
Drilling Down Into Your Data
Doug Hennig

Do your users want to drill down into their data to see increasing levels of detail? You might think

the TreeView control discussed last month is perfect for this, but it doesn’t provide the ability to

show columns of information. This month’s article describes a technique for drilling down into data

using a grid, plus describes how to make your grids act more like a spreadsheet with frozen panes.

Last year, a client asked me to create an application to provide their marketing staff with

product sales breakdowns in a more flexible way than their accounting system could.

Since their accounting system uses the Btrieve database manager, accessing the data is

easy: I use DBFtrieve to read the Btrieve files and write the data to a VFP table. However,

this application has a complex requirement: the need to “drill down” into the data.

Initially, the user wants to see sales by product. They then want to “expand” a product to

show the sales for that product broken down by region. Then, they can drill down into a

region to see sales by city. Finally, they can drill down into a city to see the sales by

customer for the expanded product.

 Sound familiar? It sure sounded like the Windows Explorer to me: opening a folder

shows the folders inside that folder, opening one of those folders shows its contents, and

so on. So, my first thought was to use the Outline control that came with VFP (this was

before VFP 5 with its ActiveX TreeView control, which we discussed last month, was

available). However, I quickly discarded that idea because of the need for many columns

of sales data (between various month-to-date and year-to-date values and quantities for

this year and last year, the user needs to see more than ten columns of figures). In

addition, the user wants the first column “locked” so as they scrolled horizontally to see

the different sales columns, the name of the product is always visible. While VFP’s Grid

control provides a Partition property to split the grid into two panels, the behavior of the

two panels is far from what Excel users are used to; for example, either panel can be

scrolled horizontally to display any set of fields. What I needed was a cross between a

spreadsheet and an Outline or TreeView control. This article describes the technique I

came up with.

 To provide a concrete example to go along with this article, let’s discuss a similar

sales application using the test data that comes with VFP. The ORDERS table contains

order information, while the ORDITEMS table contains the products sold for each order.

PRODUCTS contains product information while CUSTOMER and EMPLOYEE contain

customer and employee information, respectively. We’ll create a drill down application

that shows, at the top level, sales by product. These sales can then be drilled down to the

employee level, then down to country, and finally down to the specific customer. You can

download the source code files for this application. Figure 1 shows the drill down form

with some records expanded so you can see how the application works.

Figure 1. Drill Down Form

How I Spent my Summer
The secret to creating a control that can drill down into data while displaying multiple

columns is to use a Grid with a filter so only certain records are visible at one time and

with certain properties and methods that provide a spreadsheet-like behavior.

 First, drill down is handled using a “smoke and mirrors” technique. Rather than

displaying data directly from the source tables, a “drill down” table is created that

contains all the information we need in one place, with sales totals already calculated.

This is a technique used by data warehousing applications, where data from a relational

database is pulled into a denormalized structure for the simplest and fastest access. A

performance hit is taken when the structure is created, but after that, the application

doesn’t have to worry about performing table joins or calculating totals, so performance is

much better for the user.

 The drill down table is filtered so only those records the user should see are in the

current filter set. I control this using a field called VISIBLE and a filter on this field.

Initially, this field is only set to .T. for product records. When the user drills down into a

product, the VISIBLE field for all employee records for that product are set to .T. Now,

all product records and those employee records for a specific product are visible.

Similarly, when the user drills down into an employee, the VISIBLE field for all country

records for that product and employee are set to .T. Now, all product records and those

employee records for a specific product and those country records for a specific product

and employee are visible. Collapsing a row does just the opposite: the VISIBLE field of

all applicable records is set to .F., making those records invisible once again. Another

field, EXPANDED, saves the current state of a row. This allows us to display a “+” or “-”

to indicate if a row can be expanded or has already been expanded, just like an Outline or

TreeView control.

 Getting a VFP Grid control to act like a spreadsheet with a frozen pane takes some

doing. The first thing is to set the Partition property to split the grid into two panels.

Partition contains the number of pixels in the left panel, so you’ll set it so the left panel

only displays the first two columns (one for the “+” or “-” and one for the name).

However, the first thing you’ll notice when you do this is that both panels have a vertical

scroll bar, either of which can be used to scroll the grid. This is confusing to the user and

takes up precious real estate, so the next job is to eliminate the scroll bar for the left

panel. The solution is to unlink the two panels so they act like two grids in one, eliminate

the scroll bar for the left panel, then relink the two panels again. Unfortunately, this can’t

be done at design time, but is relatively easy to do (once you know how <g>) in code at

runtime. The Init() method of the grid, which we’ll look at later, does this.

