com/
http://www.stonefieldquery.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig


Introduction 
GDI+ is the part of Windows responsible for displaying information on devices such as 
screens and printers. As its name suggests, GDI+ is the successor to Graphics Device 
Interface (GDI), the graphics application programming interface (API) included with earlier 
versions of Windows.  

GDI+ allows developers to display information on a display device without worrying about 
the details of the device. The developer calls methods of the GDI+ classes and those 
methods in turn make the appropriate calls to specific device drivers. GDI+ insulates the 
application from the graphics hardware, and this insulation allows developers to create 
device-independent applications. 

Although the GDI+ API is well-documented, calling it from VFP applications can be quite 
complex, as you have to keep track of things such as handles for every object you use. Also, 
the API consists of function calls, whereas most VFP developers prefer to work with 
objects. Fortunately, three expert VFP developers, Craig Boyd, Bo Durban, and Cesar 
Chalom, spent a lot of time and hard work to create a set of wrapper classes for the GDI+ 
classes. This set is called GDIPlusX. 

One of the most interesting things about GDIPlusX is that it was designed to as closely 
match as possible the GDI+ wrapper classes the .Net framework provides. The class, 
property, and method names of GDIPlusX mirror those in the System.Drawing namespace 
in .Net. The advantage of this is that VFP developers can use the thousands of examples of 
GDI+ code available for .Net in VFP with very little translation required. 

GDIPlusX is a project of VFPX (http://vfpx.codeplex.com), the collaborative community site 
for VFP add-ons and extensions. You can download GDIPlusX from its page on VFPX and 
review the many sample and reference articles available. The sample code accompanying 
this document includes the latest version of GDIPlusX (as of the time of writing). 

Using GDIPlusX in your applications 
Although you can add the PRGs containing the classes that make up GDIPlusX to your 
project and include them in your executable, GDIPlusX is also provided as a compiled APP, 
System.APP, you can simply distribute with your application. Somewhere in your 
application, DO System.APP. That adds a new member to _SCREEN, System, which is an 
instance of the xfcSystem class, defined in System.PRG. From there, you simply reference 
_SCREEN.System and VFP provides full IntelliSense on its members. 

GDIPlusX concepts 
GDIPlusX provides an object-oriented wrapper for the classes in GDI+. Like the .Net classes, 
GDIPlusX is organized into a set of “namespaces.” The concept of a namespace doesn’t 
really exist in VFP, but think of them as a containership hierarchy. At the top of the 

http://vfpx.codeplex.com/


hierarchy is the System class. It doesn’t have many properties or methods itself, but its 
three main contained classes, Drawing, Imaging, and Text do. 

GDIPlusX methods are quite flexible in terms of the parameters they accept. For example, 
one way to draw a rectangle is to pass the DrawRectangle method of a Graphics object the 
location and size of the rectangle using four values: the X and Y location of the upper left 
corner of the rectangle and the width and height: 

loGfx.DrawRectangle(loPen, 20, 20, 420, 220) 

However, we can also create a GDIPlusX Rectangle object with the same location and size 
and pass it to DrawRectangle instead: 

loRect = _screen.System.Drawing.Rectangle.New(20, 20, 420, 220) 
loGfx.DrawRectangle(loPen, loRect) 

Some method parameters must be objects. For example, in the two DrawRectangle 
statements, the first parameter is a reference to a Pen object which tells DrawRectangle 
how wide to draw and with which color. Colors are specified using a GDIPlusX Color object, 
either one of the members of the Color class (such as System.Drawing.Color.Red) or by 
passing the desired colors to one of the methods of the Color class, such as FromRGB: 

loColor = _screen.System.Drawing.Color.FromRGB(rgb(100, 150, 175)) 

Not all parameters are required in every method. Default values, such as 0 for X and Y 
values, are used in place of missing parameters. 

Many numeric properties of VFP objects must be one of a small range of fixed values. For 
example, Form.BorderStyle can only be 0 (no border), 1 (fixed single), 2 (fixed dialog), or 3 
(sizable). Rather than having to remember that 3 means “sizable,” the Properties window 
shows you a drop-down list of the possible values and their meanings. You can think of 
these values as being “enumerations.” VFP doesn’t have the concept of enumerations, but 
.Net does, so rather than having to remember the proper values for each property, you set 
the property to one of the possible enumerations. Fortunately, the creators of GDIPlusX 
provide us with something similar: they’ve exposed members of some classes as if they 
were enumerations. 

For example, the PageUnit property of the Graphics object determines whether drawing 
units are in pixels, inches, millimeters, and so on. Rather than having to remember that 4 
means inches, you can use the Inch member of System.Drawing.GraphicsUnit, which 
contains 4. IntelliSense makes it seem like VFP supports enumerations, as you can see in 
Figure 1. 



 

Figure 1. GDIPlusX has enumerations that make setting the values of properties much easier. 

The Graphics object 
All drawing in GDI+ is done with a Graphics object. In GDIPlusX, this is represented by the 
xfcGraphics class in System.Drawing.PRG. 

There are several ways you can obtain a Graphics object: 

 From a window handle: pass System.Drawing.Graphics.FromHWnd the handle for 
the window, such as _SCREEN.HWnd to draw to the screen or MyForm.HWnd to 
draw directly onto a form. 

 From a device context handle: pass System.Drawing.Graphics.FromHDC the device 
context handle to draw to that device. This isn’t commonly used with GDIPlusX. 

 From an image: pass System.Drawing.Graphics.FromImage a reference to a 
previously created GDIPlusX image object. 

 From nothing: call System.Drawing.Graphics.New to obtain a Graphics object that 
isn’t connected to anything. This obviously isn’t terribly useful unless you can later 
connect the object to a drawing surface. One use of this is in a ReportListener: you 
can set the Handle property of the Graphics object to the content of the 
GDIPlusGraphics property of the ReportListener to allow the Graphics object to 
draw on the same image as the ReportListener does. 

We’ll see lots of examples of obtaining and using GDIPlusX Graphics objects in this 
document. 

Drawing units 
The position of things you draw in GDI+ is determined by X and Y coordinates, where X is 
the distance to the right of the left edge and Y is the distance down from the top edge of the 
drawing surface. By default, GDI+ uses pixels as the units for coordinates, but since it’s a 
device independent graphics system, it can also use other units, such as millimeter, inches, 
and points (1/72 of an inch). Unlike pixels, which are dependent on the resolution of the 
device, drawings made with these other units will be the same size on different devices, 



such as the screen and a printer. To change the units used for drawing, set the PageUnit 
property of the Graphics object to an enumeration of System.Drawing.GraphicsUnit. 

The following code, taken from Units.PRG, shows how to draw using different units. 
Although we haven’t discussed pens, rectangles, or how to draw yet, the code should be 
easy to follow. The results are shown in Figure 2. 

local loGFX as xfcGraphics of Source\System.Drawing.PRG, ; 
 loPen as xfcPen of Source\System.Drawing.PRG 
 
* Ensure GDIPlusX is available. 
 
do System.app 
clear 
with _screen.System.Drawing as xfcDrawing of Source\System.Drawing.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Create a red pen. The New method of System.Drawing.Pen creates a pen using a 
* specified color and width. Note that the color is specified as a color 
* brush. In this case, we'll use the Red member of System.Drawing.Color. 
 
 loPen = .Pen.New(.Color.Red, 6) 
 
* Draw a rectangle using the pen. The other parameters for DrawRectangle  
* specify the X and Y location of the upper-left corner and its width and 
* height. 
 
 loGfx.DrawRectangle(loPen, 10, 10, 200, 100) 
 
* Change the drawing units to inches, create another pen, and draw a 4" by 1" 
* rectangle. 
 
 loGfx.PageUnit = .GraphicsUnit.Inch 
 loPen = .Pen.New(.Color.Blue, 0.1) 
 loGfx.DrawRectangle(loPen, 0.1, 1.3, 4.0, 1.0) 
 
* Draw an 80 x 60 mm rectangle. 
 
 loGfx.PageUnit = .GraphicsUnit.Millimeter 
 loPen = .Pen.New(.Color.Green, 1.0) 
 loGfx.DrawRectangle(loPen, 4.0, 63.0, 80.0, 60.0) 
endwith 



 

Figure 2. You can specify what units are used for values in GDIPlusX. 

