
The Best of Both Worlds 

Doug Hennig 

 

You don’t have to sacrifice performance for ease of installing new versions of applications. Using 

STARTAPP, you can run applications from local drives for best performance, and yet have them 

automatically updated from a common server directory when you install a new version. This solution 

also gives a secondary benefit: you can easily change where your data files are located without 

rebuilding your application. 

 

Back in the days when we wrote single user applications, everything went on one drive: 

program files, runtime library files, and data. Then we moved to a networked world where 

shared access to applications and data was vital. So, we installed everything on the server: 

program files, runtime library files, and data. However, while our users gained shared access to 

their applications, they also took a performance hit, since everything had to load off the server. 

Those unfortunate souls running over WAN connections really had it tough. Later, Microsoft 

made things a little faster (but more work for installation) by requiring the runtime library files 

be installed on each workstation. 

 A few years ago, we decided we wanted the best of both worlds: local applications but 

shared data. Having the application running off a local drive meant that it loaded faster and 

used the local drive for temporary or static files (which gave additional performance 

improvements), but still accessed the shared data from the server. The big downside of using 

this approach, of course, is that when program files change, they must be manually installed on 

each workstation, which is an incredible pain. This article presents a solution to that problem: 

STARTAPP. 

 STARTAPP is a small application loader program. Its sole job is to ensure that the copy of the 

application on the user’s local drive is the latest version before executing it. When a user starts 

the application, they actually run STARTAPP.EXE rather than the application itself. STARTAPP 

checks the server to see if the program files installed there are more recent than the ones of 

the local drive, and if so, copies them to the local drive. It then runs the application. 

 This scheme makes installing a new version of an application a snap: simply copy the 

updated program files to the server. The next time a user runs the application, STARTAPP will 

automatically update their version of the application before running it. This is especially 

important in a situation where the application is running 24 hours a day; if at least one person is 

running the application all the time, how can you install an updated version if they’re running 

the one on the server you want to overwrite? Using this approach, that isn’t a concern, unless 

the data structures change, which of course will require exclusive access to the tables. In that 



case, you might want an automated mechanism to force users off the system, such as an 

application-wide timer that periodically checks for a signal that the application should be 

terminated (such as a file that normally doesn’t exist suddenly appearing). 

 

Where’d My Application Go? 

STARTAPP needs to read from somewhere information about how to do its job. It needs to 

know where on the server to find the “home” directory for the application (where the latest 

copy of the program files will be located), what program files to check and possibly copy to the 

local workstation, and what application to execute after it’s done (including any parameters 

that should be passed to the application). This type of information could go into one of four 

places: a MEM file, a table, an INI file, or the Windows Registry. 

 We rejected a MEM file right away because of the difficulty in updating it. We rejected a 

table for a similar reason: it’s difficult to change settings stored in a table from outside an 

application unless you have a development copy of FoxPro available (which you rarely do at a 

client site). One of the things we frequently need to do when installing an application at the 

client site is figure out where to put it (has this ever happened to you: they told you it would be 

on drive N: but now that drive is full, so it’s going on M: instead). So it came down to an INI file 

versus the Windows Registry. After much consideration, we decided to go with an INI file. 

Although Microsoft is discouraging the use of INI files, and the Registry makes more sense for 

some types of settings (especially user preferences), we found that INI files worked better in 

this instance for several reasons: 

 

 INI files, especially those located in the same directory as the application rather than 

the Windows or System directories, minimize what I call “poops”. The reason I call them 

“poops” is obvious to any pet owner: like a pet that hasn’t been house-trained yet, 

unruly applications leave little extraneous things all over your hard drive without your 

knowledge, making them a nightmare to find and clean up after if you decide to remove 

the application. Unless an application has an uninstall feature, Registry settings can be 

around years after the application is no longer used. 

 INI files aren’t operating system specific. You can use INI files in Windows 3.1, Windows 

95, Windows NT, DOS, Unix, and Macintosh. The Registry is only supported in Windows 

95 and NT. 

 Since they’re just text files, INI files are easier for users to edit than Registry settings. 

