

Implementing Offline Views

By Doug Hennig

Introduction

The introduction of updateable views in Visual FoxPro 3 provided new capabilities for

FoxPro applications. A new feature of VFP 5 extends the capabilities of updatable views

even further: you can now take any view offline. An offline view is “disconnected” from

the source of its data so data entry can continue while the tables the view is based on are

unavailable. Sometime later, you can update the source tables by “reconnecting” the view

to them. While you could do this type of thing in VFP 3 yourself, it required a lot of

coordinating and some slick code. VFP 5 makes it very simple.

This document will look at the mechanics of offline views: how you take a view offline,

considerations about working with offline views, updating the source tables, and taking a

view back online. We’ll also look at some uses of offline views: obvious ones like remote

applications which allow querying and data entry on the road or branch offices, but also a

less-obvious but equally interesting one, that of permitting data entry to carry on while

table maintenance (reindexing, updating structures, packing, backing up, etc.) is being

done.

The Basics of Offline Views

When you take a view offline, VFP creates a table containing all the records in the view.

This table can be copied to a laptop or another system, and can be used for both querying

or data entry. When you open the view, VFP actually opens this table rather than

performing the normal SQL SELECT that occurs when you open an online view. Any

changes made to the offline view (additions, edit, or deletions) are made in this table and

are not written back to the source tables the view is based on.

In addition to the DBF file (and FPT file if the view has any Memo or General fields),

VFP creates TBF and TDX files (and a TPT file if necessary for Memo or General fields)

that it uses as a persistent table buffer for the DBF file. Although you might suspect these

files are really table, index, and memo files with different extensions, you can’t open the

TBF table in VFP; trying to do so gives a “cannot open persistent table buffer directly”

error. Doing some poking around, I found the TBF file contains copies of any records of

the view that are modified, added, or deleted. However, the structure of this file is

somewhat different that a normal DBF, so it really can’t be used for anything directly.

There are two things you can do with the offline view when you’re finished with it:

 Update the source tables the view is based on.

 Discard all the changes in the view, leaving the source tables unaltered.

Taking a View Offline

Taking a view offline is simple: ensure the database containing the view definition is the

current database and use the new createoffline() function. It has the following syntax:

createoffline(<ViewName> [, <Path>])

<ViewName> is the name of view to take offline. Any view can be taken offline; you

don’t have to specially define a view as “offline-able”. The optional <Path> is the

directory and filename for the DBF that gets created. If you don’t specify <Path>, VFP

will create a table with the same name as the view (for example, if the view is called

LV_CUSTOMER, the table will be named LV_CUSTOMER.DBF) in the current

directory. Note the VFP documentation is incorrect regarding this parameter; it states you

can specify just a directory for the table to go in, but in fact you need to specify the

filename too (although an extension isn’t required).

createoffline() returns .T. if the view is successfully taken offline. It’ll return .F. if the

view is already offline, if you don’t specify a filename if you use the second parameter, if

the view table or persistent table buffer files already exist (hopefully, this behavior will

change in a future release; in my opinion, it should respect the setting of set safety), or

if the source tables can’t be opened.

Here’s an example of this function:

llSuccess = createoffline('LV_CUSTOMER', 'OFFLINE\LV_CUSTOMER')

This example attempts to take the LV_CUSTOMER view offline and create a table called

LV_CUSTOMER.DBF in the OFFLINE subdirectory of the current directory.

Here are some other notes about taking a view offline:

 createoffline() opens the tables the view is based on but not the view itself.

 dbgetprop(<ViewName>, 'View', 'Offline') returns .T. if a view is offline.

 VFP 5.0 (including 5.0a) has a bug: if createoffline() returns .F., indicating the

view couldn’t be taken offline for some reason, dbgetprop(<ViewName>, 'View',

'Offline') unexpectedly returns .T. Using dropoffline() (which we’ll discuss

later) doesn’t work; it returns .F. indicating the view couldn’t be taken back online,

and dbgetprop(<ViewName>, 'View', 'Offline') continues to return .T. This

really isn’t an offline view, though; trying to open the view in online or admin mode

(which we’ll discuss in a moment) will give an “object is not an offline view” error.

Fortunately, if you resolve the problem that caused createoffline() to fail, you can

use it again to take the view offline.

Working with an Offline View

You open an offline view with the use command just as you do with an online view.

However, as I noted earlier, VFP actually opens the table representing the offline view

rather than using a SQL SELECT to create a cursor from the source tables.

