
Putting Parameters in Perspective
Doug Hennig

Concentrating on communication between routines can reduce up to one-third of the errors in your

applications. This month’s column examines some “Best Practices” regarding the use of

parameters.

Welcome to “Best Practices”, the monthly column that discusses solid programming practices, with

emphasis on techniques and ideas specific to FoxPro. Last month we discussed the concept of assertions,

which are pieces of code that test assumptions programmers make to ensure they’re true and the code

doesn’t break. This month, we’ll discuss parameters. This has a logical tie-in to last month’s column since

assertions are often used for parameter testing.

Parameters seems like one of those topics that should be a no-brainer, but good system design requires

looking at how the different pieces of a system communicate with each other. Studies cited by Steve

McConnell in his book Code Complete found that 39% of all errors are due to internal interface problems;

in other words, modules not communicating properly with each other. Spending time investigating this topic

can help reduce more than one-third of the errors you encounter.

The first topic to get out of the way is the use of parameters at all. I can’t tell you how many projects I’ve

taken over from other consultants that used no parameters at all. These systems used public or private

variables to communicate between programs. You can get away with that in the xBASE languages because

a variable is scoped to the routine that created it and all of its subroutines. The problem with this approach

is that it tightly couples a subroutine to the program that called it. Tight coupling is normally a bad practice.

Just in case you’re fuzzy on this whole “good-bad” thing, let’s discuss coupling for a moment. “Coupling”

refers to how closely two programs are intertwined. One of the ways to couple two programs is to make one

of them use a lot of assumptions about the other, such as that certain variables exist and contain certain

values. Routines that are tightly coupled are like Siamese twins: if they always live together, the problems

are tough enough, but taking them apart requires very complex surgery.

There are probably a hundred reasons why loose coupling is better than tight coupling; here are a few:

 If you edit one of the routines, you must look at the other routine to ensure it isn’t affected. That

effectively doubles your maintenance load.

 Tighter coupling reduces portability, since the subroutine makes assumptions about the calling

program that might not be true in a different system.

 A subroutine can inadvertently change the value of variables used by the calling routine. Visual

FoxPro (VFP) introduced LOCAL variables to help reduce coupling, since you’ll get an error

message if you reference a variable local to a routine in one of its subroutines.

Now that we have that out of the way, let’s examine some “best practices” for parameters.

LPARAMETERS Vs. PARAMETERS

The PARAMETERS statement accepts parameters passed to a function and implicitly makes them

PRIVATE. This means other routines called by the function can see and possibly change the value of these

parameters. VFP has a new LPARAMETERS statement that makes the parameters LOCAL, thus hiding

them from any routine but the current one. Since there’s no downside to using LPARAMETERS instead of

PARAMETERS, always use LPARAMETERS. What if a routine called by the function needs access to one

of the parameters? Simple: explicitly pass it to the routine. This reduces coupling between the two routines,

so it’s always a good idea.

Eliminating Errors Related to Parameters

How many times have you called a little-used FoxPro function only to get an error because the number or

type of parameters was incorrect? The error message you receive alerts you to the fact that the parameters

are incorrect, which is a better solution than to return invalid results or hang the computer. Your own

functions should do the same: test the number, type, and range of acceptable values for parameters. FoxPro

has built-in functions to help with this task, including PARAMETERS() and TYPE().

One thing to watch out for: according to the FoxPro Help, “The value returned by PARAMETERS() is

reset every time a program, procedure, or user-defined function is called or when ON KEY LABEL is

executed.” This means you must test the value of PARAMETERS() in a function before calling any other

subroutine. I frequently save the value returned by PARAMETERS() in a variable such as lnParameters to

ensure I can test for the number of parameters passed to this function, not the last function called. You can

also use the undocumented PCOUNT() function, which was added in FoxPro 2.6 for dBASE compatibility

and works the way you might expect PARAMETERS() should work.

Although it’s riskier, you could reduce the overhead of parameter testing in an internal function (such as

one called by only one routine or a protected method in a VFP class) by inserting assertion testing code

during development and testing of the function, and then removing it from the production version (see last

month’s “Best Practices” column for ideas on assertion testing). Since such a function will only ever get

called from a known routine, you just need to ensure that the calling routine passes the correct parameters to

the function.

What should you do when you encounter bad parameters passed to a function? The most obvious action is

to display a message using WAIT WINDOW or MESSAGEBOX. You could also trigger an error in VFP

using the ERROR command if you have an error handler to log the error and gracefully exit the application.

The ERROR command can accept an error number if the error you wish to trigger matches a built-in VFP

error (such as 1229, which is “too few arguments”) or you can use a custom error message. Instead of

triggering an error, the function could return a value indicating an error occurred (such as .F. or -1), could

set a global flag such as glERROR_OCCURRED, or could exit the application using CANCEL or calling

an application exit routine. The action I use most frequently is to display a message and return a value

indicating an error occurred. This puts the onus on the calling routine to test if an error occurred and take

appropriate action, but this is generally more flexible than having the function simply exit the application.