I’ve talked inexperienced users through using Notepad to edit an INI file lots of times 

over the phone, but wouldn’t dare try it using REGEDIT to edit some Registry settings. 



 

Technical Details 

STARTAPP.EXE is built from STARTAPP.PJX, which contains just two files: STARTAPP.PRG (the 

main program) and READINI.INI. All of these files are available from the Download Site. 

 STARTAPP.PRG accepts a single, optional parameter: the name of the INI file containing the 

information it needs. If it isn’t specified, the current directory must contain one and only one INI 

file or STARTAPP will give an error. The INI file must contain a section called [Server] and the 

following keys: 

 

 Directory: the complete path to the server directory where the program files can be 

located. 

 Copy<n>: the name of a file to copy, where <n> is the number of the file (such as 

Copy1, Copy2, Copy3, etc.). 

 Run: the name of the application to run, including any parameters to pass to it. 

 

 Here’s an example: 

 

[Server] 

Directory = N:\SALES 

Copy1 = SALES.APP 

Copy2 = SALES.INI 

Copy3 = BTRIEVE.EXE 

Copy4 = DBFTRV16.DLL 

Copy5 = DBFTRVE.FLL 

Copy6 = WBTRCALL.DLL 

Copy7 = FOXTOOLS.FLL 

Run = SALES.APP 

 

 These entries tell STARTAPP to look in N:\SALES for the files to check, to check and possibly 

copy the seven files listed, and to run SALES.APP when it’s done checking. 



 Here’s an example of how STARTAPP is called (-T tells FoxPro not to display its splash 

screen): 

 

STARTAPP.EXE -T APP.INI 

 

This might be the Target setting in the Properties dialog for the Windows 95 shortcut for the 

application or the Command Line setting for the Windows 3.1 icon. If APP.INI is the only INI file 

associated with the application, you could leave that parameter out of this command if desired. 

The current directory should be set to the one containing STARTAPP.EXE on the local drive, so 

put that into the Start In setting in the Properties dialog for the Windows 95 shortcut or the 

Working Directory setting for the Windows 3.1 icon. 

 Of course, you don’t have to name the EXE file STARTAPP.EXE. It can be renamed for each 

application if desired; for example, for a sales application, you might call it SALES.EXE. However, 

avoid naming the application file called by STARTAPP the same name, since FoxPro will get 

confused. For example, if you rename STARTAPP.EXE to SALES.EXE, don’t have it run SALES.APP; 

instead, name your application file something different like SALESOVL.APP or MAIN.APP. 

 Before we look at the code for STARTAPP.PRG, I’ll briefly mention its cross-version 

capability. One of the design goals for STARTAPP was to work with all the applications we write, 

meaning FoxPro 2.6 for DOS and Windows and VFP 3 and 5. Obviously, we need separate 

project files for each platform, but we wanted to keep the same code base if possible. This 

meant we either had to write code for the lowest common denominator (FoxPro 2.x) and avoid 

using VFP-specific commands, functions, and syntax (such as LPARAMETERS, LOCAL, and 

dropping the = in front of a function call when you don’t care about the return value), or use #IF 

to bracket version-specific code so the FoxPro compiler only sees code for the current version 

to avoid syntax errors. We actually used both techniques in this tool; STARTAPP.PRG was 

written using only FoxPro 2.x code while READINI.PRG (which we’ll see later) uses code 

bracketing since we use some VFP-specific code. 

 Here’s the code for STARTAPP.PRG: 

 

parameters tcINIFile 

private laINIFiles, ; 

  lnINIFiles, ; 

  lcINIFile, ; 

  lcServer, ; 

  lcApp, ; 



  lnFiles, ; 

  lcFile, ; 

  laFiles, ; 

  lnI 

 

* If the name of the INI file was passed, ensure 

* it exists. 

