
A Deep Dive into the VFPX
ThemedControls

Doug Hennig
Stonefield Software Inc.

2323 Broad Street
Regina, SK Canada S4P 1Y9

Email: dhennig@stonefield.com
Web sites: www.stonefield.com

www.stonefieldquery.com
Blog: DougHennig.BlogSpot.com

Twitter: DougHennig

One of the coolest projects in VFPX is ThemedControls by Emerson Santon Reed (the 2009
Southwest Fox Ceil Silver Ambassador). The ThemedControls project consists of eight
controls—ThemedButton, ThemedContainer, ThemedExplorerBar, ThemedForm,
ThemedOutlookNavBar, ThemedTitlePageFrame, ThemedToolbox, and
ThemedZoomNavBar—that allow you to provide the modern interface users expect in today's
applications. This document looks at these controls in detail and shows how to use them in
your own applications.

mailto:dhennig@stonefield.com
http://www.stonefield.com/
http://www.stonefieldquery.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

A Deep Dive into the VFPX ThemedControls 2

Introduction
One of the reasons I hear that VFP developers are told to move to .Net is that .Net has
controls that provide a newer, fresher look to applications. VFP apps look old, they say. Old
fonts like Arial, old colors like the background grey, old icons for buttons, and old-style
menus and toolbars. However, there’s no reason for that. You can easily use newer, cleaner
fonts like Segoe UI (the standard system font in Windows Vista and Windows 7), you can
use modern, colorful 32-bit icons (there are hundreds or even thousands of web sites that
provide free or paid icons), and you can use some of the projects on VFPX
(http://vfpx.codeplex.com) to provide modern-style menus, toolbars, and other graphical
user interface elements in your applications.

For example, the form shown in Figure 1certainly isn’t a boring old VFP form, and yet it is a
VFP form. This form uses a Microsoft Outlook-like control to display different categories of
items and supports themes to display dynamic, interesting colors.

Figure 1. There's no reason you have to provide a boring user interface in your VFP applications.

VFPX is a community site for extensions for VFP developers. Amongst its many projects are
several that provide more modern interfaces to VFP applications:

 GDIPlusX, which is also the basis for several other projects, provides access to GDI+,
the same graphics engine .Net applications use to draw their user interfaces. That
means anything you see in a Windows application can be recreated in a VFP
application.

 Desktop Alerts gives you the ability to display “toaster” pages that appear when
some event happens, similar to what Outlook displays when an email arrives.

http://vfpx.codeplex.com/

A Deep Dive into the VFPX ThemedControls 3

 PopMenu provides owner-drawn menus that have a Microsoft Office-like
appearance.

 TabMenu allows you to add a “ribbon” navigation system like Microsoft Office 2007
and later has.

 FoxCharts creates gorgeous 3-D charts you can host in your forms or reports
without using any ActiveX controls.

 ThemedControls provides controls (including the Outlook control shown in Figure
1) that display in themed colors.

In this document, we’ll focus on ThemedControls. This won’t be a quick overview or demo;
rather, it’s a deep dive into these controls, covering how they work (in some cases) and
showing specific details about how to add them to your applications.

Getting started: downloading ThemedControls
Like other VFPX projects, ThemedControls is available for download from
http://vfpx.codeplex.com. From the home page, click the link for the ThemedControls
project in the project list, then on the ThemedControls page, click the Latest Release of
ThemedControls to navigate to the download page. (The direct link to that page is
http://vfpx.codeplex.com/releases/view/7003.) Finally, click the download link to
download the ZIP file to your system. The name of the ZIP for the current release as of this
writing is ThemedControls_3-5-8.ZIP.

Unzip the ZIP file in a folder of your choice. This creates the following subdirectories:

 ThemedControls: contains sample files, System.APP (discussed later), and
Themes.XML (also discussed later).

 ThemedControls\VCX: the source files for ThemedControls. The main set is
ThemedControls.VCX/VCT, but as we’ll see, there are numerous supporting files as
well.

 ThemedControls\Images: image files used by the samples.

Adding ThemedControls to your project
Adding ThemedControls.VCX to your project actually adds several other files to the project
when you build it:

 Buttons.VCX: contains the parent class of ThemedButton.

 Ctl32.VCX: classes created by Carlos Alloatti that are used by ThemedControls.