Points, sizes, and rectangles 
GDIPlusX provides several classes representing a location (a point), which has X and Y 
components, a size, which has height and width components, and a rectangle, which has 
both location and size components. 

Points 

A coordinate is represented in GDIPlusX by an instance of either a Point or PointF object 
(xfcPoint and xfcPointF classes, defined in System.Drawing.PRG). Both of these objects have 
X and Y properties. The difference between Point and PointF is that Point stores values as 
integers while PointF stores floating point values. 

Many GDIPlusX methods can accept either X and Y values or Point/PointF objects. For 
example, the following code, taken from PointSizeRectangle.PRG, draws two lines on the 
screen, the first using X and Y values and the second a Point object: 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Draw a line using X and Y values. 
 



 loGfx.DrawLine(.Pens.Black, 10, 10, 200, 200) 
 
* Draw a line using Point objects. 
 
 loPoint1 = .Point.New(10, 20) 
 loPoint2 = .Point.New(200, 210) 
 loGfx.DrawLine(.Pens.Black, loPoint1, loPoint2) 
endwith 

Sizes 

A size is an object specifying the height and width of something. Like points, there are two 
size objects in GDIPlusX, Size and SizeF (xfcSize and xfcSizeF in System.Drawing.PRG), both 
of which have Height and Width properties. We’ll see the use of sizes later. 

Rectangles 

You can specify the location and size of a drawing object using a Rectangle or RectangleF 
object (xfcRectangle and xfcRectangleF in System.Drawing.PRG). To create a rectangle, call 
System.Drawing.Rectangle.New or System.Drawing.RectangleF.New, passing the X and Y 
values for the upper-left corner of the rectangle, followed by the width and height. The 
values are written to the X, Y, Width, and Height properties, respectively, of the 
Rectangle/RectangleF object. Rectangles have other useful properties as well: Location, 
which is a Point or PointF object containing the X and Y values; Size, a Size or SizeF object 
containing the Height and Width values; and Left, Right, Top, and Bottom, which contain 
the appropriate values for the rectangle. 

The following code, which was taken from PointSizeRectangle.PRG, shows how to create 
and use a rectangle: 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Draw a red rectangle using X, Y, height, and width values. 
 
 loGfx.DrawRectangle(.Pens.Red, 20, 20, 420, 220) 
 
* Draw a blue rectangle using a Rectangle object. 
 
 loRect = .Rectangle.New(40, 40, 100, 100) 
 loGfx.DrawRectangle(.Pens.Blue, loRect) 
endwith 

Rectangles have some useful methods. Contains returns .T. if the specified rectangle 
(specified as X, Y, width, and height values or another rectangle object) is enclosed in the 
current rectangle. Union returns a new rectangle large enough to encompass the two 
specified rectangles. Intersect replaces the rectangle with the intersection of itself and the 



specified rectangle. IntersectsWith returns .T. if the rectangle intersects with the specified 
rectangle. Code in PointSizeRectangle.PRG shows some of these methods: 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a rectangle. 
 
 loRect = .Rectangle.New(40, 40, 100, 100) 
 
* Create a new rectangle and see if it's contained with the first one. 
 
 loRect2 = .Rectangle.New(60, 60, 10, 10) 
 messagebox('loRect2 ' + iif(loRect.Contains(loRect2), 'is', 'is not') + ; 
  ' contained in loRect') 
 
* Create a rectangle that unions two others. 
 
 loRect2 = .Rectangle.New(60, 60, 200, 200) 
 loRect3 = loRect2.Union(loRect, loRect2) 
 messagebox('Top: ' + transform(loRect3.Top) + chr(13) + ; 
  'Left: ' + transform(loRect3.Left) + chr(13) + ; 
  'Bottom: ' + transform(loRect3.Bottom) + chr(13) + ; 
  'Right: ' + transform(loRect3.Right), 0, 'After Union') 
 
* See if the rectangles intersect. 
 
 messagebox('loRect and loRect2 ' + ; 
  iif(loRect.IntersectsWith(loRect2), 'do', 'do not') + ' intersect') 
endwith 

 

Stroking and filling 
Drawing a line or shape on a Graphics object is called stroking. A pen object specifies how a 
line or shape is drawn: the color of the line, the width of the line, and so on. Filling means 
filling an enclosed shape, such as a rectangle or ellipse, with a color, pattern, or image. A 
brush object specifies how to fill a shape. 

The Graphics object has methods for drawing a filling a variety of lines and shapes. The 
Draw methods expect the first parameter is a pen object and the Fill methods expect a 
brush object; we’ll discuss pens and brushes later in this document. 

 DrawLine(oPen, oPoint, oPoint) or DrawLine(oPen, X1, Y1, X2, Y2): draws a line 
between the two points. 

 DrawRectangle(oPen, X, Y, Width, Height) or DrawRectangle(oPen, 
oRectangle): draws a rectangle, starting from the specified upper-left corner, of the 
desired height and width. 

 FillRectangle(oBrush, X, Y, Width, Height) or FillRectangle(oPen, oRectangle): 
fills a rectangle using the specified brush. 



 DrawEllipse(oPen, X, Y, Width, Height) or DrawEllipse(oPen, oRectangle): 
draws a ellipse bounded by the specified rectangle. 

 FillEllipse(oBrush, X, Y, Width, Height) or FillEllipse(oPen, oRectangle): fills an 
ellipse. 

 DrawPolygon(oPen, aPoints): draws a polygonal shape. The 2-dimensional array 
contains the X and Y coordinates of the corner points; DrawPolygon draws lines 
between the points. 

 FillPolygon(oBrush, aPoints): fills a polygon. 

 DrawCurve(oPen, aPoints): draws a type of curve called a “cardinal spline;” see 
http://www.bobpowell.net/cardinalspline.htm for information about and 
http://msdn.microsoft.com/en-
us/library/system.drawing.graphics.drawcurve(VS.80).aspx for details about 
additional parameters. 

 DrawClosedCurve(oPen, aPoints): draws a closed curve; see 
http://msdn.microsoft.com/en-
us/library/system.drawing.graphics.drawclosedcurve(VS.80).aspx for details about 
additional parameters. 

 DrawBezier(oPen, oPoint1, oPoint2, oPoint2, oPoint4) or DrawBezier(oPen, 
X1, Y1, X2, Y2, X3, Y3, X4, Y4): draws a Bezier curve; see 
http://www.bobpowell.net/bezier.htm for information on Bezier curves. 

 DrawPath(oPen, oPath): draws along a path, which is a collection of lines and 
shapes; see http://www.bobpowell.net/path.htm for information about paths. 

 FillPath(oBrush, oPath): fills a path. 

 DrawArc(oPen, oRectangle, nStartAngle, nSweepAngle) or DrawArc(oPen, X, Y, 
Width, Height, nStartAngle, nSweepAngle): draws an arc segment, which is a 
section of an ellipse, bounded by the specified rectangle, starting at the specified 
start angle and sweeping to the specified end angle. 

 DrawPie(oPen, oRectangle, nStartAngle, nSweepAngle) or DrawPie(oPen, X, Y, 
Width, Height, nStartAngle, nSweepAngle): draws a pie-shaped area. Similar to 
DrawArc, except it also draws two lines, one from each end of the arc to the center of 
the ellipse specified by the rectangle. 