 

set talk off 

set safety off 

if type('tcINIFile') <> 'C' or empty(tcINIFile) 

  lnINIFiles = adir(laINIFiles, '*.INI') 

  if lnINIFiles <> 1 

    wait window 'You must specify the name of the ' + ; 

      'INI file for this application.' 

    return 

  endif lnINIFiles <> 1 

  lcINIFile = fullpath(laINIFiles[1, 1]) 

else 

  lcINIFile = fullpath(tcINIFile) 

endif type('tcINIFile') <> 'C' ... 

if not file(lcINIFile) 

  wait window tcINIFile + ' cannot be located.' 

  return 

endif not file(lcINIFile) 

 

* Get the server directory and name of the 

* application to run. 

 

lcServer = ReadINI(lcINIFile, 'Server', ; 

  'Directory', '%') 

if lcServer = '%' 



  wait window tcINIFile + ; 

    ' does not contain a valid entry for Directory' 

  return 

endif lcServer = '%' 

lcServer = lcServer  + ; 

  iif(right(lcServer,  1) $ '\:', '', '\') 

lcApp    = ReadINI(lcINIFile, 'Server', 'Run', '%') 

if lcApp = '%' 

  wait window tcINIFile + ; 

    ' does not contain a valid entry for Run' 

  return 

endif lcApp = '%' 

 

* Get a list of files to check on the server. 

 

lnFiles = 0 

do while .T. 

  lcFile = ReadINI(lcINIFile, 'Server', ; 

    'Copy' + ltrim(str(lnFiles + 1)), '%') 

  if lcFile = '%' 

    exit 

  endif lcFile = '%' 

  lnFiles = lnFiles + 1 

  dimension laFiles[lnFiles] 

  laFiles[lnFiles] = lcFile 

enddo while .T. 

 

* Check the specified files in the server directory 

* and, if necessary, copy each to the workstation. 

 

for lnI = 1 to lnFiles 

  do VerCheck with laFiles[lnI], lcServer 



next lnI 

wait clear 

 

* Now start the application. 

 

do &lcApp 

return 

 

 Note that the specified application is called using macro expansion rather than a named 

expression. This allows you to specify parameters to pass to the application. For example, if you 

want to pass the current date and directory to the application, you’d use something like the 

following in the INI file: 

 

Run = SALES.APP with date(), sys(5) + curdir() 

 

 The VerCheck function, located in STARTAPP.PRG, does the dirty work: it compares versions 

of a single file on the server and on the workstation using their datetime stamps. If the file 

doesn’t exist on the workstation or is different than the version on the server, VerCheck copies 

it to the workstation. VerCheck uses WAIT WINDOW to display what it’s doing; you can remove 

these statements if you don’t want anything displayed. Here’s the code for this routine: 

 

procedure VerCheck 

parameters tcFile, ; 

  tcServer 

private laServer, ; 

  laWorkStn 

 

* Get the version info for the server and 

* workstation copies of the file. 

 

wait window 'Checking server and workstation ' + ; 

  'versions of ' + tcFile + '...' nowait 



= adir(laServer,  tcServer + tcFile) 

= adir(laWorkStn, tcFile) 

 

* If the file doesn't exist on the workstation or 

* doesn't match the server version, we must copy it. 

 

if file(tcServer + tcFile) and (not file(tcFile) or ; 

  laServer[1, 3] <> laWorkStn[1, 3] or ; 

  laServer[1, 4] <> laWorkStn[1, 4]) 

  wait window 'Updating workstation version of ' + ; 

    tcFile + '...' nowait 

  copy file (tcServer + tcFile) to (tcFile) 

endif file(tcServer + tcFile) ... 

return 

 

Reading From an INI File 

READINI.PRG reads an entry from a section in an INI file. It accepts the following parameters: 

 

 tcINIFile: the INI file to look in. For VFP, you must pass the fully qualified path to the INI 

file, not just the relative path (for example, even if the current directory is C:\MYAPP, 

you must specify “C:\MYAPP\APPLIC.INI”, not “APPLIC.INI”) or the function won’t work 

properly. 

 tcSection: the section to look for. 

 tcEntry: the entry to look for. 

 tcDefault: the default value to use if the INI file, section, or entry aren’t found. 

