
Custom Classes
Doug Hennig

This month’s column uses great ideas from other applications to create some custom classes you

can include in any application.

Last month, we looked at properties, events, and methods (PEMs) of subclasses of the Visual FoxPro base

classes I’ve created for my use. In this article, we’ll take a look at some special subclasses of these classes:

an EditBox that automatically expands keywords to complete text (similar to the AutoCorrect function in

Microsoft Word), a ComboBox that supports a feature similar to Quicken’s “quick fill” function, and a

TextBox that makes it obvious when it has focus. The great part about using custom classes like these is that

they can become “black box” objects: just drop them on a form, set a few properties, and don’t even worry

about how they do what they do.

AutoCorrect EditBox
Several years ago, the company I worked for used a time and billing program called TBR to track

consulting time and bill clients. Although it was a clunky program to use, one thing I really liked about it

was the idea of dictionary codes: two letter codes that would expand to a complete phrase. Dictionary codes

made data entry much faster because you could predefine common phrases, such as “met with”, “to

discuss”, “project status”, or even “Prepared system documentation for project”, and then enter those

phrases by just entering the two letter code. You could mix and match regular text with the dictionary

codes; TBR used “@” to indicate that the next two letters were a code. For example, “@mw Bob Jones @td

@ps” would expand to “Met with Bob Jones to discuss project status.” The thing that was a pain about it,

though, was that it wouldn’t expand the text on the screen, only in printed copy (such as timesheets and

invoices).

 I liked this feature so much that I implemented a version of it in FoxPro 2.x. I called it a “memo

dictionary” because I generally only used it in memo fields. Unlike TBR, I made the Valid clause of the

memo field process the text, looking for “@” characters and expanding the codes by looking them up in a

table called MEMODICT. This simple table had just two fields: CODE (the code entered by the user) and

DESCRIP (the text to put in place of the code). This feature allowed the user to see their complete text as

soon as they left the field. While this was an improvement, it still wasn’t as handy as similar features in

Microsoft Word (the AutoCorrect feature) and the Cob Editor Extensions (a FoxPro editor add-on written

by Randy Wallin and Ryan Katri). What I really wanted was the ability to expand the code as soon as the

user pressed the space bar. Unfortunately, that just was doable in FoxPro 2.x using native FoxPro code.

 Then came VFP. The KeyPress event in the EditBox control provides us exactly what we need: the

ability to trap every keystroke, check whether the user entered a code or not, and if so, expand it

immediately. The SFMemoDictEditBox class is the result.

 This class, which is contained in CONTROLS.VCX on the Developer disk, is based on the SFEditBox

class I discussed last month (also in CONTROLS.VCX). I added several public properties to this class,

listed in Table 1. Among other things, these properties allow you to customize the name, alias, and tag of

the memo dictionary table, and the name of the field that contains the expanded text. I also added one

protected property: lOpened, which is .T. if this control opened the memo dictionary table.

Table 1. SFMemoDictEditBox Public Properties.

Property Name Purpose
cDictAlias the alias of the memo dictionary table (default = MEMODICT)
cDictCodeChar the character used to indicate the start of a dictionary code (default = @)
cDictField the field containing the expansion text for the code (default = DESCRIP)
cDictFile the name of the memo dictionary table (default = MEMODICT.DBF)
cDictTag the tag to use for the SEEK in the memo dictionary table (default = CODE)
cExpandKeyCode a comma-delimited list of the keypress codes used to terminate the entry of a dictionary code

(default = 9,13,32,44,46,59 which is Tab, Enter, Space, comma, period, and semi-colon

 The Init() method opens the memo dictionary table if necessary and sets lOpened if we did so:

with This

 if not empty(.cDictAlias) and ;

 not used(.cDictAlias) and ;

 ((empty(dbc()) and file(.cDictFile)) or ;

 indbc(.cDictAlias, 'Table'))

 .lOpened = .T.

 use (.cDictFile) alias (.cDictAlias) ;

 again shared in 0

 endif not empty(.cDictAlias) ...

endwith

 The Destroy() method closes the memo dictionary table if necessary:

with This

 if .lOpened and used(.cDictAlias)

 use in (.cDictAlias)

 endif .lOpened ...

endwith

 The code in the KeyPress() event checks each keypress to see if the user typed a character that could

terminate a code, such as the space bar, Enter, or punctuation, and if so, calls FindCode() to see if a code

was entered.