 FillPie(oBrush, oRectangle, nStartAngle, nSweepAngle) or FillPie(oBrush, X, Y, 
Width, Height, nStartAngle, nSweepAngle): fills a pie-shaped area. 

 FillRegion(oBrush, oRegion): fills a region; see 
http://www.bobpowell.net/whatregion.htm for information on regions. 

You can combine calls to some of these methods. For example, if you want a red rectangle 
to have a black border, call FillRectangle with a red pen and DrawRectangle with a black 
one and the same rectangle dimensions. 

http://www.bobpowell.net/cardinalspline.htm
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.drawcurve(VS.80).aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.drawcurve(VS.80).aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.drawclosedcurve(VS.80).aspx
http://msdn.microsoft.com/en-us/library/system.drawing.graphics.drawclosedcurve(VS.80).aspx
http://www.bobpowell.net/bezier.htm
http://www.bobpowell.net/path.htm
http://www.bobpowell.net/whatregion.htm


Here’s an example, taken from Graphics.PRG, which shows several of these methods: 

local loGFX as xfcGraphics of Source\System.Drawing.PRG, ; 
 loPen as xfcPen of Source\System.Drawing.PRG, ; 
 laPoints[5] 
 
* Ensure GDIPlusX is available. 
 
do System.app 
clear 
with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Draw a line. System.Drawing.Pens provides a set of pens with pre-defined 
* colors, such as black. The other parameters for DrawLine are the X and Y 
* locations of the endpoints of the line. 
 
 loGfx.DrawLine(.Pens.Black, 10, 10, 400, 400) 
 
* Fill an ellipse using a blue brush. System.Drawing.Brushes provides a set of 
* brushes with pre-defined colors, such as blue. The other parameters are the X 
* and Y location of the upper-left corner of the ellipse and its width and 
* height. 
 
 loGfx.FillEllipse(.Brushes.Blue, 30, 30, 400, 200) 
 
* Create a red pen. The New method of System.Drawing.Pen creates a pen using a 
* specified color and width. Note that the color is specified as a color 
* brush. In this case, we'll use the Red member of System.Drawing.Color. 
 
 loPen = .Pen.New(.Color.Red, 2) 
 
* Draw a rectangle using the pen. As with ellipses, the parameters specify the 
* X and Y location of the upper-left corner and its width and height. 
 
 loGfx.DrawRectangle(loPen, 20, 20, 420, 220) 
 
* Create a closed polygon, fill it with tomato red, and stroke it with a 
* 4-pixel tan pen. 
 
 laPoints[1] = .Point.New(220, 250) 
 laPoints[2] = .Point.New(400, 300) 
 laPoints[3] = .Point.New(400, 250) 
 laPoints[4] = .Point.New(220, 300) 
 laPoints[5] = .Point.New(220, 250) 
 loGfx.FillPolygon(.Brushes.Tomato, @laPoints) 
 loGfx.DrawPolygon(.Pen.New(.Color.Tan, 4), @laPoints) 
endwith 



Working with color 
VFP developers are usually familiar with color settings. The native RGB() function returns a 
numeric color value from three specified integers (0 – 255) representing the red, green, 
and blue components of the color. GDI+ adds an additional layer: the transparency of the 
color, also known as the alpha value or alpha channel. Alpha is also specified using an 
integer from 0 – 255, where 0 is completely transparent and 255 is opaque. 

GDIPlusX has a Color object (xfcColor in System.Drawing.PRG) which represents a color. A 
color object is most commonly used as a parameter for creating brushes and pens. Its R, G, 
B, and A properties contain the red, green, blue, and alpha values of the color, and ARGB 
contains the combined values. There are several ways you can create a color object: 

 Like the RGB() function, the FromRGB method of System.Drawing.Color accepts red, 
green, and blue values, but returns a color object of the specified color. 

 FromARGB accepts alpha, red, green, and blue values and returns a color object. 
Alternatively, it can accept an alpha value and a color object for the red, green, and 
blue values. 

 FromName accepts a known color name as a string, such as “red,” “green,” or 
“black.” The known names and their colors are shown in Figure 3, which was taken 
from http://www.bobpowell.net/colour.htm. 

 Color contains members with the known names, such as 
System.Drawing.Color.Firebrick and System.Drawing.Color.Gold, which return color 
objects with those colors. 

 FromKnownColor accepts a numeric value representing either a known color or a 
system color (such as the color for the border of active windows), and returns the 
appropriate color object. You don’t have to know the numeric values for the colors; 
instead, use one of the enumerations of System.Drawing.KnownColor, such as 
System.Drawing.KnownColor.ActiveBorder or System.Drawing.KnownColor.Green. 

http://www.bobpowell.net/colour.htm


 

Figure 3. Known color names and their colors. 

In addition to the R, G, B, and A properties, Color has several other properties you may find 
useful. Name contains the known name of the color if such a name was used to create the 
color object. IsKnownColor is .T. if the color is known. IsSystemColor is .T. if the color is a 
system color. The Equals method returns .T. if the specified color object is the same color as 
the current object. 

Color.PRG starts by drawing ellipses and rectangles in random colors at random places on 
the screen (see Figure 4), then draws a color chart similar to that in Figure 3. 

local loGFX as xfcGraphics of Source\System.Drawing.PRG, ; 
 loBrush as xfcBrush of Source\System.Drawing.PRG 
 
* Ensure GDIPlusX is available. 
 
do System.app 



clear 
with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Seed the random number generator. 
 
 rand(-1) 
 
* Draw filled ellipses and rectangles of random colors and transparencies at 
* random places on the screen. 
 
 for lnI = 1 to 100 
  loBrush = .SolidBrush.New(.Color.FromARGB(rand() * 255, rand() * 255, ; 
   rand() * 255, rand() * 255)) 
  if mod(int(rand() * 100), 2) = 1 
   loGfx.FillRectangle(loBrush, rand() * _screen.Width, ; 
    rand() * _screen.Height, rand() * 200, rand() * 200) 
  else 
   loGfx.FillEllipse(loBrush, rand() * _screen.Width, ; 
    rand() * _screen.Height, rand() * 200, rand() * 200) 
  endif mod(int(rand() * 100), 2) = 1 
 next lnI 
 
* Wait for a keypress, then clear the screen. 
 
 wait window 
 clear 
 
* Create a color chart. Start by creating a font object and starting X and Y 
* values. 
 
 loFont = .Font.New('Segoe UI', 10) 
 lnX    = 0 
 lnY    = 20 
 for lnI = 1 to 174 && there are 174 known colors 
 
* Create a color object from the known color number and get its name. 
 
  loColor = .Color.FromKnownColor(lnI) 
  lcName  = loColor.Name 
 
* Create a brush of the specified color and create a small filled rectangle. 
 
  loBrush = .SolidBrush.New(loColor) 
  loGfx.FillRectangle(loBrush, lnX, lnY, 10, 10) 
 
* Draw the name of the color beside the rectangle. 
 
  loGfx.DrawString(lcName, loFont, .Brushes.Black, lnX + 10, lnY - 4) 
 
* Increment the Y position and every 20 colors, move to the next column. 
 



  if lnI/20 = int(lnI/20) 
   lnX = lnX + 150 
   lnY = 20 
  else 
   lnY = lnY + 20 
  endif lnI/20 = int(lnI/20) 
 next lnI 
endwith 

 

Figure 4. Color.PRG shows how to use different colors to draw objects. 

Pens 
Pens are used to stroke lines and shapes. Pens have several attributes that control how 
they are used, such as width, style, color, and end caps. You can even create a compound 
pen, one that has sections that draw and others that don’t; that isn’t covered in this 
document, but you can see http://www.bobpowell.net/pensone.htm for details. 