 

It returns the value of the entry or tcDefault if the entry isn’t found 

 READINI has different code for VFP and FoxPro 2.x; the code is bracketed in an #IF 

statement so FoxPro only compiles the code applicable for the current version. The reason for 

the different code is that VFP has the ability to call Windows API functions using the DECLARE 



command, which defines where the function is found and how to call it. The Windows 

GetPrivateProfileString function will do everything we need, so the VFP code doesn’t do much 

other than setting up for the call to this function. FoxPro 2.x doesn’t have the capability of 

calling Windows API functions (well, it sort of does: I could have used the RegFN and CallFN 

functions in FOXTOOLS.FLL, but decided to make this a completely self-contained EXE that 

doesn’t require FOXTOOLS), so its code consists of a brute force mechanism to read and parse 

the INI file. 

 Here’s the code for READINI.PRG 

 

#define ccNULL             chr(0) 

#define cnBUFFER_SIZE      2048 

#if 'Visual' $ version() 

 

* Visual FoxPro code. 

 

lparameters tcINIFile, ; 

  tcSection, ; 

  tcEntry, ; 

  tcDefault 

local lcBuffer, ; 

  lcDefault 

declare integer GetPrivateProfileString in Win32API ; 

  string cSection, ; 

  string cEntry, ; 

  string cDefault, ; 

  string @ cBuffer, ; 

  integer nBufferSize, ; 

  string cINIFile 

lcBuffer  = replicate(ccNULL, cnBUFFER_SIZE) 

lcDefault = iif(type('tcDefault') <> 'C', '', ; 

  tcDefault) 

= GetPrivateProfileString(tcSection, tcEntry, ; 



    lcDefault, @lcBuffer, cnBUFFER_SIZE, tcINIFile) 

return strtran(lcBuffer, ccNULL, '') 

#else 

 

* FoxPro 2.x code. 

 

parameters tcINIFile, ; 

  tcSection, ; 

  tcEntry, ; 

  tcDefault 

private lnHandle, ; 

  lcValue, ; 

  lcLine 

 

* If the INI file doesn't exist, return the default 

* value. 

 

if not file(tcINIFile) 

 return tcDefault 

endif not file(tcINIFile) 

 

* Open the INI file. 

 

lnHandle = fopen(tcINIFile) 

lcValue  = tcDefault 

if lnHandle >= 0 

 

* Find the section heading. 

 

  lcLine = '%' 

  do while lcLine <> '[' + tcSection + ']' and ; 

    not feof(lnHandle) 



    lcLine = fgets(lnHandle) 

  enddo while lcLine <> '[' + tcSection + ']' ... 

 

* If we found the section, find the entry. 

 

  if lcLine = '[' + tcSection + ']' 

    do while lcLine <> tcEntry and not feof(lnHandle) 

      lcLine = fgets(lnHandle) 

    enddo while lcLine <> tcEntry ... 

 

* If we found the entry, get the value. 

 

    if lcLine = tcEntry 

      lcLine  = alltrim(substr(lcLine, ; 

        len(tcEntry) + 1)) 

      lcValue = alltrim(substr(lcLine, 2)) 

    endif lcLine = tcEntry 

  endif lcLine = '[' + tcSection + ']' 

  = fclose(lnHandle) 

endif lnHandle >= 0 

return lcValue 

#endif 

 

Where’d My Data Go? 

One thing you may be wondering about: if the application is running from the local drive and 

the data is located on the server, how does the application know where to find the data, 

especially since the location on the server might change? Here’s where the INI file comes in 

again: we store the data for our applications in a DATA subdirectory of the application’s “home” 

directory on the server, so our application uses READINI.PRG to return the Directory entry in 

the INI file and then appends “DATA\” to it. We can then open the database and tables in that 

directory. Here’s an example: 

 



oApp.cServer = ReadINI(oApp.cINIFile, 'Server', ; 

  'Directory', '') 

oApp.cDataDir = oApp.cServer + ; 

  iif(right(oApp.cServer, 1) $ '\:', '', '\') + ; 

  'DATA\' 

open database (oApp.cDataDir + 'MYDATA') 

 

(oApp is our application object; we store the directories in properties of the object so anything 

needing to know where program and data files are installed can access them). 

