
Data Handling Issues, Part II
Doug Hennig

While field and table validation rules protect your tables from invalid data, they also make data entry

forms harder to use. In this second of a two-part article, Doug looks at a solution to this problem. He

also examines the use of multi-purpose lookup tables, and discusses how to take advantage of new

data dictionary features in VFP 5.0.

In last month’s column, we looked at two aspects of data handling for real world

situations: working with multiple data sets and primary key issues. This month, we’ll

look at more aspects, including validation issues, lookup tables, and how some new data

dictionary features in VFP 5.0 affect your applications.

Hassles With Validation
In FoxPro 2.x, most developers used a data buffering scheme involving memory

variables. The idea was to use SCATTER MEMVAR to create a set of memory variables

with the same names as the fields in a table, use GETs to edit those memory variables in a

screen, and then save the changes using GATHER MEMVAR only if the user chose the

Save function. VFP’s built-in data buffering means we can now create forms that edit the

fields in a table directly, and either save the changes using TABLEUPDATE() or cancel

them using TABLEREVERT(). Unfortunately, there’s one flaw in this new scheme:

validation rules.

 Field and table validation rules act like soldiers guarding your data. VFP will not

allow any data that disobey these rules to be stored in your tables. However, these soldiers

seem to be a little overzealous: there’s no way to control when they fire, nor is there a

way to trap the error that occurs when the rules fail. Even with table buffering turned on,

VFP checks a field validation rule when the user tries to exit a control bound to that field

and a table validation rule when the user tries to move to another record. If the rule fails,

VFP displays either the error message you defined in the database for the rule or a generic

error message. In either case, you don’t have any control over the appearance of the error

dialog box. You also cannot defer validation checking to a time when it’s more

convenient. For example, if a user enters invalid information in a field, then clicks on the

Cancel button in a form, they’re still going to get an error message because there’s no

way to suppress the validation checking.

 A less restrictive problem is system-assigned primary key values. Since VFP doesn’t

allow you to assign a primary key value in a trigger (which is the logical place to do it),

most developers do it in the Default property for the primary key field by specifying a

function name. For example, the routine called NEXT_ID.PRG on the source code disk

assigns the next ID for the specified table by incrementing the ID field in NEXTID.DBF.

The Default property for the CUST_ID field in the CUSTOMER table is

NEXT_ID(‘CUSTOMER’). When a new record is added to the CUSTOMER table,

NEXT_ID is called by VFP to increment NEXTID.ID and assign the new value to

CUST_ID. The only problem with this mechanism is that if the user decides not to add

the record after all, NEXTID.ID has already been incremented. In the case of surrogate

keys (keys that have no meaning other than to provide a unique value), this isn’t a

problem, but if the key represents the next invoice or check number, we’ll have a “hole”

in the numbering scheme.

 To see an example of how these problems can be a pain, DO the CUSTOMER1 form

on the source code disk. This form uses row buffering with controls directly bound

against the CUSTOMER table. Try to enter “NJ” into the Region field; the error dialog

that appears is controlled by VFP, not the form. Try clicking on the Cancel button. You’ll

continue to get the same error message until you first enter a valid value (blank, SK, CA,

or NY) into the field. Click on the Add button then the Cancel button. Do this several

times. Notice that even though no new records have been added to the table, the next

available value for CUST_ID keeps rising.

 The solution to these problems is to edit an updatable view rather than the table

directly in a form. Since the view won’t have field validation rules (unless you explicitly

define them, of course), the user can enter whatever they like into any field. However,

when they click on the Save button, TABLEUPDATE() tries to write the view record to

the table, at which time field and table rules are checked. If any rules fail, VFP doesn’t

display an error message; instead, TABLEUPDATE() returns .F., in which case you can

use AERROR() to determine which rule failed and handle it appropriately.

 To see an example of this, DO the CUSTOMER2 form. You’ll find that you can enter

NJ into the Region field and won’t get an error message until you click on the Save

button. The error message that’s displayed is defined by the form, not VFP. You’ll also

find that if you add and cancel several times, the next available CUST_ID is not

incremented because NEXT_ID.PRG isn’t called until a new CUSTOMER record is

inserted when you click on the Save button.