 ExplorerBar.VCX: contains the parent classes of the classes used by
ThemedExplorerBar.

http://vfpx.codeplex.com/
http://vfpx.codeplex.com/releases/view/7003

A Deep Dive into the VFPX ThemedControls 4

 OutlookNavBar.VCX: contains the parent classes of the classes used by
ThemedOutlookNavBar.

 Toolbox.VCX: contains the parent classes of the classes used by ThemedToolbox.

 ZoomNavBar.VCX: contains the parent classes of the classes used by
ThemedZoomNavBar.

 VFPX.VCX: supporting classes needed by both ThemedControls and Ctl32. Note: this
VCX isn’t added to your project automatically. You need to add this yourself or your
users will have a problem when they try to run the application. You may not notice
it because VFPX.VCX is on your system so the application can find it, but it won’t be
on the user’s system.

 Ctl32.PRG, Ctl32_API.PRG, Ctl32_Classes.PRG, Ctl32_Functions.PRG,
Ctl32_Structures.PRG, and Ctl32_VFP2C32.PRG: support programs needed by Ctl32.

 ThemedControls_API.PRG and ThemedControls_Structures.PRG: support programs
needed by ThemedControls.

If you aren’t using some of the ThemedControl classes, you can mark the VCX containing
the parent classes as excluded. For example, if you don’t use ThemedToolbox or
ThemedZoomNavBar, you can mark Toolbox.VCX and ZoomNavBar.VCX as excluded.

In addition, ThemedControls uses GDIPlusX for GDI+ work, so you need to include
System.APP in the files you distribute with your application.

Without excluding any classes, an EXE containing nothing but ThemedControls and
supporting files is 1.8 MB. System.APP is another 820 KB, so if you weren’t already using
GDIPlusX in your application, adding ThemedControls adds 2.6 MB to your application.
Disk space is cheap, so that’s a small price to pay for the cool features both VFPX projects
can add to your applications.

ThemesManager
We’ll start our tour of the ThemedControls project with the ThemesManager class, as it’s at
the heart of the “themed” part of ThemedControls. ThemesManager, contained in
ThemedControls.VCX, is a subclass of Custom that’s responsible for managing a set of
themes, controlling which theme is selected, and communicating to themed objects when
the selected theme changes.

Themes are sets of colors and images, or “skins,” for controls. ThemedControls comes with
the themes shown in Table 1. (The sample images were taken by running
ThemesDemo.SCX, included with the sample files accompanying this document.) Themes
are defined in one or more XML files; Themes.XML, included with ThemedControls,
provides the built-in themes. It’s theoretically possible to create your own themes, but
practically it’s a little hard to do, as you can likely guess by looking at the partial listing of
Themes.XML shown in Listing 1. Emerson is considering building a themes editor, which
would make this job a lot easier.

A Deep Dive into the VFPX ThemedControls 5

Table 1. Themes included with ThemedControls.

ID Name Sample

1 Office 2003 Blue

2 Office 2003 Olive

3 Office 2003 Silver

4 Office 2003 Black

A Deep Dive into the VFPX ThemedControls 6

ID Name Sample

5 Office 2007 Blue

6 Office 2007 Silver

Listing 1. The XML that defines items in a theme consists of binary values (some of the text was omitted for
brevity).

<ThemesDetails>
 <themeid>1</themeid>
 <membername>BUTTON_LEFT_FOCUSED</membername>
 <membertype>I</membertype>
 <membervalue>0</membervalue>
 <memberimage>Qk22BAAAAAAAADYEAAAoAAAAAgAAACAAAAABAAgAAAAAAAAAAADEDgAAxA4AAAABAAAA
AQAAli0A/1/C9/9kxPf/aMb4/23I+P9xyvj/ds34/3rP+f9+0fn/g9P5/4fV+f+M1/r/kNr6/5Xc+v+Z3vr/
neD7/6Li+/+m5Pv/q+f8/6/p/P+06/z/uO38/7zv/f/B8f3/xfT9/8r2/f/O+P7/0/r+/9f8/v//////AAAA
/wAAAP8AAAD/AAAA/wAAAP8AAAD/AAAA/wAAAP8AAAD/AAAA/wAAAP8AAAD/AAAA/wAAAP8AAAD/AAAA/wAA
AAAaAAAAGwAAABwAAAAAAAAdAAAA</memberimage>
 <imageext>BMP</imageext>
</ThemesDetails>

Let’s dive into ThemesManager to see how it works. The Init method accepts a logical
parameter which indicates whether you want to automatically initialize the manager (pass
nothing or .F.) or manually call its Initialize method (pass .T.). There are a couple of reasons
why you might want to use manual initialization:

 You want to use a different themes file than Themes.XML. The ThemesXMLFile
property is .F. by default, which means the class uses Themes.XML. You can change
that property and then call Initialize yourself to use a different file. However, you
can also use multiple theme files by leaving ThemesXMLFile alone and setting
AdditionalThemesXMLFiles to a comma-delimited list of files. As we’ll see later, I
like to set AdditionalThemesXMLFiles to ThemesSplitters.XML, which includes
splitter skins in the six built-in themes.