 Next, you have to prevent the user from scrolling unwanted columns into either panel

(column 3 or higher for the left panel or columns 1 or 2 for the right panel). While you

can’t prevent the user from scrolling, you can clean things up afterward. The Grid’s

Scrolled() event fires when the user scrolls, so by checking the LeftColumn property of

each panel, you can determine whether unwanted columns appear in each panel, and use

the DoScroll() method to put things back properly. Unfortunately, this causes a brief

flicker as unwanted columns move into view and then disappear again, and using

LockScreen doesn’t help, but this is a minor glitch.

The Drill Down Table
Let’s look at the drill down table in more detail. It must contain the entire set of records

the user will see in the drill down form. This means there will be several “levels” of

records. One level of records will be the topmost layer of records the user sees; we’ll call

these level 1. Each level 1 record will have a set of records which represents the first layer

of breakdown; these records will be level 2. Each level 2 record will have a set of records

called level 3, and so on.

 The drill down table can consist of any fields you wish, with the following minimum

fields:

 LEVEL: This numeric field will contain the level number.

 NAME: The text to display for each record. The source of the text may change

from one level to the next. In our sales scenario, for example, NAME for level 1

records comes from PRODUCT.PROD_NAME while it consists of the

employee’s first and last names from the EMPLOYEE table for level 2.

 DESCRIP1: This field contains the sort value (such as a name) for level 1 records.

All records which belong to a given level 1 record will contain the same value.

The name of this field would probably be the name of the field from the original

data source; we’re calling it DESCRIP1 here as a place holder. In the case of our

sales example, this field is called PROD_NAME.

 DESCRIP<n>: Each level except the lowest one will have a sort value field as

described for DESCRIP1.

 VALUE<n>: These fields will contain the rolled up sales values at each level. Our

sales example has the following field: SALES93, SALES94, SALES95,

SALES96 (sales values for 1993 to 1996), QTY93, QTY94, QTY95, and QTY96

(quantity sold for 1993 to 1996). The values in these fields for each level’s records

represent the total values for that level. For example, since level 1 in our sales

scenario is product, these fields contain the total sales and quantity sold for each

product by year. Level 2 is employee, so for a given level 2 record, these fields

contain the sales and quantity sold of the appropriate level 1 record (the product)

by the employee.

 The table needs to be indexed so all records for a given level appear together.

Typically, the index expression will be DESCRIP1 + DESCRIP2 + … + STR(LEVEL, 1)

+ NAME. Take care to ensure the index expression doesn’t exceed the maximum key size

(usually 254 characters, but it’s less if you use a collate sequence other than MACHINE).

For our sales scenario, the index expression is UPPER(PROD_NAME + EMP_NAME +

COUNTRY + STR(LEVEL, 1) + NAME); UPPER() is used so the display order is case-

insensitive.

 Table 1 shows a brief set of the drill down data for our sales example. Level 1

represents products, level 2 is employees for a given product, level 3 is the country a

given product was sold to by a certain employee, and level 4 is the specific customer a

product was sold to by an employee in a country.

Table 1. Example of a Drill Down Table.

LEV NAME PROD_NAME EMP_NAME COUNTRY SALES93
1 Alice Mutton Alice Mutton 70
2 Buchanan, Steven Alice Mutton Buchanan, Steven 25
3 Brazil Alice Mutton Buchanan, Steven Brazil 10
4 Hanari Carnes Alice Mutton Buchanan, Steven Brazil 10
3 USA Alice Mutton Buchanan, Steven USA 15
4 Save-a-lot Markets Alice Mutton Buchanan, Steven USA 15
2 Callahan, Laura Alice Mutton Callahan, Laura 45
3 UK Alice Mutton Callahan, Laura UK 10
4 Island Trading Alice Mutton Callahan, Laura UK 10
3 USA Alice Mutton Callahan, Laura USA 35
4 Rattlesnake Canyon Grocery Alice Mutton Callahan, Laura USA 20
4 White Clover Markets Alice Mutton Callahan, Laura USA 15
1 Aniseed Syrup Aniseed Syrup 44
2 Callahan, Laura Aniseed Syrup Callahan, Laura 10
3 Sweden Aniseed Syrup Callahan, Laura Sweden 10
4 Berglunds snabbköp Aniseed Syrup Callahan, Laura Sweden 10
2 Davolio, Nancy Aniseed Syrup Davolio, Nancy 34
3 Denmark Aniseed Syrup Davolio, Nancy Denmark 5
4 Vaffeljernet Aniseed Syrup Davolio, Nancy Denmark 5
3 USA Aniseed Syrup Davolio, Nancy USA 29
4 Rattlesnake Canyon Grocery Aniseed Syrup Davolio, Nancy USA 12
4 Save-a-lot Markets Aniseed Syrup Davolio, Nancy USA 17