 Here’s the code from the Click() method of the Save button; this code is simpler than

you’d use in a “real” form but shows how field validation rule failure can be handled.

local lcAlias, ;

 laError[1], ;

 lcField, ;

 lcDBCField, ;

 lcMessage, ;

 lnI

lcAlias = alias()

if tableupdate()

 if cursorgetprop('SourceType') <> 3

 = requery()

 endif cursorgetprop('SourceType') <> 3

 Thisform.Refresh()

else

 select (lcAlias)

 = aerror(laError)

 lnError = laError[1]

 do case

* If the error was caused by a field validation

* rule being violated, get the error message for

* the field from the DBC (or use a generic message

* if there isn't one) and display it. Find the

* control for the field and set focus to it.

 case lnError = 1582

 lcField = alias() + '.' + laError[3]

 lcDBCField = iif(cursorgetprop('SourceType') = 3, ;

 lcField, dbgetprop(lcField, 'Field', 'UpdateName'))

 lcDBCField = substr(lcDBCField, at('!', lcDBCField) + 1)

 lcMessage = dbgetprop(lcDBCField, 'Field', 'RuleText')

 lcMessage = iif(empty(lcMessage), ;

 'Improper value entered into ' + laError[3] + '.', ;

 evaluate(lcMessage))

 = messagebox(lcMessage, 0, Thisform.Caption)

 for lnI = 1 to Thisform.ControlCount

 if type('Thisform.Controls[lnI].ControlSource') <> 'U' and ;

 upper(Thisform.Controls[lnI].ControlSource) = lcField

 Thisform.Controls[lnI].SetFocus()

 exit

 endif type('Thisform.Controls[lnI].ControlSource') ...

 next lnI

* Display VFP's error message.

 otherwise

 = messagebox('Error #' + ltrim(str(laError[1])) + ;

 chr(13) + laError[2], 0, Thisform.Caption)

 endcase

endif tableupdate()

 There’s one thing about updatable views that frequently catches developers: if the

table the view is defined from is buffered, the TABLEUPDATE() for the view will write

the view record into the table’s buffer, not directly to the disk. If you forget to also issue

TABLEUPDATE() for the table, you’ll get an error message when VFP tries to close to

table because there are uncommitted changes in the table’s buffer.

Lookup Tables
All but the simplest applications use lookup tables. Since most lookup tables have the

same structure (code and description), some developers like to use a “multi-lookup” table.

A multi-lookup table combines many small lookup tables into one larger table. This table

usually has the same structure as an individual lookup table, but with the addition of a

TYPE field. This field contains a value indicating what type of lookup each record is for.

For example, A might represent customer type lookups, B customer sales regions, C

employee types, etc. The primary key for this table is TYPE + CODE so within each type,

the CODE must be unique. Here are some sample records:

TYPE CODE DESCRIPTION
A PRO Prospect
A REG Regular
A SPE Special
B NE Northeast
B SW Southwest
C FTP Full-time permanent
C FTT Full-time temporary
C PTP Part-time permanent
C PTT Part-time temporary

 The advantage of having a multi-lookup table is that there are fewer tables to open

and maintain than when a lot of smaller lookup tables are used. The disadvantage is that

setting up the relationships is a little more complex because the type must be part of the

relationship and a filter has to be set on the lookup table so the user can only see codes

matching the desired type. Here’s an example that opens CUSTOMER.DBF and two

copies of LOOKUPS.DBF and sets relationships up for the customer type and customer

sales region lookups:

select 0

use LOOKUPS again alias CUST_TYPE order TYPECODE

set filter to TYPE = 'A'

select 0

use LOOKUPS again alias CUST_REGION order TYPECODE

set filter to TYPE = 'B'

select 0

use CUSTOMER

set relation to 'A' + TYPE into CUST_TYPE, ;

 'B' + REGION into CUST_REGION

 Working with multi-lookup tables is much easier in VFP because you can use views.

You define one view for each type of lookup needed and only include records of the

desired type in the view. For example:

create sql view CUST_TYPE_LOOKUP as ;

 select CODE, DESCRIP ;

 from LOOKUPS ;

 where TYPE = 'A'

create sql view CUST_REGION_LOOKUP as ;

 select CODE, DESCRIP ;

 from LOOKUPS ;

 where TYPE = 'B'

 Using views gives you the best of both worlds: one physical table to manage but many

easy-to-use logical representations. You don’t need to worry about the lookup type when

setting up relations, doing SEEKs, or displaying a pick list. Here’s code that sets up the

same type of relations as the previous code did, but using views:

select 0

use CUST_TYPE_LOOKUP

index on CODE tag CODE

select 0

use CUST_REGION_LOOKUP

index on CODE tag CODE

select 0

use CUSTOMER

set relation to TYPE into CUST_TYPE_LOOKUP, ;

 REGION into CUST_REGION_LOOKUP

 This code shows the one downside of using views: because views don’t have

predefined indexes, you can’t set up the relationships in the DataEnvironment of a form

or report because you have to recreate the indexes every time the view is opened. Other

than that, the code shown above could either represent opening separate lookup tables or

different views of the same lookup table.