A Deep Dive into the VFPX ThemedControls 7

 You want temporary files stored somewhere other than a Temp subdirectory of the
current folder. ThemesManager caches the images it uses for the various
components of each theme by writing them out to BMP files, such as Office 2003
Blue_BUTTON_LEFT_FOCUSED.BMP and Office 2003
Blue_BUTTON_LEFT_HOTTRACKING.BMP, in a temporary folder. By default, it uses a
folder called Temp in the current directory. If it can’t create that folder (for example,
in Windows Vista or Windows 7 because the program folder is read-only), it then
uses the user’s temporary files folder. It uses these folders if the TempFolder
property is empty, which it is by default. I actually like to use a subdirectory of the
user’s temporary files folder, so I set the TempFolder property to the desired folder
before calling Initialize. Note that you’re responsible for creating the directory
yourself if you fill in TempFolder.

So, my code to instantiate and initialize the ThemesManager looks like this:

lcTempFolder = addbs(sys(2023)) + 'Themes'
if not directory(lcTempFolder)
 try
 md (lcTempFolder)
 catch
 lcTempFolder = ''
 endtry
endif not directory(lcTempFolder)
if type('_screen.ThemesManager') <> 'O'
 _screen.NewObject('ThemesManager', 'ThemesManager', ;
 'ThemedControls.vcx', '', .T.)
 with _screen.ThemesManager
 .AdditionalThemesXMLFiles = 'ThemesSplitters.xml'
 .TempFolder = lcTempFolder
 .Initialize()
 endwith
endif type('_screen.ThemesManager') <> 'O'

Notice that this adds a ThemesManager object to _screen. That’s the preferred way of
working with ThemesManager; as we’ll see later, the various themed controls expect that.
It also has the advantage of having a single, globally accessible ThemesManager object.

If you don’t need to manually initialize ThemesManager for the reasons outlined above, you
don’t actually have to instantiate it at all. All of the ThemedControls classes check whether
_screen.ThemesManager exists and if not, create it. Since ThemesManager.Init calls
Initialize unless you pass .T., ThemesManager also initializes itself when invoked this way.

Initialize does a bunch of set up tasks, including loading and initializing GDIPlusX and Ctl32,
opening some supporting procedure files, and loading the themes from the specified XML
files by calling LoadThemes.

Once you’ve instantiated ThemesManager, you’ll likely want to specify a theme. To do that,
set ActiveTheme to the ID of the desired theme. To use Office 2003 Olive, for example, set
ActiveTheme to 2. Changing ActiveTheme sets off a chain of events:

A Deep Dive into the VFPX ThemedControls 8

 ActiveTheme_Assign fires, which ensures the new value is reasonable (between 1
and ThemesCount, the number of loaded themes) and then calls ChangeTheme.

 ChangeTheme calls LoopThroughControls for _screen and for each of the open
forms.

 LoopThroughControls goes through all of the controls in the specified form,
including drilling down into containers, and calls the ChangeTheme method of each
control if it exists.

 The ChangeTheme method of each control does something to change its appearance
based on the new theme. Typically, it calls the GetMember method of
_screen.ThemesManager to retrieve a specific image and set the Picture property of
some Image control to that image. For example, ThemedForm contains an Image
named imgBackground that fills the form so the form has a background skin.
ThemedForm.ChangeTheme has this code:

 with _Screen.ThemesManager
 This.imgBackground.Picture = .GetMember("Form.Background.Picture")
 endwith

Thus, when you change ActiveTheme, any themed controls automatically refresh
themselves with the appropriate image. This makes a nice effect: all of the forms in your
application use the selected theme and all change at once. To see this in action, run
ThemesDemo.SCX twice and change the theme in one of them. You should see the theme
displayed in both forms change instantly.