Standard pens 

As we’ve seen earlier, System.Drawing contains a set of standard pens, one for each system 
color. They are referenced using System.Drawing.Pens.ColorName, where ColorName is the 
name of the desired color. For example, PointSizeRectangle.PRG has a statement that draws 
a line using a black pen: 

loGfx.DrawLine(.Pens.Black, 10, 10, 200, 200) 

The pens are all one unit wide. The type of unit depends on the setting of the 
Graphics.PageUnit property we saw earlier. 

http://www.bobpowell.net/pensone.htm


Pen width 

If you want to draw using a pen wider than one unit, create a new pen using 
System.Drawing.Pen.New, specifying a color and pen width. For example, code we saw 
earlier in Graphics.PRG created two pens, one (a 2-pixel red pen) which was stored in a 
variable and the other (a 4-pixel tan pen) passed directly to a draw method: 

loPen = .Pen.New(.Color.Red, 2) 
loGfx.DrawPolygon(.Pen.New(.Color.Tan, 4), @laPoints) 

End caps 

The StartCap and EndCap properties determine what shapes are drawn at the ends of lines 
drawn by the pen. Set the values of these properties to enumerations of 
System.Drawing.Drawing2D.LineCap, such as System.Drawing.Drawing2D.LineCap.Round. 
StartCap and EndCap can be the same or different. The default value for both properties is 
System.Drawing.Drawing2D.LineCap.Flat. 

The following code, taken from Pens.PRG, creates the lines shown in Figure 5. Note that all 
lines are specified as the same length yet some appear longer. The end caps are added to 
the ends of the lines, so larger ones, such as the various anchor caps, extend beyond the 
line. 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Draw some reference lines. 
 
 loGfx.DrawLine(.Pens.Black, 100, 0, 100, 600) 
 loGfx.DrawLine(.Pens.Black, 500, 0, 500, 600) 
 
* Create a 20-pixel red pen. 
 
 loPen = .Pen.New(.Color.Red, 20) 
 
* Draw lines with various caps. 
 
 loPen.StartCap = .Drawing2D.LineCap.Flat 
 loPen.EndCap   = .Drawing2D.LineCap.Flat 
 loGfx.DrawLine(loPen, 100, 100, 500, 100) 
 
 loPen.StartCap = .Drawing2D.LineCap.Square 
 loPen.EndCap   = .Drawing2D.LineCap.Square 
 loPen.Color    = .Color.Green 
 loGfx.DrawLine(loPen, 100, 130, 500, 130) 
 
 loPen.StartCap = .Drawing2D.LineCap.Round 
 loPen.EndCap   = .Drawing2D.LineCap.Round 
 loPen.Color    = .Color.Orange 



 loGfx.DrawLine(loPen, 100, 160, 500, 160) 
 
 loPen.StartCap = .Drawing2D.LineCap.Triangle 
 loPen.EndCap   = .Drawing2D.LineCap.Triangle 
 loPen.Color    = .Color.Purple 
 loGfx.DrawLine(loPen, 100, 190, 500, 190) 
 
 loPen.StartCap = .Drawing2D.LineCap.SquareAnchor 
 loPen.EndCap   = .Drawing2D.LineCap.SquareAnchor 
 loPen.Color    = .Color.Teal 
 loGfx.DrawLine(loPen, 100, 220, 500, 220) 
 
 loPen.StartCap = .Drawing2D.LineCap.RoundAnchor 
 loPen.EndCap   = .Drawing2D.LineCap.RoundAnchor 
 loPen.Color    = .Color.Blue 
 loGfx.DrawLine(loPen, 100, 260, 500, 260) 
 
 loPen.StartCap = .Drawing2D.LineCap.DiamondAnchor 
 loPen.EndCap   = .Drawing2D.LineCap.DiamondAnchor 
 loPen.Color    = .Color.Pink 
 loGfx.DrawLine(loPen, 100, 300, 500, 300) 
 
 loPen.StartCap = .Drawing2D.LineCap.ArrowAnchor 
 loPen.EndCap   = .Drawing2D.LineCap.ArrowAnchor 
 loPen.Color    = .Color.Salmon 
 loGfx.DrawLine(loPen, 100, 340, 500, 340) 
 
* StartCap and EndCap don't have to be the same. 
 
 loPen.StartCap = .Drawing2D.LineCap.RoundAnchor 
 loPen.EndCap   = .Drawing2D.LineCap.ArrowAnchor 
 loPen.Color    = .Color.GoldenRod 
 loGfx.DrawLine(loPen, 100, 380, 500, 380) 
 endwith 

 



 

Figure 5. Pens support a variety of end caps. 

You can also create your own custom end caps, but that’s beyond the scope of this 
document. 

Line style 

You can create lines with dots and dashes by setting the DashStyle property to an 
enumeration of System.Drawing.Drawing2D.DashStyle, such as 
System.Drawing.Drawing2D.DashStyle.DashDot. In addition, you can specify the end cap 
used for the dots and dashes by setting the DashCap property to an enumeration of 
System.Drawing.Drawing2D.DashCap. The following code, taken from PenDashStyle.PRG, 
creates the drawing shown in Figure 6. 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Draw some reference lines. 
 
 loGfx.DrawLine(.Pens.Black, 100, 0, 100, 600) 
 loGfx.DrawLine(.Pens.Black, 500, 0, 500, 600) 
 
* Create a black pen. 
 
 loPen = .Pen.New(.Color.Black, 20) 
 
* Draw lines with various styles. 



 
 loPen.DashStyle = .Drawing2D.DashStyle.Dash 
 loGfx.DrawLine(loPen, 100, 100, 500, 100) 
 
 loPen.DashStyle = .Drawing2D.DashStyle.Dot 
 loPen.Color     = .Color.Blue 
 loGfx.DrawLine(loPen, 100, 130, 500, 130) 
 
 loPen.DashStyle = .Drawing2D.DashStyle.DashDot 
 loPen.Color     = .Color.Green 
 loGfx.DrawLine(loPen, 100, 160, 500, 160) 
 
 loPen.DashStyle = .Drawing2D.DashStyle.DashDotDot 
 loPen.Color     = .Color.Purple 
 loGfx.DrawLine(loPen, 100, 190, 500, 190) 
 
* Set the end caps for the dashes. 
 
 loPen.DashStyle = .Drawing2D.DashStyle.Dash 
 loPen.DashCap   = .Drawing2D.DashCap.Round 
 loPen.Color     = .Color.Teal 
 loGfx.DrawLine(loPen, 100, 220, 500, 220) 
 
 loPen.DashCap   = .Drawing2D.DashCap.Triangle 
 loPen.Color     = .Color.Salmon 
 loGfx.DrawLine(loPen, 100, 250, 500, 250) 
 
* Set the start, end, and dash caps. 
 
 loPen.SetLineCap(.Drawing2D.LineCap.ArrowAnchor, ; 
     .Drawing2D.LineCap.RoundAnchor, .Drawing2D.DashCap.Round) 
 loPen.Color = .Color.Orange 
 loGfx.DrawLine(loPen, 100, 280, 500, 280) 
endwith 

 

Figure 6. You can style pens with dashes and dots. 



Brushes 
Brushes fill an enclosed shape, such as a rectangle or ellipse, with a color, pattern, or image. 
There are several kinds of brushes, including solid (which fill with a solid color), hatch 
(which fill with a hatch pattern), gradient (which fill with gradient colors), and image 
(which fill from an image). Although some brushes are in the System.Drawing namespace, 
others are in System.Drawing.Drawing2D. 