VFP 5.0
Version 5.0 of VFP should be released by the time you read this. Although there are a lot

of new features in 5.0, not many changes were made to the database container. However,

the ones that were made will make a big difference in your productivity. Let’s take a look

at these.

 One change that will simplify things is having a multi-user database container. This

means you no longer have to ensure no one else on your network has the database open

before adding new tables, making table structure changes, or rebuilding indexes. Since

it’s possible another user added or removed tables or views from the database container

while you had it open, a new Refresh function in the Database menu re-reads the database

from disk. Other new functions in the Database menu, such as Find Object and Arrange,

make it easier to work with databases containing a lot of objects.

 The Table Designer has a slightly new appearance. Instead of a Table button to

display a dialog of table properties (such as rule and message), there’s a Table page. This

page also includes the name of the DBF and database and statistical information about the

table (number of records, number of fields, and record size). The biggest change, though,

is on the Fields page. Four new properties appear: InputMask, Format, DisplayLibrary,

and DisplayClass (these are the names of the properties as the DBGETPROP() and

DBSETPROP() functions expect them). These new properties together with a new VFP

feature called Intellidrop will greatly improve your productivity in creating forms. Here’s

how it works.

 In VFP 3, when you drag a field from the DataEnvironment, Project Manager, or

Database Designer to a form, you get a control with the following attributes:

 The control is a VFP base class: Checkbox for Logical fields, Editbox for Memo

fields, OLEBoundControl for General fields, and Textbox for all other data types.

 Textbox controls are sized to hold about 10 characters, regardless of the actual

field size, forcing you to resize the control.

 The name of the control is the name of the class followed by an instance number

(for example, the first Textbox control is Textbox1, the second is Textbox2, etc.).

Usually, you’d rename the control to something more meaningful like

txtCompany.

 No label is automatically created as a caption for the field.

 Developers complained long and hard about the shortcomings of dropping a field on a

form, and Microsoft responded with the Intellidrop feature in VFP 5. When you drop a

field on a form, Intellidrop:

 creates a control of the class defined in the DisplayClass property for the field

defined in the database (the DisplayLibrary property tells VFP where this class is

stored);

 sizes the control appropriately for the field size;

 copies the InputMask, Format, and Comment properties of the field to the same

properties of the control; and

 creates a Label object to the left of the control whose Caption property is set to the

Caption of the field.

 You can turn off some or all of these features by bringing up the Tools Options

dialog, selecting the Field Mapping page, and unchecking the appropriate checkbox. You

can also define which class to use by default for each data type; this class is used

whenever a field with “<default>” as the DisplayClass is dropped on a form.

 Like many things, Intellidrop isn’t perfect. Its shortcomings are:

 The name of the control is still the class name followed by an instance number.

 The controls aren’t always sized perfectly; you might still need to tweak the width

a bit.

 The label it creates is of the Label base class; there’s no way to define a different

class to use.

 Only classes stored in visual class libraries (VCXs) can be used (this isn’t so

much a complaint as an observation).

 If you change the field properties in the database, you have to delete the label and

field control and redrop the field on the form, since these properties aren’t

dynamically tied to the control.

 In addition to the benefits provided via Intellidrop, having the InputMask and Format

for a field now stored in the database means we can create controls that dynamically set

their InputMask and Format properties as appropriate for their ControlSource at runtime.

The advantage of doing this is reduced maintenance: if you decide a field should only

contain upper-case data, you’d have to edit every form and report displaying the field if

the format is hard-coded into its control. If the control asks the database at runtime for the

format for the field, no editing is required at all. This is also especially useful for

applications where the user has some ability to customize the application, such as an

accounting system where the user can define the format for account codes or inventory

part numbers.