If you want to use the current Windows theme, set the InheritWindowsTheme property to
.T. It gets the current theme from Windows and sets ActiveTheme to the appropriate ID.
However, it also sets up Windows event binding so it changes themes when you change the
Windows theme.

You’ll almost certainly want to allow the user to select their own theme. There are several
ways you can do that:

 Have a control in some form (such as an Options dialog) that changes
_screen.ThemesManager.ActiveTheme to the ID for the selected theme.

 Call _screen.ThemesManager.ShowPanel to display a dialog which allows the user to
select a theme. You can pass the class and library containing the dialog to
ShowPanel, or pass nothing, in which case it’ll use the ThemesPanel class in
ThemedControls.VCX, shown in Figure 2.

A Deep Dive into the VFPX ThemedControls 9

Figure 2. The ThemesPanel dialog allows the user to select a theme.

You’ll need to save ActiveTheme when the user exits, such as to the Windows Registry or
some preferences file, and restore it when they start the application.

Themed Controls
Before we look at specific ThemedControl classes, let’s look at some common things all of
these classes have. All ThemedControl classes contain the following two methods:

 InitThemedControl: this method, called from Init, creates a ThemesManager object if
one doesn’t already exist and then calls ChangeTheme.

 ChangeTheme: this method is called from both InitThemedControl so the control
starts off using the current theme and from ThemesManager.LoopThroughControls
when ActiveTheme changes. The code in this method is specific for the control; we
saw the code in ThemedForm.ChangeTheme earlier. Typically, ChangeTheme calls
_screen.ThemesManager.GetMember, passing it the name of a specific component,
and sets the Picture property of an image or the color of some object to the return
value.

One other thing themed controls have in common is an Image control that displays a
specific image representing some component of the selected theme. For example,
ThemedForm has an Image named imgBackGround that’s sized to fill the form.

Now that you know the “secret” of how themes work, you can add themes support to your
own existing classes rather than using ThemedControl classes if you wish. You don’t
actually need an InitThemedControl method; you can do those tasks anywhere, even
directly in Init. However, you do need to add a ChangeTheme method, since that’s what
ThemesManager calls when the selected theme changes.

If you’re not sure which version of ThemedControls you have, check the Version property
of any control. The current version as of this writing is 3.5.8, released 07/15/2010.

A Deep Dive into the VFPX ThemedControls 10

One tip: make sure you SET LIBRARY TO at the end of your application. This isn’t needed
for runtime but if you don’t do this and run your application in the VFP IDE, you’ll get all
kinds of errors the next time you run it because the VFP2C32 library isn’t properly set up if
it’s open at startup.

ThemedForm
I’ve already discussed ThemedForm is some detail. You can use it for forms or as the base
class for form classes when you want a form’s background to display the current theme
color. For example, ThemesDemo.SCX, shown in Figure 3, is based on ThemedForm. Of
course, as I mentioned earlier, you don’t have to use ThemedForm; if you’d rather use your
own classes, simply replicate what ThemedForm does: add an Image control, size it so it
fills the form in Init, and update its Picture property in a new ChangeTheme method.

Figure 3. ThemedForm shows the current theme color in the background.

The only other special thing about ThemedForm is that it has a Loaded property and
SetEnvironment method. Load calls SetEnvironment and sets Loaded to .T. SetEnvironment
is a hook method you can add code to in an instance or subclass of ThemedForm to do any
initialization before a ThemedOutlookNavBar or ThemedToolBox control that may be on
the form initializes itself.

One thing I don’t like about ThemedForm is that WindowState is set to 2-Maximized. I
never create maximized forms but rather let the user control the window state, so I set it to
the 0-Normal in instances or subclasses.

ThemedContainer
ThemedContainer provides a container whose border is colored according to the current
theme. Its ChangeTheme method passes “Container.BorderColor” to GetMember and sets
the BorderColor to the result. Since BorderWidth is only 1 by default, it’s kind of subtle, but
is more obvious with wider borders.

A Deep Dive into the VFPX ThemedControls 11

ThemedTitlePageFrame
ThemedTitlePageFrame is a themed pageframe with Tabs set to .F. so individual tabs don’t
appear. Each page has a title bar displaying an image and a title. The themed parts of the
pageframe are its border and the page title bars. ThemesDemo.SCX includes a
ThemedTitlePageFrame as you can see in Figure 3.