Standard brushes 

As with pens, System.Drawing contains a set of standard solid brushes. They are referenced 
using System.Drawing.Brushes.ColorName, where ColorName is the name of the desired 
color. For example, PointSizeRectangle.PRG has statements that fill images with blue and 
tomato red brushes: 

loGfx.FillEllipse(.Brushes.Blue, 30, 30, 400, 200) 
loGfx.FillPolygon(.Brushes.Tomato, @laPoints) 

Solid brushes 

System.Drawing.SolidBrush.New creates a new brush that fills a region with the specified 
solid color. We saw the use of solid brushes earlier in Colors.PRG: 

loBrush = .SolidBrush.New(loColor) 
loGfx.FillRectangle(loBrush, lnX, lnY, 10, 10) 

Solid brushes can, of course, fill with solid or transparent colors. The code in 
SolidBrush.PRG creates the image shown in Figure 7. 

* Draw a red rectangle. 
 
 loBrush = .SolidBrush.New(.Color.Red) 
 loGfx.FillRectangle(loBrush, 50, 50, 300, 300) 
 
* Draw a blue ellipse. 
 
 loBrush.Color = .Color.Blue 
 loGfx.FillEllipse(loBrush, 0, 100, 400, 100) 
 
* Draw a semi-transparent ellipse. 
 
 loBrush.Color = .Color.FromARGB(80, .Color.Green) 
 loGfx.FillEllipse(loBrush, 0, 200, 400, 100) 



 

Figure 7. Solid brushes can fill with solid or transparent color. 

Hatch brushes 

System.Drawing.Drawing2D.HatchBrush.New creates a new brush that fills a region with 
the specified hatch pattern and color. The hatch pattern is an enumeration of 
System.Drawing.Drawing2D.HatchStyle, such as 
System.Drawing.Drawing2D.HatchStyle.Spheres. 

The code shown below, taken from HatchBrush.PRG, creates the hatch pattern chart shown 
in Figure 8. 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Create a hatch chart. Start by creating a font object and starting X and Y 
* values. 
 
 loFont = .Font.New('Segoe UI', 10) 
 lnX    = 0 
 lnY    = 20 
 
* Fill an array with the names of the hatch patterns. 
 
 laPatterns = _screen.System.Enum.GetNames(.Drawing2D.HatchStyle) 
 
* Create a listing of patterns. 
 
 for lnI = 1 to alen(laPatterns) 
 
* Create a brush of the specified pattern and create a small filled rectangle. 



* For some reason, the "Total" pattern appears in the enums but doesn't work. 
 
  lcName  = laPatterns[lnI] 
  if lcName <> 'TOTAL' 
   lnStyle = .Drawing2D.HatchStyle.&lcName 
   loBrush = .Drawing2D.HatchBrush.New(lnStyle, .Color.Black) 
   loGfx.FillRectangle(loBrush, lnX, lnY, 20, 20) 
 
* Draw the name of the color beside the rectangle. 
 
   loGfx.DrawString(lcName, loFont, .Brushes.Black, lnX + 20, lnY) 
 
* Increment the Y position and every 20 patterns, move to the next column. 
 
   if lnI/20 = int(lnI/20) 
    lnX = lnX + 250 
    lnY = 20 
   else 
    lnY = lnY + 30 
   endif lnI/20 = int(lnI/20) 
  endif lcName <> 'TOTAL' 
 next lnI 
endwith 

 

Figure 8. There are a lot of hatch patterns available for HatchBrush. 



Gradient brushes 

A gradient brush is one that changes color as it progresses across the shape it fills. As the 
brush starts filling, it uses one color, then transitions so by the end of the fill, a second color 
is used. For example, the form shown in Figure 11 has a gradient from blue at the top to 
white at the bottom. 

There are two types of gradient brushes: linear and path. A linear gradient brush changes 
color as it moves horizontally, vertically, or along a line. A path gradient brush changes 
color as it moves about a path. We won’t discuss path brushes in this document; see 
http://www.functionx.com/vcnet/gdi+/gradientbrush.htm and 
http://msdn.microsoft.com/en-us/library/7fswd1t7.aspx for information. 

To create a simple linear gradient brush, pass the following parameters to 
System.Drawing.Drawing2D.LinearGradientBrush.New: two points (or a rectangle), the 
starting color, the ending color, and the transition mode. The first point (or Top and Left 
properties of the rectangle) specifies the point where the drawing starts and the starting 
color is applied. The second point (or Bottom and Right properties of the rectangle) 
specifies the point where the drawing stops and the ending color is applied. The mode 
determines the direction of the transition and is an enumeration of 
System.Drawing.Drawing2D.LinearGradientMode: Horizontal, Vertical, ForwardDiagonal, 
or BackwardDiagonal. The default is horizontal if it isn’t specified. 

The following code, taken from LinearGradientBrush.PRG, creates the image shown in 
Figure 9. Notice what happens with the second rectangle when the gradient brush is 
smaller than the rectangle it fills. 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Draw a rectangle with a gradient from red to white. 
 
 loRect  = .Rectangle.New(50, 50, 300, 100) 
 loBrush = .Drawing2D.LinearGradientBrush.New(loRect, .Color.Red, ; 
  .Color.White) 
 loGfx.FillRectangle(loBrush, loRect) 
 
* Change the brush colors and draw a bigger rectangle. 
 
 loBrush.LinearColors[1] = .Color.Blue 
 loBrush.LinearColors[2] = .Color.Black 
 loGfx.FillRectangle(loBrush, 50, 200, 500, 100) 
endwith 

http://www.functionx.com/vcnet/gdi+/gradientbrush.htm
http://msdn.microsoft.com/en-us/library/7fswd1t7.aspx


 

Figure 9. Linear gradient brushes fill regions with gradient colors. 

If you want a different angle of transition than LinearGradientMode provides, specify an 
angle, measured clockwise from the X axis, instead of the mode and pass .T. for the final 
parameter. An angle of 0 is the same as horizontal, 45 is the same as ForwardDiagonal, 90 
is the same as Vertical, and 135 is the same as BackwardDiagonal. The following code, also 
taken from LinearGradientBrush.PRG, creates the image shown in Figure 10. 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Create a font object. 
 
 loFont = .Font.New('Segoe UI', 16) 
 
* Show various gradient modes. 
 
 lnMode  = .Drawing2D.LinearGradientMode.Horizontal 
 loRect  = .Rectangle.New(50, 50, 200, 200) 
 loBrush = .Drawing2D.LinearGradientBrush.New(loRect, .Color.Red, ; 
  .Color.White, lnMode) 
 loGfx.FillRectangle(loBrush, loRect) 
 loGfx.DrawString('Horizontal', loFont, .Brushes.Black, 50, 50) 
 
 lnMode  = .Drawing2D.LinearGradientMode.ForwardDiagonal 
 loRect  = .Rectangle.New(300, 50, 200, 200) 
 loBrush = .Drawing2D.LinearGradientBrush.New(loRect, .Color.Red, ; 
  .Color.White, lnMode) 
 loGfx.FillRectangle(loBrush, loRect) 
 loGfx.DrawString('ForwardDiagonal', loFont, .Brushes.Black, 300, 50) 
 
 lnMode  = .Drawing2D.LinearGradientMode.Vertical 
 loRect  = .Rectangle.New(50, 300, 200, 200) 



 loBrush = .Drawing2D.LinearGradientBrush.New(loRect, .Color.Red, ; 
  .Color.White, lnMode) 
 loGfx.FillRectangle(loBrush, loRect) 
 loGfx.DrawString('Vertical', loFont, .Brushes.Black, 50, 300) 
 
 lnMode  = .Drawing2D.LinearGradientMode.BackwardDiagonal 
 loRect  = .Rectangle.New(300, 300, 200, 200) 
 loBrush = .Drawing2D.LinearGradientBrush.New(loRect, .Color.Red, ; 
  .Color.White, lnMode) 
 loGfx.FillRectangle(loBrush, loRect) 
 loGfx.DrawString('BackwardDiagonal', loFont, .Brushes.Black, 300, 300) 
 
* Use an angle to customize how the transition works. 
 
 loRect  = .Rectangle.New(50, 550, 200, 200) 
 loBrush = .Drawing2D.LinearGradientBrush.New(loRect, ; 
  .Color.Red, .Color.White, 225, .T.) 
 loGfx.FillRectangle(loBrush, loRect) 
 loGfx.DrawString('Custom (225)', loFont, .Brushes.Black, 50, 550) 
endwith 



 

Figure 10. Different types of linear gradient brushes. 