 Notice the following:

 NAME contains the product name for level 1, the employee name for level 2, the

country for level 3, and the customer for level 4.

 PROD_NAME, EMP_NAME, and COUNTRY contain the same values for all

records for a given product, employee, and country.

 EMP_NAME is empty for a level 1 record because that is the rollup record for a

given product. COUNTRY is empty for a level 2 record because that is the rollup

record for a given employee.

 For each level, SALES93 contains the sum of values for records at the next lower

level. For example, the Alice Mutton product has 70 for SALES93, which is the

sum of 25 and 45 (from the two level 2 records for Alice Mutton) while the

Steven Buchanan record for the Alice Mutton product has 25 for SALES93, which

is the sum of 10 and 15 (from the two level 3 records for this employee and this

product).

 Because both the original sources of the data and the format for the drill down table

may vary greatly from application to application, a different program must be used to

create each drill down table. However, the basic idea for such as program is as follows:

 Use a SQL SELECT statement to create a cursor of level 1 records, grouping on

the level 1 field.

 Use a SQL SELECT statement to create a cursor of level 2 records, grouping on

the level 1 and level 2 fields.

 Use a SQL SELECT statement to create a cursor of level 3 records, grouping on

the level 1, level 2, and level 3 fields.

 Create as many cursors as necessary, depending on how many drill down levels

are desired.

 Concatenate all the cursors into a single table.

 Add a record for grand totals; use level 0.

 Index the table so all records for a given level appear together.

 The sample MAKESALE.PRG creates a drill down table called SALES.DBF from

the VFP TESTDATA database for our sales scenario. This code isn’t shown here due to

its length, but can be downloaded from the Source Code Download site.

The Drill Down Form
The drill down form is a class called DrillDownForm in DRILLDWN.VCX. It consists of

a form, a grid, and some custom properties and methods. This class was created to be as

generic as possible. This means it makes few assumptions about the structure of the drill

down table and must have certain properties set after it’s instantiated but before it’s

displayed to the user. We’ll look at the details of the class first, then look at how to use it.

 The assumption this class makes about the structure of the drill down table is that

there’s a column called LEVEL containing the level for each record and a column called

NAME containing the display value the user should see for each level. If you use different

names, you’ll need to change the SetupData() and Expand() methods of the class.

Form Properties

BaseClass Form (use your own class here)
Caption Sales
DataSession 2-Private Data Session
Height 360
Name frmSales
Width 600

Form Custom Properties

aColorLevel[1] An array of colors to use for each level
aLevelKey[1] An array containing the key field for each level
cOrder The order to use so the data is properly sorted for drill downs

cTable The name (including path if necessary) the data will come from
cTextBoxClass The class to create the text boxes in the grid from (default = DrillDownGridTextBox)
nMaxLevels The numbers of levels in the cursor

Form Methods
Load() simply sets up some environmental things:

set talk off

set deleted off

set notify off

set bell off

 Resize() resizes the grid when the form is resized so the grid always fills the form:

with This

 .LockScreen = .T.

 .grdSales.Width = .Width

 .grdSales.Height = .Height

 .LockScreen = .F.

endwith

 Show() sets the DynamicForeColor for each column (we’ll see how

Thisform.aColorLevel is initialized later) and displays the form:

LPARAMETERS nStyle

This.grdSales.SetAll('DynamicForeColor', ;

 'Thisform.aColorLevel[LEVEL + 1]', 'Column')

Form Custom Methods
SetupData(), which is called before the form is displayed, creates a cursor from the source

drill down table (to keep the class generic, the name of the drill down table is stored in

the cTable property of the class rather than hard-coded). A cursor is needed rather than

using the SALES table directly because the values of two fields are changed as the user

expands and collapses rows. In order for this to work in a multi-user environment, the