ThemedTitlePageFrame uses ThemedTitlePage as the class for pages (MemberClass and
MemberClassLibrary contain ThemedTitlePage and ThemedControls.VCX, respectively).
ThemedTitlePage is a subclass of Page with two controls added to it: TitleContainer, which
is an instance of ThemedTitleContainer, and UserControls, an instance of Container.
TitleContainer is the title at the top of the page and UserControls is where you add your
own controls (although you can also add them directly to the page if you wish, adding them
to UserControls makes sure they don’t overlap with TitleContainer). Let’s look at
ThemedTitleContainer first.

ThemedTitleContainer

ThemedTitleContainer, shown in Figure 4, is a subclass of Control and contains several
objects:

 imgBackground, an Image that provides the background for the title bar.

 imgTitle, an Image that displays the icon in the title bar.

 lblCaption, the caption for the title bar.

 linTitle, a Line under the title bar.

Figure 4. ThemedTitleContainer consists of several controls.

ThemedTitleContainer.ChangeTheme uses ThemeManager to change several things about
the title bar:

 imgBackground.Picture uses the “Title.Background.Picture” member and Left uses
“Title.Background.Left”, meaning that the background may shift depending on the
selected theme.

 lblCaption.ForeColor uses “Title.FontColor.”

 BorderColor uses “Title.BorderColor.”

A Deep Dive into the VFPX ThemedControls 12

ThemedTitleContainer has several custom properties with Assign methods so you don’t
have to drill down into the contained controls (which you actually can’t do since this is
based on Control) to set their properties:

 Caption: sets the caption of lblCaption.

 FontName: sets lblCaption.FontName.

 Picture24: sets imgTitle.Picture.

You can use ThemedTitleContainer by itself in forms if you want. However, since it’s based
on Control rather than Container, you can’t add anything to it like you would a normal
container, so it can only act as the title bar.

There’s a bug in ThemedTitleContainer.Reposition in version 3.5.8 and earlier: it initially
sizes imgBackground one pixel too narrow. Here’s the fix:

With .imgBackground
 .Anchor = 0
*** DH 07/19/2010: width needs to be 1 pixel wider
*** .Width = Max(This.Width - 3,0)
 .Width = Max(This.Width - 2,0)
 .Anchor = 11
Endwith

ThemedTitlePage

ThemedTitlePage has several properties you’ll want to use:

 Caption: sets the caption for the page. Its Assign method sets TitleContainer.Caption
as well, so the title bar of the page displays the desired caption.

 Picture24: its Assign method sets TitleContainer.Picture24 so the title bar displays
the specified image. Because Emerson defined a property editor for Picture24,
setting it is easy: simply double-click the property in the Properties window to
display a GETPICT() dialog from which you can select the desired image. Note:
there’s a bug in the property editor script in version 3.5.8 and earlier: it references a
non-existent Picture16 property instead. To fix this, open ThemedTitlePage in the
Class Designer, bring up the MemberData Editor, select Picture24, change
“Picture16” in the script to “Picture24,” click OK to save the change, and save and
close ThemedTitlePage.

ThemedTitlePage also has three properties, ClientAreaHeight, ClientAreaTop, and
ClientAreaWidth, that aren’t used for anything; they’re referenced in
ThemedTitlePageFrame.Resize but that code is commented out. I’m not sure if they’re there
for future use or some feature Emerson started to implement and then abandoned.

As I mentioned earlier, although you can add controls directly to the page, the intention is
that you add them to the UserControls container on the page.

A Deep Dive into the VFPX ThemedControls 13

Using ThemedTitlePageFrame

Using ThemedTitlePageFrame is just like using a regular PageFrame with just a couple of
differences:

 Drop a ThemedTitlePageFrame on a container of some kind, like a form or a class
and size it as necessary.

 Set PageCount to the desired number of pages.

 For each page, set the Caption and Picture24 properties.

 Add controls to the UserControls container of each page.

 Provide some mechanism for the user to select a page; since Tabs is .F., they can’t
click a tab to select a page.

ThemedTitlePageFrameDemo.SCX, shown in Figure 5, provides an example of how to use
ThemedTitlePageFrame in a form. The buttons, instances of ThemedButton we’ll see next,
provide the mechanism to select the desired page.

Figure 5. ThemedTitlePageFrameDemo.SCX shows how to use ThemedTitlePageFrame.

ThemedButton
ThemedButton provides a themed command button, including an image and label. It has a
nice effect when you move the mouse over it: as you can see in Figure 5 with the Calendar
button, the background of the button changes, making it obvious which button you’re over.
The buttons in Figure 3 and Figure 5 are instances of ThemedButton. ThemedButtons
provide an attractive alternative to boring CommandButtons.