 One slight fly in the ointment: the DataEnvironment of a form has a hard-coded path to 

databases and free tables. Even if the database has been opened, as soon as you run a form, it’ll 

bomb because it can’t find the database where it expects to (wherever it was on your system 

when you created the form). Fortunately, this path is stored in read-write properties in the 

DataEnvironment (Database for cursors contained in a database and CursorSource for free 

tables), so we just need to change these properties before trying to open the tables. Here’s how 

we handle it: we put the following code into the Load method of our base form class (SFForm, 

which is contained in SFCTRLS.VCX): 

 

* If the tables haven't been opened yet, set the data 

* directory for all databases and free tables, then 

* open the tables. 

 

if type('oApp') = 'O' and not isnull(oApp) and ; 

  type('This.DataEnvironment') = 'O' and ; 

  not isnull(This.DataEnvironment) and ; 

  not This.DataEnvironment.AutoOpenTables 

  oApp.SetDataDirectory(This.DataEnvironment) 

  This.DataEnvironment.OpenTables() 

endif type('oApp') = 'O' ... 

 

 This code ensures that we have an application object (oApp), that we have a 

DataEnvironment and that AutoOpenTables is set to .F. so tables aren’t automatically opened 

(the DataEnvironment opens tables before the form’s Load method fires if AutoOpenTables is 



set to its default .T., and that’s too soon for this solution). If all that is true, it calls the 

SetDataDirectory method of the oApp object, which adjusts the DataEnvironment to use the 

proper directory (we’ll see this code in just a moment). It then tells the DataEnvironment to 

open the tables now that it knows where to find them. Putting this into the Load method 

ensures the tables are opened from the proper directory before any object sitting on the form is 

instantiated. 

 The SetDataDirectory method accepts a reference to a DataEnvironment, then goes 

through each cursor object in the DataEnvironment and changes either its Database or 

CursorSource property to use the directory stored in the cDataDir property of the application 

object. The code for SetDataDirectory is listed below. If you don’t use an application object or 

don’t want to put this code into it, you could put this code into a PRG instead. 

 

lparameters toDE 

local laObjects[1], ; 

  lnObjects, ; 

  lcDirectory, ; 

  lcCommon, ; 

  lnI, ; 

  loObject, ; 

  lcDatabase, ; 

  lcTable 

 

* Get a list of the members of the DataEnvironment, 

* and get the data directory from the cDataDir 

* property. 

 

lnObjects   = amembers(laObjects, toDE, 2) 

lcDirectory = This.cDataDir 

 

* Look at each member object, but only process 

* cursors. 

 

for lnI = 1 to lnObjects 



  loObject = evaluate('toDE.' + laObjects[lnI]) 

  if upper(loObject.BaseClass) = 'CURSOR' 

    lcDatabase = loObject.Database 

 

* If this is a free table, adjust the CursorSource 

* property. 

 

    if empty(lcDatabase) 

      lcTable = loObject.CursorSource 

      loObject.CursorSource = lcDirectory + ; 

        substr(lcTable, rat('\', lcTable) + 1) 

 

* This cursor is part of a database, so change the 

* database property. 

 

    else 

      loObject.Database = lcDirectory + ; 

        substr(lcDatabase, rat('\', lcDatabase) + 1) 

    endif empty(lcDatabase) 

  endif upper(loObject.BaseClass) = 'CURSOR' 

next lnI 

 

 Because this code exists in our class definitions, we don’t have to worry about it at all when 

we create a new form. The only thing we have to do manually in a form is set the 

DataEnvironment’s AutoOpenTables property to .F. (we can’t do this in the SFForm class 

because a class definition doesn’t have a DataEnvironment). 

 This scheme makes testing the application under different conditions really easy. For 

example, for normal development, I have the Directory entry in the INI file set to blank. Thus, 

when I run the application, it uses the data in the DATA subdirectory of the current directory on 

my local drive. When I want to test network performance, I simply change the INI file so 

Directory points to a server directory. 