Don’t Monkey With Input-Only Parameters

“Input-only” parameters are those whose values are passed into the routine and aren’t intended to be

changed upon return. Changing the value of input-only parameters can have unexpected effects. Here’s an

example: the following routine is used to determine if a name is a duplicate or not:

parameters tcName

local llFound

tcName = upper(alltrim(tcName))

seek tcName

llFound = found()

return llFound

This code is misleading: it gives the impression that tcName’s value isn’t an input-only parameter when it

really should be, since changing the contents of tcName isn’t the intention of the routine. In addition, this

practice can actually cause the contents of a variable passed to the routine to be changed under certain

conditions. Parameters are passed to procedures by reference, which means any changes made to the

parameters in the procedure are reflected back in the calling routine. By default, parameters are passed to

functions by value, but that’s controlled with the SET UDFPARMS command, and you can’t predict how

that might be set on someone else’s machine. If it’s set to “REFERENCE”, upon return from this routine,

the variable passed as the name to check has had its contents trimmed and upper-cased, which probably

isn’t desirable.

If you have to alter the contents of input-only parameters, copy them to local variables and alter the local

variables. Here’s the above routine rewritten following this idea:

parameters tcName

local lcName, llFound

lcName = upper(alltrim(tcName))

seek lcName

llFound = found()

return llFound

Number of Parameters

In Code Complete, Steve McConnell suggests that the number of parameters for a function should be kept

to seven or less. Whenever I break this rule, I pay for it. One of the routines in Stonefield Data Dictionary,

called LOOK_UP, has nine parameters, while another called BROWSER has eight. Although most of these

parameters are well-documented both in the header of each routine and in the user manual, guess which

functions I get the most support calls about?

There are several ways to reduce the number of parameters needed by a routine. Although it’s rarely a good

idea, using global variables might be useful under certain circumstances. For example, in a FoxPro 2.x

security function, instead of passing the name of the user in a parameter, you could expect that a global

variable (such as gcUSER_NAME) contains it. Since using global variables has a number of pitfalls, a big

one being increasing the coupling between a function and the routines that call it, consider this option very

carefully before using it.

Another possibility is to look up the needed information in a table rather than passing it as a parameter. In

the case of the LOOK_UP and BROWSER functions mentioned earlier, I couldn’t reduce the number of

parameters because of backward compatibility. However, I could eliminate how many needed to be passed

when called by new applications by looking up the value to use for unpassed parameters in a table. We’ll

discuss this idea of unpassed or “optional” parameters more later.

VFP provides other solutions as well. For example, if the function is a method in a class, you can use

properties of the class instead of passing parameters. Another useful technique is to pass an object to a

function. Properties of the object are then available to the function without explicitly passing them as

parameters. This can also help solve another problem, that of how to return more than one value from a

function or how to return any value at all from a form instantiated from a class.

Let’s say we have a class based on the Form base class. The form displays a list of tables to reindex (passed

into the class in an array), a checkbox to indicate if the tables should also be packed, and OK and Cancel

buttons so the user can decide whether to do any reindexing or not. We want the form to be released when

the user chooses OK or Cancel and to return three sets of values: an array containing those tables chosen by

the user, a flag set to .T. if the tables should also be packed, and a flag set to .T. if OK was chosen. The

problem: the Show() method used to display the form doesn’t return anything but .T., and once the form has

been released, there’s no way to examine any of its properties.

To solve this, create a Parameter class:

define class Parameter as custom

 dimension aParameters[1], aArray[1]

enddefine

The sole purpose of this class is to act as a container of values passed into or out of a function. The

aParameters property will contain one row for each individual value needed, while aArray is used if an

array must be passed.

Before calling a function, instantiate an object from this class and initialize the aParameters and aArray

properties appropriately. Then pass the object to the function. The function can update the aParameters and

aArray properties of the object before returning, and the calling routine can examine these properties upon

return from the function.

In the following example, we need two single-valued parameters (one which is .T. if the tables should be

packed and one indicating if OK was chosen) so the aParameters property of the Parameter object is

dimensioned to 2. The SelectTablesForm class, which displays the form when its Show() method is called,

accepts the Parameter object in its Init() method.

oParms = createobject('Parameter')

dimension oParms.aParameters[2]

oForm = createobject('SelectTablesForm', oParms)

oForm.Show()

When the user clicks on the OK button, the form puts .T. in oParms.aParameters[1] if the pack checkbox

was checked, .T. in oParms.aParameters[2], and copies the names of selected tables into the oParms.aArray

property. If the user clicks on Cancel, it puts .F. in oParms.aParameters[2]. Upon return, the calling routine

can examine the properties of oParms to determine what actions to take.

The source code disk contains these classes and a program called REINDEX.PRG that calls them.

The downside to passing an object to a function is that both the function and the calling routine must have

knowledge of the properties of the object and have agreed upon the structure of the returned values. This

increases the coupling between the function and the calling program.