If you look at the ThemedButton class, you’ll notice that it’s a subclass of Button, contained
in Buttons.VCX. Button actually has all of the themed behavior, so I’m not sure why we need
two classes. Instead, Button should be renamed to ThemedButton and moved to

A Deep Dive into the VFPX ThemedControls 14

ThemedControls.VCX. But I digress. For the rest of this section, when I refer to
ThemedButton, I’m actually talking about Button.

ThemedButton, a subclass of Container, consists of the following controls:

 imgBackgroundLeft, imgBackgroundMiddle, and imgBackgroundRight: these Images
are programmatically lined up across the width of the container (Resize does that;
they’re initially at left = 0, top = -20 so they’re hidden at design time) and together
form the background image. There are actually two images for each Image control,
one for when the mouse is over the button and one when it isn’t.

 cmdFocus: a CommandButton that, like the background images, starts up at top = -
20 but is moved into position at runtime. The Click and KeyPress methods of
cmdFocus pass control up to the same named method of the container.

 shpMouseHandler: this Shape also starts off at -20 and is moved into position. It
provides the mouse handling effects: its MouseEnter and MouseLeave events call
the container’s SetImages method so the appropriate images are displayed.

 imgIcon: this Image contains the icon to display in the button

 lblCaption: this Label displays the caption for the button.

The Type property determines whether the button uses hot-tracking or not; 0 means
normal and 1 means use hot-tracking. Hot-tracking means the button doesn’t have a border
and has a transparent background until you move the mouse over it. Figure 6 shows this
effect, with the mouse over the Calendar button.

Figure 6. ThemedButtons with Type set to 1-Hot-Tracking have a different appearance.

We won’t look at the themed elements used by ThemedButton; feel free to look at the code
in ChangeTheme if you’re interested.

A Deep Dive into the VFPX ThemedControls 15

Like shpMouseHandler.MouseEnter and MouseLeave, ChangeTheme calls SetImages to set
the Visible and Picture property of the background image objects and the ForeColor
property of lblCaption. If you decided to programmatically change Type, call SetImages to
display the button correctly for the specified type. This could also be handled with an
Assign method for Type.

To use ThemedButton, do the following:

 Drop a ThemedButton on a container of some kind, like a form or a class.

 Set lblCaption.Caption to the desired caption, imgIcon.Picture to the desired image
(the default size is 24x24), and shpMouseHandler.ToolTipText to the desired tooltip.
ThemedButton really should have Caption and Picture24 properties with Assign
methods and an Assign method on ToolTipText that set lblCaption.Caption,
imgIcon.Picture, and shpMouseHandler.ToolTipText so you don’t have to drill down
to access those properties. I created a subclass of ThemedButton called
SFThemedButton (in SFThemedControls.VCX) that takes care of this. (It also has an
Assign method for Type that calls SetImages.) Alternatively, you can use the
ThemedButton builder that comes with ThemedControls (ButtonBuilder in
ThemedControlsBuilders.VCX). To invoke the builder, double-click the
CustomBuilder property in the Properties window. See Figure 7.

 Set Type to 1 if you want to use hot-tracking.

 Put the desired code into the Click method.

Figure 7. The ThemedButton Builder makes it easier to set the button's properties.

There’s a bug in Button.SetImages in version 3.5.8 and earlier: if you change Type from 0 to
1 and then back to 0 again in code, calling SetImages after each change, the buttons won’t
appear properly because the imgBackground* images were made invisible when Type was
1. The code below shows the fix to make:

If This.Type==0
 If llFocus
 .imgBackgroundLeft.Picture = .ImgLeftFocused
 .imgBackgroundMiddle.Picture = .ImgMiddleFocused
 .imgBackgroundRight.Picture = .ImgRightFocused
 Else
 .imgBackgroundLeft.Picture = .ImgLeftNotFocused
 .imgBackgroundMiddle.Picture = .ImgMiddleNotFocused
 .imgBackgroundRight.Picture = .ImgRightNotFocused
 Endif

A Deep Dive into the VFPX ThemedControls 16

*** DH 07/17/2010: if Type is changed to 1 then back to 0, the images may not be
*** visible, so force it.
 Store .T. To ;
 .imgBackgroundLeft.Visible, ;
 .imgBackgroundMiddle.Visible, ;
 .imgBackgroundRight.Visible
*** DH 07/17/2010: end of new code
Else
 Store llFocus To ;
 .imgBackgroundLeft.Visible, ;
 .imgBackgroundMiddle.Visible, ;
 .imgBackgroundRight.Visible
Endif

ThemedExplorerBar
ThemedExplorerBar allows you to create an explorer bar, commonly seen in Windows XP
Explorer windows but since abandoned in Windows Vista and later. Explorer bars are
handy for displaying lists of grouped tasks, such as those shown in Figure 8.