SALES table itself can’t be modified but a cursor based on it can be. The cursor, called

LV_SALES, consists of all fields from the source table plus two new fields, VISIBLE

and EXPANDED, which indicate, respectively, whether the record is visible to the user

and whether levels under this record are visible. Initially, VISIBLE is .T. only for level 0

(grand total) and level 1 (top level) records.

local lcAlias, ;

 lcCDX, ;

 lnTag, ;

 lcKey

with This

* Ensure properties we need are set (these could

* be ASSERT statements in VFP 5).

 if empty(.cTable)

 wait window 'cTable not specified'

 return .F.

 endif empty(.cTable)

 if empty(.cOrder)

 wait window 'cOrder not specified'

 return .F.

 endif empty(.cOrder)

* Open the table the data will come from.

 select 0

 use (.cTable)

 lcAlias = alias()

* Ensure the specified tag is a valid one (this could

* be an ASSERT statement in VFP 5).

 lcCDX = strtran(dbf(lcAlias), '.DBF', '.CDX')

 lnTag = tagno(.cOrder, lcCDX, lcAlias)

 if lnTag = 0

 wait window 'cOrder not valid'

 return .F.

 endif lnTag = 0

* Create a cursor for sales with additional fields

* we'll need: EXPANDED to indicate if the current

* record is expanded or not and VISIBLE to flag if

* the current record can be seen.

 select *, ;

 .F. as EXPANDED, ;

 LEVEL < 2 as VISIBLE ;

 from (lcAlias) ;

 into cursor TEMPSALES

* Now open the cursor again so it'll be read-write

* and we can create indexes on it. We can then close

* the original copy.

 use dbf('TEMPSALES') alias LV_SALES again in 0

 select LV_SALES

 use in TEMPSALES

* Create the index we'll need for the cursor from the

* specified index in the SALES table.

 lcKey = key(lnTag, lcAlias)

 index on &lcKey tag (.cOrder)

* Create an index for VISIBLE and set a filter on it

* so we can only see visible records.

 index on VISIBLE tag VISIBLE

 set filter to VISIBLE

* Use the specified order and move to the first record.

 set order to (.cOrder)

 go top

* Set data source properties for the grid now that the

* cursor exists.

 with .grdSales

 .RecordSource = 'LV_SALES'

 .Column1.ControlSource = ;

 "iif(LEVEL > Thisform.nMaxLevels or " + ;

 "LEVEL = 0, ' ', iif(EXPANDED, '-', '+'))"

 .Column1.Header1.Caption = ''

 .Column2.ControlSource = 'LV_SALES.NAME'

 endwith

* We can close the original table since we don't need

* it anymore.

 use in (lcAlias)

endwith

 Expand() is called when the user expands or collapses the current row by clicking on

the + column for the row.

local llExpanded, ;

 lnLevel, ;

 lcKey, ;

 lnI, ;

 luKey, ;

 lnRecno

* If we've drilled down below the maximum expandable

* level or we're sitting on the "totals" record, don't

* go on.

if LEVEL > This.nMaxLevels or LEVEL = 0

 return

endif LEVEL > This.nMaxLevels ...

* Toggle the expanded status for the current record,

* and save the new status. Increment the level so we

* know which one to work with.

This.LockScreen = .T.

replace EXPANDED with not EXPANDED

llExpanded = EXPANDED

lnLevel = LEVEL + 1

* Create the key expression we'll use to know which

* records to toggle the "visible" status for.

lcKey = ''

for lnI = 1 to LEVEL

 luKey = evaluate(This.aLevelKey[lnI])

 lcKey = lcKey + iif(empty(lcKey), '', ' and ') + ;

 This.aLevelKey[lnI] + '=='

 do case

 case type('luKey') = 'C'

 lcKey = lcKey + '"' + luKey + '"'

 case type('luKey') = 'N'

 lcKey = lcKey + ltrim(str(luKey))

 case type('luKey') = 'D'

 lcKey = lcKey + '{' + dtoc(luKey) + '}'

 endcase

next lnI

* Turn off the filter so we can see all records, save

* the current record pointer, and move to the next

* record (the first one under the current one).

set filter to

lnRecno = recno()

skip

* If we're collapsing a level, collapse all levels

* under it. Otherwise, toggle the "visible" flag for

* all records under this one.

if not llExpanded

 replace VISIBLE with .F., EXPANDED with .F. ;

 while &lcKey

else

 replace VISIBLE with not VISIBLE while &lcKey ;

 for LEVEL = lnLevel

endif not llExpanded

* Reposition the record pointer to the record we were

* drilling down and set the filter so we only see

* "visible" records, then refresh the grid.

go lnRecno

set filter to VISIBLE

This.grdSales.Refresh()

This.LockScreen = .F.