 Here’s code you can put in the Init() method of a control (or better yet, in the Init()

method of a class) to set the InputMask and Format properties at runtime (the SFTextbox

class in the CONTROLS.VCX class library on the source code disk has this code):

if not empty(This.ControlSource) and ;

 not empty(dbc()) and ;

 indbc(This.ControlSource, 'Field')

 local lcInputMask, lcFormat

 lcInputMask = dbgetprop(This.ControlSource, ;

 'Field', 'InputMask')

 lcFormat = dbgetprop(This.ControlSource, ;

 'Field', 'Format')

 This.InputMask = iif(empty(lcInputMask), ;

 This.InputMask, lcInputMask)

 This.Format = iif(empty(lcFormat), ;

 This.Format, lcFormat)

endif not empty(This.ControlSource) ...

 An example of using this scheme is shown in the EMPLOYEE.SCX form on the

source code disk. If you examine the controls on this form, you’ll find no InputMask or

Format properties set. However, when you DO the form, the Phone field is formatted as

999-999-9999 and the Category field is forced to upper-case because that’s how those

fields are defined in the database.

 I tested the performance hit this code gives by including or excluding the code shown

above from the SFTextbox class used for the controls on the form, and found the form

takes about 15% longer to instantiate with this code. However, that means the form takes

0.327 seconds to display rather than 0.283 seconds, so the user really won’t notice the

difference. Thus, perhaps with the exception of the busiest of forms, I suggest using this

scheme to ensure your forms keep up to date with changes made to the database.

 Another new feature you’re going to love is being able to update fields in the current

table in field and table validation rules. VFP 3 allowed you to update fields in another

table in validation code, but attempting to change a field in the current table caused an

“illegal recursion” error. This meant you couldn’t define code to, for example, timestamp

a record (put the date and time of the last change into a field), as a table rule, but instead

had to do it in a form. The advantage of putting this code in a rule is that it automatically

happens without the form developer having to code for it, and it also works in browses or

programmatic changes to the table. In VFP 5, you can now use code similar to the

following (this code is in the stored procedures of the DATA database on the source code

disk and is called as the table validation rule for the EMPLOYEE table):

function EmployeeTableRule

local ltStamp

* Assign the EMP_ID field if it hasn't been already.

if empty(EMP_ID)

 replace EMP_ID with NEXT_ID('EMPLOYEE')

endif empty(EMP_ID)

* Timestamp the record.

ltStamp = datetime()

if LAST_UPDATE <> ltStamp

 replace LAST_UPDATE with ltStamp

endif LAST_UPDATE <> ltStamp

return .T.

 This code does two things: assigns the primary key for the current record if it hasn’t

already been assigned (this is another way to prevent “holes” in sequential primary keys

as I discussed earlier) and timestamp the record every time it’s changed (you could also

store the name of the user who made the change). You could use field level validation

rules to ensure that the contents of a field are forced to upper case or partial entries are

automatically filled in with a complete value (similar to the AutoCorrect feature in Word

95).

 There are a few important things to know when writing rules that update the current

table:

 Validation rules can modify the current table, but triggers cannot; they still give an

“illegal recursion” error.

 The code that updates a field should only do so if the field’s value is different

from what should be stored. Notice the code above only updates the two fields if

their values need to be updated. This prevents recursion from occurring (yes,

recursion can still occur in validation rules if you don’t do it properly).

 If it’s possible that recursion may occur, you can prevent it from going past more

than one level (and causing VFP to bomb) by checking the calling stack (using the

PROGRAM() function) and not doing the update if the validation code called

called itself. Here’s an example:

lcProgram = ''

lnLevel = 1

do while not empty(program(lnLevel))

 lcCaller = lcProgram

 lcProgram = program(lnLevel)

 lnLevel = lnLevel + 1

enddo while not empty(program(lnLevel))

if not lcCaller == program()

 * do the REPLACE here since we haven't

 * called ourselves

endif not lcCaller == program()

 Thanks to Linda Teh, Andy Neil, and Jim Slater for exploring and clarifying these

issues in the VFP 5 beta forum on CompuServe.

Conclusion
Next month’s column will be “Christmas stocking stuffers”, a potpourri of idea tidbits.

We’ll look at lots of little things, such as where to put utility functions, why you

shouldn’t use the GO command, and how to visually indicate that a control is read-only.

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Sask., Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Data Dictionary for FoxPro 2.x and Stonefield

Database Toolkit for Visual FoxPro. He is also the author of “The Visual FoxPro Data Dictionary” in Pinnacle

Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at user groups and regional conferences all

over North America. CompuServe 75156,2326.