Working with an offline view has several considerations:

 Changes made to the offline view (additions, edit, or deletions) are made in the view

table and are not written back to the source tables the view is based on. This means

someone opening a source table won’t see the changes made in the offline view.

 The opposite is also true: you can’t refresh the contents of an offline view from the

source tables.

 The view table acts like an ordinary table as far as buffering goes. getfldstate()

and getnextmodified() reflect the status of the view’s buffer. tableupdate()

writes changes in the view’s buffer back to the view table and tablerevert()

cancels changes. None of these functions has anything to do with the source tables.

 You can’t modify the structure of the view table and you can’t use the create

trigger, insert, pack, or zap commands (although you can use delete all).

 Like an online view, an offline view automatically uses buffering, either row or table,

so you’ll need to have multilocks set on. You’ll get an error message if you try to

turn buffering off.

 Unlike an online view, opening an offline view doesn’t automatically open the source

tables the view is based on since the offline view is “unhooked” from these tables.

This means you don’t need to provide copies of the source tables (which might be

very large or be non-VFP data sources) when you give someone the data for an offline

view. It also means you can perform some types of maintenance on the source tables,

such as recreating indexes, even while multiple users have the offline view open.

We’ll see examples of this later.

 Rules and triggers associated with the source tables don’t fire when data entry is done

in the offline view, only when you update the source tables (which we’ll discuss in a

moment). This means that unless you define rules for the offline view (using

dbsetprop()) , it’s possible bad data will get into the offline view and not be trapped

until much later (when the update of the source tables is done).

 If you’re using “surrogate” keys (sequential keys assigned by the system rather than

the user), you’ll need to assign key values as view records are added. The most

common way of assigning surrogate keys is to use as the default value for the primary

key field a call to a NEXTID program that grabs the next key value for this table from

a table of key values. If you use this scheme, you’ll need to use dbsetprop() to set

the DefaultValue property of the field in the offline view so records added to the

offline view get assigned key values.

 One complication with assigning surrogate keys: if offline views are used to permit

data entry at remote locations (such as on a user’s laptop), you’ll need to assign a

block of key values to each location so you don’t have overlapping values.

Alternatively, you could use a key value which is a combination of the user or

location name and a sequential value, so it doesn’t matter if two locations use the

same sequential values.

 If an offline view is used for data entry at a remote location, you need to send the

offline view table (including FPT), persistent table buffer files, and the database

container (DBC, DCX, and DCT) to that location.

If you need to determine which records in a view were modified since the view was taken

offline, use the admin clause of the use command. This requires exclusive access to the

view table or you’ll get an error message. Here’s an example of this command:

use LV_CUSTOMER admin exclusive

A view opened in admin mode automatically uses table rather than row buffering. Trying

to change the buffering mode for the table results in an error message. Once the view is

open in admin mode, you can use getnextmodified() and getfldstate() to determine

which records and which fields in those records were modified. Interestingly, opening an

offline view in admin mode doesn’t automatically open the source tables, so VFP must be

using the TBF file discussed earlier to determine which records were changed. You can’t

update the source tables with changes made in the view when the view is open in admin

mode; see the next section for information on updating source tables. However, you can

use tablerevert() to back out any changes made in the offline view.

Updating Source Tables

When you’re ready to update the source tables with changes made in the offline view, use

the online clause of the use command to open the view in a “hooked” mode to the

source table, then use tableupdate().

Opening a view in online mode requires exclusive access to the view table or you’ll get

an error message. This doesn’t take the view online; it simply opens the view in

preparation for updating the source tables. Here’s an example of this command:

use LV_CUSTOMER online exclusive

As with admin mode, a view opened in online mode automatically uses table rather than

row buffering. Opening an offline view in online mode doesn’t automatically open the

source tables until you issue a tableupdate() command.

After opening the view in online mode, use tableupdate() to update the source tables

from changes in the offline view. This is the exact same process as updating from a table

buffered table or online view: if conflicts are detected or rules (field or table validation,

primary or candidate key, or triggers) are violated, tableupdate() will fail and you can

use getnextmodified() and getfldstate() to determine which records and which

fields in those records were modified and handle the conflicts or rule violations.

Updating the source tables from the offline view doesn’t take the view back online, nor

does it refresh the view with data from the source tables (for example, with changes made

by other offline views or in the source tables directly). We’ll see how to do these tasks in

a moment.