GradientImage, in GradientImage.VCX, is a simple Image subclass you can drop on a form to 
display a gradient image. Set nFromColor and nToColor to the RGB values for the starting 
and ending colors for the gradient. You can also set nGradientMode to the desired gradient 
mode; the default is -1, which means automatically use a horizontal gradient if the image is 
wider than it is tall or a vertical gradient if it’s taller than wide. The Init method calls 
CreateGradientImage, which has the following code: 

local lnWidth, ; 
 lnHeight, ; 
 lnMode, ; 
 lnFromColor, ; 
 lnToColor, ; 
 loBitmap, ; 
 loRect, ; 
 loGfx, ; 
 loBrush 
 



* Ensure System is available. 
 
do System.app 
with _screen.System.Drawing 
 
* If we're supposed to automatically determine the gradient mode, use a 
* horizontal gradient if width > height or vertical if height > width. 
 
 lnWidth  = This.Width 
 lnHeight = This.Height 
 do case 
  case This.nGradientMode <> -1 
   lnMode = This.nGradientMode 
  case lnWidth > lnHeight 
   lnMode = .Drawing2D.LinearGradientMode.Horizontal 
  otherwise 
   lnMode = .Drawing2D.LinearGradientMode.Vertical 
 endcase 
 
* Get the colors to use. 
 
 if vartype(This.nFromColor) = 'N' 
  lnFromColor = This.nFromColor 
 else 
  lnFromColor = evaluate(This.nFromColor) 
 endif vartype(This.nFromColor) = 'N' 
 if vartype(This.nToColor) = 'N' 
  lnToColor = This.nToColor 
 else 
  lnToColor = evaluate(This.nToColor) 
 endif vartype(This.nToColor) = 'N' 
 
* Create a bitmap and a rectangle the size of this control. 
 
 loBitmap = .Bitmap.New(lnWidth, lnHeight) 
 loRect   = .Rectangle.New(0, 0, lnWidth, lnHeight) 
 
* Create a graphics object. 
 
 loGfx = .Graphics.FromImage(loBitmap) 
  
* Create a gradient brush. 
 
 loBrush = .Drawing2D.LinearGradientBrush.New(loRect, ; 
  .Color.FromRgb(lnFromColor), .Color.FromRgb(lnToColor), lnMode) 
 
* Fill the rectangle with the gradient brush. 
 
 loGfx.FillRectangle(loBrush, loRect) 
 
* Put the image into PictureVal. 
 
 This.PictureVal = loBitmap.GetPictureValFromHBitmap() 
endwith 
return 



GradientBackground is a subclass of GradientImage that simply sizes the image so it fills 
the form it’s on. Figure 11 shows an example of a form containing a GradientBackground 
object. 

 

Figure 11. Simply drop GradientBackground onto a form to create a gradient background on the form. 

Texture brushes 

System.Drawing.TextureBrush.New creates a texture brush, one that fills a region using an 
image. Pass it a reference to a loaded image. For example, this code, taken from 
TextureBrush.PRG, fills a couple of shapes from some images; the result is in Figure 12. 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Load an image, create a TextureBrush from it, and fill a rectangle. 
 
 loImage = .Bitmap.New('AntiqueGreen.jpg') 
 loBrush = .TextureBrush.New(loImage) 
 loGfx.FillRectangle(loBrush, 50, 50, 200, 200) 
 
* Use a different image in an ellipse. 
 
 loImage = .Bitmap.New('RoseTea.jpg') 
 loBrush = .TextureBrush.New(loImage) 
 loGfx.FillEllipse(loBrush, 250, 50, 200, 200) 
endwith 



 

Figure 12. TextureBrush fills a region with an image. 

The WrapMode property, which should be set to an enumeration of 
System.Drawing.Drawing2D.WrapMode, determines how the image is tiled. 

Combining pens and brushes 

Pens have a Brush property that determines how the pen fills the line it draws. By default, 
Brush contains a SolidBrush with the same color as the pen, but you can create interesting 
effects by replacing that brush with a different one. The code in Pens&Brushes.PRG creates 
the image shown in Figure 13. 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Draw a blue rectangle with a hatch brush pen. Notice how the brush color 
* overrides the pen color. 
 
 loPen   = .Pen.New(.Color.Red, 6) 
 loBrush = .Drawing2D.HatchBrush.New(.Drawing2D.HatchStyle.ZigZag, ; 
  .Color.Blue) 
 loPen.Brush = loBrush 
 loGfx.DrawRectangle(loPen, 50, 50, 100, 100) 
endwith 



 

Figure 13. You can combine pens and brushes for interesting effects. 

A simple pie chart 
Let’s tie together a few of the things we’ve discussed so far. PieChart.PRG creates the simple 
pie chart shown in Figure 14. As you can see, there isn’t a lot of code involved. 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object that draws on _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Create an array of values and colors we'll use for pie slices. 
 
 dimension laValues[5, 2] 
 laValues[1, 1] = 15 
 laValues[1, 2] = .Color.Red 
 laValues[2, 1] = 30 
 laValues[2, 2] = .Color.Blue 
 laValues[3, 1] = 25 
 laValues[3, 2] = .Color.Green 
 laValues[4, 1] = 10 
 laValues[4, 2] = .Color.Salmon 
 laValues[5, 1] = 20 
 laValues[5, 2] = .Color.Teal 
 
* Draw each slice of the pie. 
 
 loBrush = .SolidBrush.New() 
 lnStart = 0 
 for lnI = 1 to alen(laValues, 1) 
  lnValue       = laValues[lnI, 1] 
  lnAngle       = lnValue * 360 / 100 
  loBrush.Color = .Color.FromARGB(160, laValues[lnI, 2]) 
  loGfx.FillPie(loBrush, 50, 50, 300, 300, lnStart, lnAngle) 
  lnStart = lnStart + lnAngle 
 next lnI 
endwith 



 

Figure 14. This simple pie chart was drawn using GDIPlusX. 

Text 
GDIPlusX provides classes to display text in a variety of fonts, sizes, and styles. This 
includes the ability to add text to images and with some advanced techniques, draw text in 
interesting ways, such as shadowed, curved, or haloed. 

Start by creating a font object. The simplest way is to pass System.Drawing.Font.New the 
name of a font family and the font size, and optionally the style, which is an enumeration of 
System.Drawing.FontStyle (Regular, Bold, Italic, BoldItalic, Underline, and Strikeout): 

loFont = .Font.New('Tahoma', 16, .FontStyle.Bold) 

To draw the desired text, call the DrawString method of a Graphics object, passing it the 
text, a font object, a brush, and a Point, Rectangle, or X and Y values indicating the location 
to draw the text. DrawString word-wraps the text as necessary to fit within the rectangle if 
one is specified. For example: 

loRect  = .Rectangle.New(10, 10, 200, 150) 
loBrush = .SolidBrush.New(.Color.Red) 
loGfx.DrawString(lcText, loFont, loBrush, loRect) 

To justify the text other than the default left, create a StringFormat object, set its Alignment 
property to an enumeration of System.Drawing.StringAlignment, and pass it to DrawString. 
For example: 

loStringFormat = .StringFormat.New() 
loStringFormat.Alignment = .StringAlignment.Center 
loGfx.DrawString(lcText, loFont, loBrush, loRect, loStringFormat) 



The enumeration names of System.Drawing.StringAlignment are a little odd. Instead of Left 
or Right, use Near or Far. These names are used because left and right are reversed in right-
to-left languages. 