 This scheme can also be used for accessing production versus test data. For example, you 

could have two INI files, one named PROD.INI and the other TEST.INI. PROD.INI has a Directory 



entry pointing to the server directory containing the program files and production data, while 

TEST.INI’s Directory points to a test directory on the server or even the local drive. The user 

then simply runs either the Production program (which executes STARTAPP.EXE -T PROD.INI) or 

the Test program (which runs STARTAPP.EXE -T TEST.INI). 

 If you want more flexibility than always assuming the data will be in a subdirectory called 

DATA, you could add another entry to the INI file defining where the data is located and use 

that entry rather than Directory in the code above. 

 

Issues 

There are a couple of issues you should be aware of with STARTAPP. The first is that the 

RETURN TO MASTER command will return control to STARTAPP, not the main program in your 

application, and since the last thing STARTAPP does is call your application, RETURN TO MASTER 

will effectively terminate the application. If you use RETURN TO MASTER as part of your error 

handler to cancel execution of the routine causing the error, you’ll have to rewrite this as 

RETURN TO <main program>. 

 The second issue is that if STARTAPP.EXE itself changes (for example, you add new behavior 

such as eliminating the WAIT WINDOW messages), you must manually install it on each 

workstation, since it doesn’t (and can’t) automatically copy itself from the server to the 

workstation. Also, changes to the INI file on the server won’t be utilized until the second time 

the application is run. The first time the user runs STARTAPP, it reads the local copy of the INI 

file before copying the new INI file to the workstation. The second time STARTAPP is run, the 

new INI file is used. If this is a concern, you could change STARTAPP.PRG to only read the name 

of the server directory from the local INI file and then use the INI file in that directory for 

everything else. 

 

Example 

A trivial example of the use of STARTAPP is provided on the Download Site. When you unzip the 

files into a directory, you’ll end up with some common files (STARTAPP.PRG and READINI.PRG, 

as well as sample files SAMPLE.PRG, APPLIC.INI, and TEXTDOC.TXT) and three version-specific 

subdirectories containing project and APP files for FoxPro 2.6, VFP3, and VFP 5. To try out the 

sample, do the following: 

 

 Copy SAMPLE.APP from the appropriate version-specific directory and the common 

TEXTDOC.TXT to a test directory either on a local or server drive. We’ll call this the 

“server” directory to be clear. 



 Build STARTAPP.EXE from the project in the appropriate version-specific directory. 

 Copy STARTAPP.EXE and APPLIC.INI to a temporary local directory. We’ll call this the 

“local” directory to be clear. 

 Edit APPLIC.INI in the local directory so its Directory entry contains the name of the 

server directory. 

 Run STARTAPP.EXE from the operating system (this assumes you have the FoxPro 

runtime libraries installed; if not, simply change directory to the local directory and run 

it from FoxPro). It will copy SAMPLE.APP and TEXTDOC.TXT from the server directory to 

the local directory, then run SAMPLE.APP (which just displays a list of files in the current 

directory). 

 Change the contents of the server directory version of TEXTDOC.TXT. 

 Run STARTAPP.EXE again. You should find that the copy of TEXTDOC.TXT in the local 

directory was updated as expected. 

 

Summary 

STARTAPP gives you the best of both worlds: you can improve performance by running 

applications from local drives, and automatically update them when you install a new version. A 

nice secondary benefit of this is that the same INI file used to define where the application is 

installed on the server can tell your application where its data is located. We’ve used STARTAPP 

for several years now for applications written in FoxPro 2.6 for DOS and Windows and Visual 

FoxPro applications with great success. I hope you find it as useful as we do. 

 

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author of 

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit for Visual FoxPro and Stonefield 

Data Dictionary for FoxPro 2.x. He is also the author of “The Visual FoxPro Data Dictionary” in Pinnacle Publishing’s 

“The Pros Talk Visual FoxPro” series. Doug has spoken at user groups and regional conferences all over North America, 

and will be speaking at the 1997 Microsoft FoxPro Developers Conference. He is a Microsoft Most Valuable 

Professional (MVP). 75156.2326@compuserve.com or dhennig@stonefield.com. 