Taking a View Back Online

The dropoffline() function takes a view back online. Here’s the syntax:

dropoffline(<ViewName>)

It deletes the view table created when the view was taken offline and the persistent table

buffering files (TBF, TDX, and TPT). Any changes made in the offline view that haven’t

been written back to the source tables are discarded. dropoffline() returns .T. if the

view is successfully taken back online. It’ll return .F. if the view is open at any

workstation or if the view is already online.

Here’s an example of this function:

llSuccess = dropoffline('LV_CUSTOMER')

Refreshing an Offline View

Although the help topic for createoffline() seems to indicate that you can refresh an

offline view from the source tables if you open the view in online mode, this is in fact not

true. You can’t refresh an offline view from the source data at all; using the requery() or

refresh() commands against an offline view, even if it’s open in admin or online mode,

give an “invalid operation for offline view” error. The only way to refresh the view is to

take it back online (using dropoffline() after updating or discarding the changes) then

take it offline again.

Uses for Offline Views

The most obvious use of offline views is to allow remote querying and data entry.

However, another important reason for unhooking a view from the source tables is to

permit maintenance tasks on the source tables, which normally requires exclusive access

to the tables, while user querying and data entry continues. We’ll look at a few scenarios

where offline views make this much easier.

Mobile Querying and Data Entry

The typical situation for this scenario is a salesperson on road visiting customers. In the

old days, if the salesperson wanted to record a new order for a customer, there were a

couple of choices:

 They had to dial into the office system and run an order entry application at modem

speeds.

 They had a data entry program on their laptop. This required a fairly sophisticated

program at the office to consolidate information when the salesperson uploaded their

orders.

With offline views, the second choice is much easier to implement. The salesperson can

use the same order entry application used at their office (or perhaps a subset of it) but

with offline copies of views for the customer, order, order detail, and product tables.

When the salesperson returns to the office, the offline view files are copied from the

laptop to the server and taken back online to update the source tables.

What if each salesperson needs just their own customers or products in their views; in

other words, how do you deal with parameterized views? The problem is that when the

view is taken offline, you have to specify what the parameters are, so every salesperson

would get the same data. The solution is to take the view offline, specifying the

parameters for a particular salesperson, and copy the view files to that salesperson’s

laptop. You would then take the view back online, then take it offline again for the next

salesperson, specifying their parameters. The view must be left offline or take offline just

before updating from each salesperson’s data.

A minor complication is that if customer balances need to be updated, collisions need to

be handled in a different way than just overwriting the data or rejecting the update. For

example, in the salesperson’s view, the customer may have ordered $100.00 of products,

but meanwhile, in the office’s view, the customer paid a $50.00 invoice. The update

routine needs to handle this type of update by examining the former and new values in the

offline view and apply the difference to the value in the table. The product quantity on-

hand needs to be updated in a similar manner since there could have been other orders for

each product.

Multiple Locations

Several years ago, I wrote an application for a client that had twelve offices. Each office

had their own copy of data tables, but the head office’s files had to contain a complete set

of data from each office as well as data maintained by the head office themselves. Once a

month, each office sent their files to the head office and a complex consolidation program

brought all the changes from all the offices together. This was not an easy program to

write; it had to look for additions, deletions, and changes in each location’s set of files

and apply those changes to the head office files.

This situation would be much easier to deal with in VFP 5 using offline views. Here’s the

scheme I’d use if I was creating this application today:

 Each office would have a copy of the database and the offline view tables, and would

do data entry into the offline views. The offline view tables would be in the same

directory as the database to keep things simple.

 As often as necessary, each office sends their offline view files to head office. These

files are kept in separate subdirectories, one for each office.

 One at a time, each office’s offline view files are copied over the head office’s view

files. The view is then opened in online mode and tableupdate() is used to apply

any changes made by that office to the source tables. The offline view files in that

office’s subdirectory are then deleted in case the process is run a second time.

 To refresh the branch office views, the offline view is dropped, then taken back

offline, and the resulting offline view files shipped back to each office. Of course, this

means that data entry at the offices cannot take place between the time that their files

are shipped to head office and the refreshed files come back. However, since this

process could be automated to run at night, this isn’t much of a problem.

The MULTIPLE directory created when you unzip the source code files has some code

that demonstrates this technique. If VFP isn’t installed in a directory called VFP5 on the

same drive as these files are installed, edit SETUP.PRG and change the path defined in

lcDataDir as necessary. Run SETUP.PRG to create a copy of the VFP TESTDATA

database in the MULTIPLE directory and copies of it in two subdirectories: OFFICE1

and OFFICE2. A new view, LV_CUSTOMER, is defined and taken offline.