In addition to horizontal alignment, you can also set the vertical alignment by setting the 
string format object’s LineAlignment to an enumeration of StringAlignment. You can also 
specify how the string is trimmed if it’s too long to fit in the rectangle by setting the string 
format object’s Trimming property to an enumeration of StringTrimming. 

Text often renders better if you set the TextRenderingHint property of the Graphics object 
to System.Drawing.Drawing2D.SmoothingMode.AntiAlias. 

Here’s an example, taken from DemoText.PRG, which draws a string inside a rectangle on 
_SCREEN. The result is shown in Figure 15. 

with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Create a Graphics object. We'll create it by calling FromHWnd and passing it 
* the handle (HWnd) to _SCREEN, which means we'll be drawing directly on 
* _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Use anti-aliasing for better results. 
 
 loGfx.TextRenderingHint = .Drawing2D.SmoothingMode.AntiAlias 
 
* The text to draw. 
 
 lcText = 'This program demonstrates drawing text inside a rectangle' 
 
* Create a font object. The New method of System.Drawing.Font creates a font 
* object using specified font, size, and style. Note that style is specified as 
* an enumeration; in this case, the Bold member of System.Drawing.FontStyle. 
 
 loFont = .Font.New('Tahoma', 16, .FontStyle.Bold) 
 
* Create a rectangle object to hold the dimensions we'll draw at. 
 
 loRect = .Rectangle.New(10, 10, 200, 200) 
 
* Create a red solid brush. 
 
 loBrush = .SolidBrush.New(.Color.Red) 
 
* Create a StringFormat object and specify center alignment both horizontally 
* and vertically. 
 
 loStringFormat               = .StringFormat.New() 
 loStringFormat.Alignment     = .StringAlignment.Center 
 loStringFormat.LineAlignment = .StringAlignment.Center 
 
* Draw the text using the desired font and brush in the desired dimensions. 



 
 loGfx.DrawString(lcText, loFont, loBrush, loRect, loStringFormat) 
 
* Create a 2-pixel black pen. 
 
 loPen = .Pen.New(.Color.Black, 2) 
  
* Draw a rectangle using the pen at the desired location and size. 
 
 loGfx.DrawRectangle(loPen, loRect) 
endwith 

 

Figure 15. Drawing text using GDIPlusX methods. 

Images 
It doesn’t make sense to display certain kinds of pictures, such as icons and photographs, 
using vector graphics. Instead, images of this type are stored as bitmaps, which are arrays 
of numbers representing the colors of individual dots on the screen. 

GDI+ provides several classes devoted to displaying and manipulating images. GDIPlusX 
has wrapper classes in the System.Drawing and System.Drawing.Imaging namespaces. 
DemoImaging.PRG provides an example that displays an image on _SCREEN, both as it 
normally appears and rotated 180 degrees (Figure 16): 

local loBmp as xfcBitmap of Source\System.Drawing.PRG, ; 
 loRect as xfcRectangle of Source\System.Drawing.PRG, ; 
 loGfx as xfcGraphics of Source\System.Drawing.PRG 
 
* Ensure GDIPlusX is available. 
 
do System.app 
clear 
with _screen.System.Drawing as xfcDrawing of Source\System.PRG 
 
* Load the image. 
 



 loBmp = .Bitmap.FromFile('vfpx.bmp') 
 
* Get the size of the image. This returns a rectangle object with Height and 
* Width properties (among others). 
 
 loRect = loBmp.GetBounds() 
 
* Create a Graphics object. We'll create it by calling FromHWnd and passing it 
* the handle (HWnd) to _SCREEN, which means we'll be drawing directly on 
* _SCREEN. 
 
 loGfx = .Graphics.FromHWnd(_screen.HWnd) 
 
* Draw the image on the screen starting from the upper-left corner (loRect.X 
* and Y are 0 by default) using the dimensions of the image. 
 
 loGfx.DrawImage(loBmp, loRect) 
 
* Rotate the image 180 degrees without flipping it. 
 
 loBmp.RotateFlip(.RotateFlipType.Rotate180FlipNone) 
 
* Draw the rotated image below the first one. 
 
 loRect.X = loRect.Height + 10 
 loGfx.DrawImage(loBmp, loRect) 
endwith 

 

Figure 16. Drawing images using GDIPlusX. 



Images are also important because, although the examples in this document draw on 
_SCREEN for demonstration purposes, it’s unlikely you’ll do that in a real application. 
Instead, you’ll likely draw on an image and then display that image using a VFP Image 
object. For example, the CreateGradientImage code we saw earlier draws a gradient on an 
image, which is then used as the source for the PictureVal property of an Image object. The 
nice thing about this is that the drawing code doesn’t change, just the creation of the 
Graphics object used to do the drawing. 

To draw on an image, start by creating a Bitmap object. You can either create a new one or 
load an image file if you want to draw on an existing image. Then use Graphics.FromImage 
to create a Graphics object from the Bitmap object. After using the Graphics object to do the 
desired drawing, you can save the drawing to a file using Bitmap.Save or display it by 
calling GetPictureValFromHBitmap and putting the results into the PictureVal property of 
an Image object as CreateGradientImage does. 

To specify the type of image file to save to, pass Bitmap.Save a member of 
System.Drawing.Imaging.ImageFormat. For example, the following code, taken from 
CreateGradient.PRG, determines what type of image to create based on the extension of the 
specified file name: 

lcExt = upper(justext(tcFileName)) 
do case 
 case lcExt = 'PNG' 
  loFormat = .Imaging.ImageFormat.Png 
 case lcExt = 'BMP' 
  loFormat = .Imaging.ImageFormat.Bmp 
 case lcExt = 'GIF' 
  loFormat = .Imaging.ImageFormat.Gif 
 case inlist(lcExt, 'JPG', 'JPEG') 
  loFormat = .Imaging.ImageFormat.Jpeg 
 case lcExt = 'ICO' 
  loFormat = .Imaging.ImageFormat.Icon 
 case inlist(lcExt, 'TIF', 'TIFF') 
  loFormat = .Imaging.ImageFormat.Tiff 
 case lcExt = 'WMF' 
  loFormat = .Imaging.ImageFormat.Wmf 
endcase 
loBmp = .Bitmap.New(tnWidth, tnHeight) 
* Drawing code goes here 
loBmp.Save(tcFileName, loFormat) 

imgCanvas 
Because displaying a drawing on a VFP Image is a common thing to do, GDIPlusX includes a 
subclass of an Image called imgCanvas (in GDIPlusX.VCX) that does all the work of creating 
a Graphics object and sending the drawing to the Image. Drop imgCanvas on a form, size it 
as desired, and put code in BeforeDraw to do the drawing, using This.oGfx as the Graphics 
object. Other than removing the statement creating a Graphics object and using “This.oGfx” 



instead of “loGfx”, the code in all of the samples included with this document could be used 
as is in an imgCanvas object. 

Here are some tips about using imgCanvas: 

 To redraw the image, such as if something affecting the drawing changes, call the 
Draw method. Depending on your drawing, you may need to call Clear first. 

 The Resize event calls This.Draw, so your BeforeDraw code automatically redraws 
the image. You may wish to set Anchor to an appropriate value (such as 15 to resize 
both horizontally and vertically) so resizing the form automatically resizes the 
image. 

 Because resizing the image forces it to be redrawn, you may want to use the Height 
and Width to determine the size or scaling for the drawing. 