 AddGridColumn() is a custom method that adds a column to the grid and sets various

properties.

lparameters tcControlSource, ;

 tcCaption

local lnColumn

with This.grdSales

 .AddColumn()

 lnColumn = .ColumnCount

 .Columns[lnColumn].Name = 'Column' + ;

 ltrim(str(lnColumn))

 .Columns[lnColumn].Width = 75

 .Columns[lnColumn].ReadOnly = .T.

 .Columns[lnColumn].InputMask = '999,999,999'

 .Columns[lnColumn].Header1.Alignment = 1

 .Columns[lnColumn].Header1.Caption = tcCaption

* Create a textbox for the new column and make it the

* current control for the column.

 .Columns[lnColumn].AddObject('DrillText', ;

 This.cTextBoxClass)

 .Columns[lnColumn].DrillText.Visible = .T.

 .Columns[lnColumn].CurrentControl = 'DrillText'

 .Columns[lnColumn].ControlSource = tcControlSource

endwith

Grid Properties
We can’t set the RecordSource of the grid or ControlSource of the columns to the

LV_SALES cursor at design time because that cursor won’t exist until after the grid has

been instantiated, which would cause an error. Thus, we’ll leave these properties blank

for now and set them programmatically at runtime in the SetupData() method of the form.

BaseClass Grid (use your own class here)
ColumnCount 2
DeleteMark .F.
Height 360
Name grdSales
Partition 268 (only approximate; will be set at runtime to the proper value)
ReadOnly .T.
RecordMark .F.
RecordSource None (it will be set at runtime)
Width 569
Column1.ControlSource None (it will be set at runtime)
Column1.Width 13
Column1.Header1.Caption None
Column2.ControlSource None (it will be set at runtime)
Column2.Width 232
Column2.Header1.Caption Name

Grid Methods
Init() sets the left panel to not have a scroll bar. This can’t be done at design time, so the

grid will appear to have two vertical scroll bars. At runtime, however, this eliminates the

scroll bar for the left panel, making the grid look more like an Excel spreadsheet with a

frozen panel. Init() also adjusts the partition position so the left panel just includes the

first two columns.

with This

 .PanelLink = .F.

 .Panel = 0

 .ScrollBars = 1

 .Panel = 1

 .PanelLink = .T.

 .Partition = .Column1.Width + .Column2.Width + 2

endwith

 Scrolled(), which is fired whenever the user scrolls the grid, ensures the appropriate

columns are displayed in the appropriate panel by forcing the grid to scroll unwanted

columns out of view if necessary.

LPARAMETERS nDirection

local lnI

with This

 do case

* If either of the first two columns is visible in the

* right panel, scroll until they're no longer there.

 case .Panel = 1 and .LeftColumn <= 3

 for lnI = .LeftColumn to 2

 .DoScroll(5)

 next lnI

* If any column but the first two is visible in the left

* panel, scroll until they're no longer there.

 case .Panel = 0 and .LeftColumn > 1

 for lnI = .LeftColumn to 2 step - 1

 .DoScroll(4)

 next lnI

 endcase

endwith

 Column1.Text1.GotFocus() ensures the right panel doesn’t show the first two

columns by setting focus to column 3 (the first column in the right panel) if necessary.

This makes the grid act more like a spreadsheet.

with This.Parent.Parent

 if .Partition <> 0 and .Panel = 1

 .Column3.SetFocus()

 endif .Partition <> 0 ...

endwith

 Column1.Text1.LostFocus() moves to the third column (the first column we want

displayed in the right panel). This makes the grid act more like a spreadsheet.

with This.Parent.Parent

 if .Partition <> 0 and .Panel = 0

 .Panel = 1

 .Column3.SetFocus()

 endif .Partition <> 0 ...

endwith

 Column1.Text1.KeyPress() accepts Enter as signal to expand or collapse the row, and

ignores any keypress that would put a value into the column.

LPARAMETERS nKeyCode, nShiftAltCtrl

do case

 case nKeyCode = 13

 Thisform.Expand()

 nodefault

 case between(nKeyCode, 32, 127)

 nodefault

endcase

 Column1.Text1.Click() expands or collapses the current row.