After running SETUP, run NEWRECS.PRG. This will add new records in the offline

views for the head office (CUST_ID 000), OFFICE1 (CUST_ID 111), and OFFICE2

(CUST_ID 222). After adding each record, a browse window is displayed so you can see

the new records. After NEWRECS has finished, run CONSOLID.PRG. This program

consolidates the changes made in each office into the head office CUSTOMER tables and

displays a browse window of this table so you can see all changes.

Source Table Maintenance

If you have an application must be up all the time or if the tables are so large that the

application can’t be down for as long as it takes to recreate indexes, you have a problem:

what happens if the server or a workstation crashes, corrupting the indexes and requiring

them to be recreated?

Here’s a good reason to have your forms and reports based on views rather than tables.

You can take a view offline, which unhooks it from the source tables, and then recreate

the indexes while users continue to query or perform data entry against the offline view.

Once the reindexing has finished, you can update the source tables from the offline view.

The only downtime are the brief periods required to take the view offline and later update

the source tables and take the view back online. In fact, if you need to recreate indexes on

a regular basis, you might consider using views that are normally offline, and only taken

online long enough to refresh them periodically.

A minor complication, of course, is how do you close the view on each workstation long

enough to take the view offline (and later back online) without calling up each user and

telling them to get out of their data entry form for a few moments? The approach I came

up with uses a “semaphore” scheme: each data entry form watches for a signal that

maintenance is required. When this signal is received, the form is closed and then the

application looks for a second signal that the view has changed state (either been taken

offline or back online) and data entry can continue. Until the second signal is received,

the user can’t access the data entry form or any reports using the view.

The basis for watching for a signal is a timer object. There are actually three timers

involved:

 A timer on the form used to do the reindexing waits until all users have closed the

view. It then takes the view offline or online (depending on whether the reindexing is

about to start or has been completed) and signals that to an application-level timer.

 A timer on data entry forms looks for a signal that the view must change state. When

this signal is received, the form is closed and an application-level timer is started.

 The application-level timer, which is only enabled while a user is waiting for a view

to change state, watches for a signal from the reindex form that the view’s state has

changed so data entry and querying can continue.

The files in the REINDEX directory created when you unzip the source code files

demonstrates this scheme. Here are the various pieces:

 SYSINFO.DBF is a table that contains a logical CHNGSTATE (an abbreviation for

ChangeState) field. When this field, which normally contains .F., is set to .T., it

signals to all pieces that the state of view must be changed. This table is open at all

times in the application.

 Any function in the application menu that needs access to the view has a Skip For

SYSINFO.CHNGSTATE so the user cannot access that function while the state of the

view is being changed.

 Any data entry form using the view has a timer object with code in its Timer() event

to close the form and enable an application-level timer if SYSINFO.CHNGSTATE

becomes .T. Here’s the code from the timer object in the CUSTOMER form (in this

code, oTimer is the application-level timer):

if SYSINFO.CHNGSTATE

 messagebox('Closing form to perform maintenance. ' + ;

 'The form will automatically reopen in just a ' + ;

 'moment.', 48)

 oTimer.Enabled = .T.

 Thisform.Release()

endif SYSINFO.CHNGSTATE

 At application startup, a timer object is instantiated but disabled. This timer, which is

only enabled when a form is forced to close because a view is changing state, has

code in its Timer() event that looks for SYSINFO.CHNGSTATE to become .F. so it

can reopen any form that had to close while the view was changing state. Here’s the

code from the MyAppTimer class (in MYAPP.VCX) which is instantiated as oTimer:

if not SYSINFO.CHNGSTATE

 This.Enabled = .F.

 do form CUSTOMER

endif not SYSINFO.CHNGSTATE

 Of course, this code is hard-coded to open the CUSTOMER form because it’s specific

to this sample. In a real application, you’d likely have each form register itself with a

manager object before closing down, and the manager object would be responsible for

starting each form back up again.