Let’s look at a more complex sample that ties together many of the things we’ve seen in 
GDIPlusX. ColumnChart.SCX is a “poor man’s FoxCharts.” FoxCharts, another VFPX project, 
uses GDIPlusX to draw beautiful 3-D charts. ColumnChart.SCX just does a simple column 
chart from hard-coded data, but serves as a example for drawing in GDIPlusX and uses 
imgCanvas as its drawing surface. Figure 17 shows what the form looks like when you run 
it. Try resizing the form, changing the values of the spinners, or changing the fonts by 
clicking the buttons. We won’t look at the code in BeforeDraw here because it’s fairly long; 
however, it’s relatively simple code and well-commented. 



 

Figure 17. ColumnChart.SCX ties together many of the GDIPlusX concepts. 

Using .Net examples 
As I mentioned at the beginning of this white paper, one of the advantages of developing 
GDIPlusX to closely mimic the .Net namespaces is the ability to use the thousands of .Net 
samples available in VFP with only a little translation. 

As an example, here’s some VB.Net code taken from 
http://www.bobpowell.net/highqualitythumb.htm. This code reduces an image by the 
specified percentage. 

Public Function GenerateThumbnail(original As Image, percentage As Integer) As Image 

 If percentage < 1 Then 

  Throw New Exception("Thumbnail size must be at least 1% of the original size") 

 End If 

 Dim tn As New Bitmap(CInt(original.Width * 0.01F * percentage), _ 

  CInt(original.Height * 0.01F * percentage)) 

 Dim g As Graphics = Graphics.FromImage(tn) 

 g.InterpolationMode = InterpolationMode.HighQualityBilinear 
 g.DrawImage(original, New Rectangle(0, 0, tn.Width, tn.Height), _ 

  0, 0, original.Width, original.Height, GraphicsUnit.Pixel) 

 g.Dispose() 

 Return CType(tn, Image) 

End Function 

 

http://www.bobpowell.net/highqualitythumb.htm


Even if you’re not familiar with VB.Net, the GDIPlusX part of the code should be fairly clear, 
Here’s the VFP equivalent, line by line: 

*Public Function GenerateThumbnail(original As Image, percentage As Integer) As 
Image 
function GenerateThumbnail(original, percentage) 
 
*If percentage < 1 Then 
* Throw New Exception("Thumbnail size must be at least 1% of the original size") 
*End If 
if percentage < 1 
 error "Thumbnail size must be at least 1% of the original size" 
endif 
 
* New code: ensure GDIPlusX is available. 
do System 
with _screen.System.Drawing as xfcDrawing of source\System.Drawing.prg 
* End of new code 
 
* Dim tn As New Bitmap(CInt(original.Width * 0.01F * percentage), _ 
*  CInt(original.Height * 0.01F * percentage)) 
 tn = .Bitmap.New(int(original.Width * 0.01 * percentage), ; 
  int(original.Height * 0.01 * percentage)) 
 
* Dim g As Graphics = Graphics.FromImage(tn) 
 gx = .Graphics.FromImage(tn) 
  && need different variable name because "g" looks like a workarea 
 
* g.InterpolationMode = InterpolationMode.HighQualityBilinear 
 gx.InterpolationMode = .Drawing2D.InterpolationMode.HighQualityBilinear 
 
* g.DrawImage(original, New Rectangle(0, 0, tn.Width, tn.Height), _ 
*  0, 0, original.Width, original.Height, GraphicsUnit.Pixel) 
 gx.DrawImage(original, .Rectangle.New(0, 0, tn.Width, tn.Height), ; 
  0, 0, original.Width, original.Height, .GraphicsUnit.Pixel) 
 
* g.Dispose() 
 gx.Dispose() 
 
* New code: finish WITH 
endwith 
* End of new code 
 
*Return CType(tn, Image) 
return tn 
 
*End Function 
endfunc 

As you can see, most of the changes are due to difference between VFP and VB.Net syntax. 
The GDIPlusX calls are almost identical between the two languages. The major differences 
are: 



 In VB.Net, members of namespaces added as references can be specified without the 
complete namespace, such as “Rectangle.” In VFP, you need to use the WITH 
statement and precede members with a period, such as “.Rectangle.” 

 Some classes are deeper in the hierarchy that System.Drawing, so, as in the case of 
“InterpolationMode,” you have to specify the additional class name (“.Drawing2D. 
InterpolationMode” in this case). 

 VB.Net syntax to create a new object is “New ClassName,” such as “New Rectangle.” 
In VFP, call the New method of the GDIPlusX class, such as “.Rectangle.New.” 

Resources 
Several VFP developers have great blogs that focus on GDIPlusX, including Cesar Chalom 
(http://weblogs.foxite.com/vfpimaging), Bernard Bout 
(http://weblogs.foxite.com/bernardbout), and Bo Durban (http://blog.moxiedata.com). 

The GDIPlusX References page on VFPX 
(http://vfpx.codeplex.com/Wiki/View.aspx?title=GDIPlusX%20References) has links to 
many GDI+ and GDIPlusX articles. Also, GDIPlusX comes with a lot of samples that show 
individual techniques, so it’s worth trying them out. 

I found the various GDI+ tutorials at www.bobpowell.net to be very informative and well-
written. They’re in C# and VB.Net but are easy to follow and convert to VFP. 

Summary 
GDIPlusX is one of the most important projects on VFPX because it forms the foundation for 
several other projects. GDIPlusX makes it easy to add new graphical abilities to your 
applications, allowing you to provide a fresher and more powerful user interface. Because 
it has the same structure as the GDI+ .Net classes, you can use the thousands of .Net 
samples available in your own VFP code. 

Biography 
Doug Hennig is a partner with Stonefield Systems Group Inc. and Stonefield Software Inc. 
He is the author of the award-winning Stonefield Database Toolkit (SDT); the award-
winning Stonefield Query; the MemberData Editor, Anchor Editor, and CursorAdapter and 
DataEnvironment builders that come with Microsoft Visual FoxPro; and the My namespace 
and updated Upsizing Wizard in Sedna. 

Doug is co-author of “Making Sense of Sedna and SP2,” the “What’s New in Visual FoxPro” 
series (the latest being “What’s New in Nine”), “Visual FoxPro Best Practices For The Next 
Ten Years,” and “The Hacker’s Guide to Visual FoxPro 7.0.” He was the technical editor of 
“The Hacker’s Guide to Visual FoxPro 6.0” and “The Fundamentals.” All of these books are 
from Hentzenwerke Publishing (http://www.hentzenwerke.com). He wrote over 100 

http://weblogs.foxite.com/vfpimaging
http://weblogs.foxite.com/bernardbout
http://blog.moxiedata.com/
http://vfpx.codeplex.com/Wiki/View.aspx?title=GDIPlusX%20References
http://www.bobpowell.net/
http://www.hentzenwerke.com/


articles in 10 years for FoxTalk and has written numerous articles in FoxPro Advisor, 
Advisor Guide to Visual FoxPro, and CoDe. He currently writes for FoxRockX 
(http://www.foxrockx.com). 

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997 
and at user groups and developer conferences all over the world. He is one of the 
organizers of the annual Southwest Fox conference (http://www.swfox.net). He is one of 
the administrators for the VFPX VFP community extensions Web site 
(http://vfpx.codeplex.com). He has been a Microsoft Most Valuable Professional (MVP) 
since 1996. Doug was awarded the 2006 FoxPro Community Lifetime Achievement Award 
(http://fox.wikis.com/wc.dll?Wiki~FoxProCommunityLifetimeAchievementAward~VFP). 

        

 

  

Copyright, 2009 Doug Hennig. 

http://www.foxrockx.com/
http://www.swfox.net/
http://vfpx.codeplex.com/
http://fox.wikis.com/wc.dll?Wiki~FoxProCommunityLifetimeAchievementAward~VFP