Optional Parameters

The simplest function to call is one that needs no parameters. However, as I mentioned earlier, it’s not a

good idea to minimize the number of parameters by increasing the coupling of the function. Instead, look

for opportunities to use optional parameters. An “optional” parameter is one that can be passed or not. If the

parameter is passed, the function uses it; if not, the function uses a default value instead or performs its

operation differently. An example of a built-in function that accepts optional parameters is SEEK(). The

first parameter, which is required, is the value to look for. The second parameter, the table to look in, is

optional: if it isn’t passed, the table in the current work area is used. The VFP version of SEEK() supports a

third optional parameter, the tag to use. If it isn’t specified, SEEK() uses the current order for the table.

The advantage of using optional parameters is that they make calling a function easier (fewer parameters to

type or even remember) most of the time yet provide additional functionality when required.

There are a couple of ways you can detect if an optional parameter was passed or not. You can use

PARAMETERS() to determine how many parameters were passed, and assume if the number is smaller

than expected that one or more optional parameters were omitted. My preferred approach, however, is to

test the type of optional parameters; unpassed parameters are logical with a value of .F., so TYPE() returns

“L” for unpassed parameters. If that parameter should be logical even if it’s passed, no harm is done.

Here’s an example of a routine that handles optional parameters. It’s a wrapper program for the VFP

MESSAGEBOX() function, one that handles Yes or No questions only and returns .T. if the user chose Yes

or .F. if they chose No (this program is called YN.PRG on the source code disk). The first parameter, which

is required, is the message to display. The second, which is optional, is the title for the message box. If it

isn’t passed, the title of the main VFP window is used. The third parameter, which is also optional, is the

default value for the function. If .T. is passed, the Yes button is the default. If .F. is passed or it isn’t passed

at all (we don’t care which), the No button is the default.

function YN

lparameters tcMessage, tcTitle, tlDefault

#include '\VFP\FOXPRO.H'

local lcTitle, llDefault

lcTitle = iif(type('tcTitle') = 'L', ;

 _screen.Caption, tcTitle)

return messagebox(tcMessage, ;

 MB_YESNO + MB_ICONQUESTION + ;

 iif(tlDefault, MB_DEFBUTTON1, MB_DEFBUTTON2), ;

 lcTitle) = IDYES

Here are several examples of calling this function (this code is in TESTYN.PRG on the source code disk):

YN('Delete this record?')

YN('A serious error occurred. Terminate the ' + ;

 'application?', 'Application Error', .T.)

YN('Exiting system. Save current record?',, .T.)

Notice the use of a double comma in the last example. In FoxPro 2.x, you couldn’t leave out a parameter in

the middle of a list of parameters; you had to provide a “dummy” parameter (such as a blank string or .F.) in

its place. In VFP, you can now simply omit the unpassed parameter by entering nothing between its comma

and the one following.

Although YN handled an unpassed tcTitle by assigning a hard-coded default value to it (the screen’s

caption), if the function is a method in a class, a better mechanism is to have a property of the class contain

the default to use instead. For example, assume YN is a method in a general message handling class. The

class has a property called cTitle that’s used as the default title for all message boxes if a title isn’t passed to

a method. In this case, the line that assigns lcTitle would be:

lcTitle = iif(type('tcTitle') = 'L', ;

 This.cTitle, tcTitle)

The source code disk includes a class called MessageMgr with a YN method. TESTYN.PRG shows the

same examples calling this method as it did calling YN.PRG.

The advantage of this approach is flexibility: the developer can specify the title to use once and then not

have to pass the title parameter unless it must be different for a particular message box.

Order of Parameters

While the order in which parameters are passed may not seem important, it can make a difference in how

easy it is to use a function. For example, I was tired of constantly using ASCAN() followed by

ASUBSCRIPT() to find the row for a value in a multi-dimensional array. Since laziness, not necessity, is

the motherhood of invention, I wrote a function called ArrayScan() that, when passed an array and a value,

returns the row where the value is found in the array. Although the order of the parameters didn’t matter, I

opted to pass the array first and value second because that’s the order of parameters for ASCAN(). Now I

don’t have to remember two different parameter schemes for similar functions; both ASCAN() and

ArrayScan() accept the same parameters, but ArrayScan() works a bit differently.

To minimize the use of “dummy” parameters or double commas when calling a function that supports

optional parameters, order the parameters in the order of likelihood of use, with mandatory ones first. For

example, if you expect to specify the default button more often than the title for the message box, a better

choice for the order of the parameters in the YN function examined earlier would be:

lparameters tcMessage, tlDefault, tcTitle

Conclusion

Hopefully, this article has given you some ideas to consider on a topic that you might have thought is

straight-forward. Properly concentrating on communication between the routines in your applications can

go a long way to eliminating errors.

Speaking of errors, next month we’re going to examine error handling in VFP. This can be quite a complex

subject, so we’ll spend a couple of columns investigating the issues, and look at a general error handling

class.

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Sask., Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Data Dictionary for FoxPro 2.x and Stonefield

Database Toolkit for Visual FoxPro. He is also the author of “The Visual FoxPro Data Dictionary” in Pinnacle

Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at user groups and regional conferences all

over North America. CompuServe 75156,2326.