LPARAMETERS nKeyCode, nShiftAltCtrl

local lcKey

lcKey = ltrim(str(nKeyCode))

if lcKey $ This.cExpandKeyCodes

 This.FindCode()

endif lcKey $ This.cExpandKeyCodes

 Valid() also calls FindCode() since the user could have entered a code as the last characters before

leaving the field:

This.FindCode()

dodefault()

 The real work is done in two custom public methods. FindCode() scans the content of the EditBox,

starting from the current cursor position backwards to the start, to see if a “start code” character (the default

is “@”) was entered. If so, it calls ExpandCode() to look up the code in the memo dictionary table and

substitute the expanded text for the code. Here’s the code for FindCode():

local lnI

with This

 for lnI = .SelStart to 1 step -1

 if substr(.Value, lnI, 1) = .cDictCodeChar

 .ExpandCode(lnI, .SelStart)

 exit

 endif substr(.Value, lnI, 1) = .cDictCodeChar

 next lnI

endwith

 Here’s ExpandCode():

lparameters tnStart, ;

 tnEnd

local lcCode, ;

 lcExact, ;

 lcExpand

with This

 lcCode = substr(.Value, tnStart + 1, ;

 tnEnd - tnStart)

 lcExact = set('EXACT')

 set exact on

 do case

 case empty(lcCode) or empty(.cDictAlias) or ;

 not used(.cDictAlias)

 case seek(upper(lcCode), .cDictAlias, .cDictTag)

 lcExpand = trim(evaluate(.cDictAlias + '.' + ;

 .cDictField))

 .Value = stuff(.Value, tnStart, ;

 tnEnd - tnStart + 1, lcExpand)

 .SelStart = .SelStart + len(lcExpand) - ;

 (tnEnd - tnStart + 1)

 endcase

 if lcExact = 'OFF'

 set exact off

 endif lcExact = 'OFF'

endwith

 To see how this class works, run the SAMPLE1 form on the Developer disk. It uses MEMODICT.DBF

as the memo dictionary table. Several codes have already been defined in this table (TD, MW, TD, and

DS), but of course you can add new ones. The codes can be up to five characters long (although simply

changing the size of MEMODICT.CODE will allow you to use shorter or longer ones). Try entering

something like “@mw Bob Jones @td proposal” and notice that the codes are expanded as you type.

AutoFill ComboBox
More than a decade ago, I used a database program on the Macintosh called OverVUE. This program was

revolutionary in many ways, but one was a feature it called “precognition”. As you typed in a field that had

this feature turned on, OverVUE would automatically look to see if another record had these same

characters entered, and if so, fill in the rest of the field with the complete entry. This is similar to an

incremental search feature, but with a twist: the characters filled in by the program are highlighted, so if the

user keeps typing, the new characters replace the selected text, and the incremental search tries again. This

feature, which has been implemented in other programs such as Quicken, is great for data entry of

frequently used values, because the user can enter just enough characters so the value they want is filled in,

and then move to the next field. An obvious use of this is a lookup field into another table.

 As with the memo dictionary feature, I decided I liked this so much, I created a class to provide it.

Rather than using a TextBox, though, SFAutoFillComboBox is based on the SFComboBox class I

discussed last month (both classes are contained in CONTROLS.VCX on the Developer disk). I decided to

use a ComboBox because this would allow the user three ways to enter a value: typing the entire string,

typing just a few characters and letting the field “autofill” with the nearest value, or selecting it from the

dropdown portion of the ComboBox. However, this functionality could easily be added to a TextBox class

as well; this might even be a better choice if there are a lot of records in the lookup table.

 The public properties I added to this class are listed in Table 2. There’s also a protected property:

lFoundMatch, which is .T. if an autofill match was previously found (needed so we can determine what to

do if the user presses BackSpace).

Table 2. SFAutoFillComboBox Public Properties.