Thisform.Expand()

This.SelStart = 0

This.SelLength = 1

nodefault

 Column2.Text1.When() prevents focus from being set to the Name column:

return .F.

DrillDownGridTextBox Class
This class is used to create textbox controls in the columns in the right panel of the grid at

runtime.

BaseClass TextBox (use your own class here)
BorderStyle 0 - None
Margin 0

 When() prevents the textbox from receiving focus if there isn’t a partition or if focus

is in the left panel:

with This.Parent.Parent

 return .Partition = 0 or .Panel = 1

endwith

Using the Drill Down Form
SALES.PRG is a sample program using the drill down form. This program does the

following:

 Instantiates a DrillDownForm object.

 Sets the cTable and cOrder properties to the name of the drill down table and the

tag that orders the data properly, then calls the SetupData() method to create the

LV_SALES cursor and set the data source properties of the grid (they can’t be set

at design time since this cursor won’t exist until after the grid has been

instantiated).

 Sets the nMaxLevels property to the number of levels that can be expanded (one

less than the total number of levels) and initializes the aLevelKey array to the

names of the fields containing the “key” value for each level.

 Initializes the aColorLevel array to the color desired for each level. Using color to

distinguish levels is very important; if each level is same color, it’s difficult to

visually tell what data you’re looking at. Although the colors are hard-coded in

SALES.PRG, you’ll probably want to read these values from a user preferences

table or from the Windows Registry. Row 1 of aColorLevel is for level 0, row 2 is

for level 1, etc.

 Creates columns of the grid to display the sales values using the custom

AddGridColumn() method.

 Shows the DrillDownForm object.

 Here’s the code for SALES.PRG:

#include FOXPRO.H

set talk off

* Create an instance of the DrillDownForm class into a public variable so it

* exists when this program is done.

public oSales

set classlib to DRILLDWN

oSales = createobject('DrillDownForm')

with oSales

* Initialize the properties containing the name and order of the data table and

* set up the data for the drill down.

 .cTable = 'SALES'

 .cOrder = 'SALES'

 .SetupData()

* Initialize the levels and level keys we need.

 .nMaxLevels = 3

 dimension .aLevelKey[.nMaxLevels]

 .aLevelKey[1] = 'PROD_NAME'

 .aLevelKey[2] = 'EMP_NAME'

 .aLevelKey[3] = 'COUNTRY'

* Initialize color settings.

 dimension .aColorLevel[.nMaxLevels + 2]

 .aColorLevel[1] = COLOR_RED

 .aColorLevel[2] = COLOR_BLACK

 .aColorLevel[3] = COLOR_BLUE

 .aColorLevel[4] = COLOR_GREEN

 .aColorLevel[5] = COLOR_MAGENTA

* Create grid columns we want to display. Pass the

* control source and header caption.

 .AddGridColumn('lv_sales.sales93', '93 Sales')

 .AddGridColumn('lv_sales.sales94', '94 Sales')

 .AddGridColumn('lv_sales.sales95', '95 Sales')

 .AddGridColumn('lv_sales.sales96', '96 Sales')

 .AddGridColumn('lv_sales.qty93', '93 Qty')

 .AddGridColumn('lv_sales.qty94', '94 Qty')

 .AddGridColumn('lv_sales.qty95', '95 Qty')

 .AddGridColumn('lv_sales.qty96', '96 Qty')

endwith

* Display the drill down form.

oSales.Show()

Conclusion
The DrillDownForm class described in this article can be made even more generic by

using a subclass of the Grid control rather than a Form. The advantage of that approach is

you could drop one of these objects on any form to provide drill down capabilities as well

as other form controls. Another enhancement would be to use a property containing the

number of columns in the left panel rather than hard-coding it two in various methods.

Other changes you can make are to use a different class in place of

DrillDownGridTextBox (if you need different behavior, for example); you just have to set

the cTextBoxClass property of the DrillDownForm class to tell it which class to use for

the grid text boxes. I hope you enjoy the techniques I outlined in this article!

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Sask., Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit for Visual FoxPro and

Stonefield Data Dictionary for FoxPro 2.x. He is also the author of “The Visual FoxPro Data Dictionary” in Pinnacle

Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at user groups and regional conferences all

over North America. He was a Microsoft Most Valuable Professional (MVP) for 1996. CompuServe 75156,2326.