 A form used to reindex tables sets SYSINFO.CHNGSTATE to .T. and starts a timer

when the user indicates that reindexing should begin or has been completed. As we

saw a moment ago, setting SYSINFO.CHNGSTATE informs any open form on any

workstation that it needs to start the application-wide timer and then close itself. The

reindex form timer checks periodically that all users have closed the view by trying to

get exclusive access to it. Once this stage has been reached, the view is either taken

offline or is taken back online (updating the source tables first) and

SYSINFO.CHNGSTATE is set back to .F. (signalling to the application-wide timer

that data entry can continue). Here’s the code from the Timer() event of the timer

object on the REINDEX form:

with Thisform

* Disable the timer (so it doesn't fire while we

* execute this code) and see if we can open the view

* exclusively.

 This.Enabled = .F.

 .CloseTables()

 select 0

 use LV_CUSTOMER exclusive

 do case

* We can open the view, so close it again, disable

* ourselves, and switch the state of the view.

 case used('LV_CUSTOMER')

 .CloseTables()

 .SwitchState()

* If we're still trying, see if we've exceeded the

* maximum amount of time to spend trying. If so, cancel

* the process.

 case seconds() - .nStartTime > .nMaxTime

 .cmdOffline.Click()

* Reenable the timer.

 otherwise

 This.Enabled = .T.

 endcase

endwith

If VFP isn’t installed in a directory called VFP5 on the same drive as these files are

installed, edit SETUP.PRG and change the path defined in lcDataDir as necessary. Run

SETUP.PRG to create a copy of the VFP TESTDATA database in the DATA

subdirectory. A new view, LV_CUSTOMER, is defined and SYSINFO.DBF is created.

After running SETUP, run MYAPP.PRG. Bring up an instance of the customer form

(notice the form caption indicates the view is online) and then choose Reindex Tables

from the menu. The Reindex Tables form shows a red light and indicates that reindexing

cannot proceed because the view is online (the Reindex button is also disabled). Click the

Go Offline button. Notice the light changes to yellow and indicates that we’re waiting for

the view to go offline. Also, the Go Online button’s Caption changes to Cancel; this

allows you to cancel the process while waiting. After five seconds (the Interval for the

timer on the customer form), a dialog box will be displayed indicating that the customer

form is being closed. After it’s closed, the light on the Reindex Form turns green and

indicates that reindexing can proceed. Also, the Cancel button’s Caption changes to Go

Online, which allows you to take the view back online, and the Reindex button becomes

enabled. Immediately, the customer form opens automatically, but notice the caption now

indicates the view is offline. Click the Reindex button to reindex the customer table. Edit

a record in the customer form to show that data entry can continue. Now click on the Go

Online button and notice the process repeat itself: the customer form closes, the Reindex

Tables form indicates the view is back online, and the customer form reopens with the

view online. Notice the changes you made to the offline view are now reflected in the

online view.

You’re probably wondering if updating the structure of the source tables is possible while

the view is offline. The answer is: maybe. VFP gets very unhappy (and consequently, so

do you <g>) if the structure of a table is changed and any views based on that table are

affected. For example, if LV_CUSTOMER is a view on CUSTOMER defined using

SELECT *, adding or removing a field from the table invalidates the view definition;

you’ll get the error “base table fields have been changed and no longer match view fields”

and the view cannot be opened. (Interestingly, if the view is offline when this change is

made, you can work with the view and even open it in online mode and update the source

table. However, as soon as you take the view back online and try to open it, you’ll get this

error).

If the view was defined by explicitly listing each field (such as SELECT CUST_ID,

COMPANY, CONTACT …), fields can be added to the table without affecting the view

(although the view of course must be redefined if you want to be able to enter values into

the new fields through the view). Removing a field from the table or renaming a field

results in a “SQL column <fieldname> not found” error and the view can’t be opened if

it’s an online view. If the view is offline, it can be opened but tableupdate() will fail

because of the missing column.

The moral of this story is: depending on how your view is defined and what changes are

being made to the table structure, you might be able to get away with altering a table

structure while data entry continues against an offline view of the table. You should

redefine the view after altering the table to be safe.

Backing up is another maintenance task can that be done while the source tables are

unhooked from the offline views.

Conclusion

Offline views extend the capabilities of updateable views, allowing you to add features to

your applications that were difficult to implement in VFP 3. Try out the sample code

accompanying this document, and start thinking of ways you can use offline views in

your own applications.

Copyright © 1997 Doug Hennig. All Rights Reserved

Doug Hennig

Partner

Stonefield Systems Group Inc.

1112 Winnipeg Street, Suite 200

Regina, SK Canada S4R 1J6

Phone: (306) 586-3341

Fax: (306) 586-5080

Internet: dhennig@stonefield.com

World Wide Web: www.stonefield.com