Property Name Purpose

cAutoFillAlias the alias to search for an autofill entry (only required if RowSourceType is 3-SQL Select

or 4-Query)

cAutoFillTag the tag to search on for the autofill entry (only required if RowSourceType is 2-Alias, 3-

SQL Select, or 4-Query)

cAutoFillValue the field to return for the autofill entry (only required if RowSourceType is 2-Alias, 3-

SQL Select, or 4-Query)

lAutoFill .T. to enable the autofill feature (default = .T.)

lUpper .T. if the entered text should be upper-cased before searching for a autofill value (only

required if RowSourceType is 2-Alias, 3-SQL Select, or 4-Query)

 The majority of the work in this class is done in the InteractiveChange() event. It looks for the value the

user entered in one of various places, depending on the RowSourceType property. For example, if

RowSourceType is 5-Array, it searches the array specified in RowSource. If it’s 2-Alias, 3-SQL Select, or

4-Query and the specified cursor is indexed, it does a SEEK in the cursor specified in RowSource. Here’s

the code for this method:

#define cnBACKSPACE 127

local llFound, ;

 lnCursor, ;

 lcText, ;

 laArray[1], ;

 lnRow, ;

 lcAlias, ;

 lnPos, ;

 lcValues, ;

 lnStart, ;

 lnI, ;

 lcValue

* If we're doing autofill, save the current cursor

* position and get the current text entry.

llFound = .F.

with This

 if .lAutoFill and .Style = 0

 lnCursor = .SelStart

 lcText = alltrim(.Text)

* If we previously found a matching item and the user

* presses backspace, we need to manually remove the

* last character.

 if lastkey() = cnBACKSPACE and .lFoundMatch and ;

 not empty(lcText)

 lnCursor = lnCursor - 1

 if lnCursor < 1

 store '' to lcText, .DisplayValue

 else

 lcText = left(lcText, lnCursor)

 endif lnCursor < 1

 endif lastkey() = cnBACKSPACE ...

* If the user entered something, let's try to find a

* match.

 if not empty(lcText)

 do case

* If the combobox is based on an array, look for the

* text in the array.

 case .RowSourceType = 5

 = evaluate('acopy(' + .RowSource + ', ;

 laArray)')

 lnRow = .ArrayScan(@laArray, lcText, 1)

 llFound = lnRow > 0

 if llFound

 .DisplayValue = laArray[lnRow, 1]

 endif llFound

* If the combobox is based on an alias or an indexed

* SQL select, seek for the value based on the

* specified tag and return the specified search value.

 case inlist(.RowSourceType, 2, 3, 4) and ;

 not empty(.cAutoFillTag) and ;

 not empty(.cAutoFillValue)

 lcAlias = iif(.RowSourceType = 2, .RowSource, ;

 .cAutoFillAlias)

 lnPos = at('.', lcAlias)

 lcAlias = iif(lnPos = 0, lcAlias, ;

 left(lcAlias, lnPos - 1))

 lcText = iif(.lUpper, upper(lcText), lcText)

 llFound = seek(lcText, lcAlias, .cAutoFillTag)

 if llFound

 .DisplayValue = alltrim(evaluate(lcAlias + ;

 '.' + .cAutoFillValue))

 endif found()

* If the combobox is based on a list of values, look

* for the text in the list.

 case .RowSourceType = 1 and ;

 lcText $ This.RowSource

 lcValues = alltrim(.RowSource)

 lcValues = lcValues + ;

 iif(right(lcValues, 1) = ',', '', ',')

 lnStart = 1

 for lnI = 1 to occurs(',', lcValues)

 lnPos = at(',', lcValues, lnI)

 lcValue = substr(lcValues, lnStart, ;

 lnPos - lnStart)

 lnStart = lnPos + 1

 llFound = lcValue = lcText

 if llFound

 .DisplayValue = lcValue

 exit

 endif llFound

 next lnI

* If the combobox is based on "none", look for the

* text in the list of added items.

 case .RowSourceType = 0

 for lnI = 1 to .ListCount

 llFound = .List[lnI] = lcText

 if llFound

 .DisplayValue = .List[lnI]

 exit

 endif llFound

 next lnI

 endcase

* Put the cursor back to its former position (changing

* the DisplayValue resets it) and highlight the text

* after the cursor position if we found a value (if we

* didn't, no text is selected text). Flag if any text

* is selected.

 .SelStart = lnCursor

 .SelLength = iif(llFound, ;

 max(0, len(.DisplayValue) - lnCursor), 0)

 endif not empty(lcText)

 .lFoundMatch = .SelLength > 0

 endif .lAutoFill ...

endwith

* Call the AnyChange() method (which might contain some

* custom code) if we haven't already changed the value

* (which would fire the ProgrammaticChange event which

* would call the AnyChange() method).

if not llFound

 This.AnyChange()

endif not llFound

 ArrayScan() is a protected method that searches a particular column in an array for a specified value.

This is the same code that was presented in my January column on arrays, but was added here so this

control is completely self-contained.

lparameters taArray, ;

 tuValue, ;

 tnColumn, ;

 tnOccur

external array taArray

local lnColumn, ;

 lnOccur, ;

 lnRow, ;

 lnStartElement, ;

 lnFound, ;

 lnColumns, ;

 lnElement, ;

 lnCol

lnColumn = iif(type('tnColumn') = 'N', tnColumn, 1)

lnOccur = iif(type('tnOccur') = 'N', tnOccur, 1)

lnRow = 0

lnStartElement = 1

lnFound = 0

lnColumns = alen(taArray, 2)

* Use ASCAN to find the value in the array, then

* determine if it's in the correct column. If not,

* change the starting element number and try again.

do while .T.

 lnElement = ascan(taArray, tuValue, lnStartElement)

 if lnElement <> 0

 lnCol = iif(lnColumns > 1, ;

 asubscript(taArray, lnElement, 2), 1)

 if lnCol = lnColumn and (type('tuValue') <> 'C' or ;

 taArray[lnElement] = tuValue)

 lnFound = lnFound + 1

 if lnFound = lnOccur

 lnRow = iif(lnColumns > 1, ;

 asubscript(taArray, lnElement, 1), lnElement)

 exit

 endif lnCol = lnColumn ...

 endif lnCol = lnColumn ...

 lnStartElement = lnElement + 1

 else

 exit

 endif lnElement <> 0

enddo while .T.

return lnRow

 The SAMPLE1 form on the Developer disk also has a demo of this control. This form has the

CUSTOMER table from the VFP 5 sample data in its DataEnvironment; you’ll need to modify the form if

the sample data isn’t installed or if you named the directory something other than VFP5. The

SFAutoFillComboBox is bound to the COMPANY field in the CUSTOMER table. Try entering “A” (the

case is important because this table is not indexed on UPPER(COMPANY)) and notice the rest of the field

fills in with the name of the first company starting with “A” (Alfreds Futterkiste), and all but the first

character is selected. Next enter “r” (again, the case is important), and notice that the first company starting

with “Ar” (Around the Horn) is now displayed. Press BackSpace, and Alfreds Futterkiste is once again

displayed.

Visible Edit TextBox
The contact manager we use at Stonefield Systems Group is GoldMine for Windows. One thing I like about

its user interface is that you can very easily tell which field you’re currently editing: all fields appear plain

with a grey background, while the field with focus appears 3-D with a white background. No more

searching around, wondering where the cursor is, especially on a laptop. I liked this feature, so I created a

simple SFVisibleEditTextBox class (based on SFTextBox, both of which are in CONTROLS.VCX) that

provides similar functionality. (By the way, in case you’re noticing a trend here, yes, I do like to “borrow”

the best features from programs I like. Yeah, that’s it, borrow).

 To create this class, I simply set the BackStyle property to 0-Transparent so the background color of

the container shows through and SpecialEffect to 1-Plain. In the GotFocus() method of the control, I set

BackStyle to 1-Opaque and SpecialEffect to 0-3D, and in LostFocus(), I set them back to the original

values.

 To see this class in use, run the SAMPLE2 form on the Developer disk. As with SAMPLE1, this form

includes the VFP sample CUSTOMER table in its DataEnvironment, so you may need to modify the form if

necessary. Notice only the field with focus has a white background and appears in 3-D. It’s very obvious

where the cursor is located now.

Conclusion
I love the object-oriented nature of Visual FoxPro. It allows us to subclass common controls like TextBoxes

and ComboBoxes and add new functionality to them, then forget about how the new features were

implemented. I hope you’ll find the classes described in this article as useful as I have.

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Sask., Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit for Visual FoxPro and

Stonefield Data Dictionary for FoxPro 2.x. He is also the author of “The Visual FoxPro Data Dictionary” in Pinnacle

Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at user groups and regional conferences all

over North America. CompuServe 75156,2326.