Figure 8. ThemedExplorerBar allows you to create explorer bar interfaces.

There are actually two classes involved in an explorer bar: ThemedExplorerBar, which is
the overall bar, and ThemedExplorerGroup, which is an individual group.
ThemedExplorerBar is really just a container for ThemedExplorerGroup controls, but
provides features like a scroll bar, resize behavior, and so on.

Like ThemedButton, ThemedExplorerBar and ThemedExplorerGroup are subclasses of
ExplorerBar and ExplorerGroup in ExplorerBar.VCX, which has all of the functionality,

A Deep Dive into the VFPX ThemedControls 17

including theme support. As before, when I discuss ThemedExplorerBar and
ThemedExplorerGroup, I’m actually referring to ExplorerBar and ExplorerGroup.

An explorer bar has the following features:

 If the explorer bar isn’t tall enough to display all groups, a vertical scroll bar
appears.

 A group consists of a title bar, with icon, caption, and collapse button, and a user
area where you can add any type of control. For example, in Figure 8, the Recent
Projects group consists of hyperlinks (just VFP Label objects with FontUnderline set
to .T. and ForeColor set to RGB(0, 0, 255)) while the Other Items group has a couple
of ThemedButtons.

 Clicking the title bar or the collapse button of a group toggles between collapsed and
expanded states. In Figure 8, the Tasks group is collapsed while the other two are
expanded. The State property of a group indicates whether it’s expanded (0) or
collapsed (1). You can also set this property in the Properties window and it’ll be
respected when the explorer bar runs. Changing it programmatically, however, has
no effect. Instead, call the Collapse or Expand methods.

 For a group, the color of the title bar, the color of the caption, the color and style of
the collapse button, and the color of the background and borders reflect the current
theme. For the explorer bar, the only themed component is the background color.

 The effect when you move the mouse over the title bar of a group depends on the
theme. For the Office 2003 themes, the caption and collapse button change color.
For the Office 2007 themes, those items also change color but the entire title bar
becomes highlighted as well. Also, the collapse button looks different between the
two sets of themes.

 The Type property of ThemedExplorerGroup can either be 0-Normal or 1-Special. A
special group has a specially colored title bar. In Figure 8, the Tasks group is a
special group, so it appears in dark blue when the Office 2003 Blue theme is used. If
you change Type programmatically, you have to call ChangeTheme to redraw the
title bar because there’s no Assign method on that property.

 ThemedExplorerBar.Anchor is set to 7, which means the explorer bar expands
vertically as the form is resized.

Like ThemedButton, ThemedExplorerGroup has a builder, ExplorerGroupBuilder in
ThemedControlsBuilders.VCX, you can invoke by double-clicking the CustomBuilder
property (Figure 9). Also like ThemedButton, ThemedExplorerGroup should have Caption
and Picture24 properties with Assign methods so you can set one up programmatically
without having to drill down to the contained components. My subclass,
SFThemedExplorerGroup in SFThemedControls.VCX, implements that.

A Deep Dive into the VFPX ThemedControls 18

Figure 9. The ThemedExplorerGroup builder makes changing properties of a group easier.

To create an explorer bar, do the following:

 Drop a ThemedExplorerBar on a container of some kind, like a form or a class, or
create a subclass.

 Drop a ThemedExplorerGroup on the bar, double-click the CustomBuilder property
to invoke the builder, and set the properties of the group as desired. Alternatively, if
you’re using SFThemedExplorerGroup, set the Caption, Picture24, Type, and State
properties.

 Right-click the group and choose Edit, click on the cntUserControls object (the large
shape below the title bar), right-click and choose Edit. Drop any controls you want
into cntUserControls.

 Add more groups as necessary.

You can, of course, do these steps programmatically, so you could use a data-driven
explorer bar rather than a hard-coded one.

StartPageExplorerBar in Samples.VCX is a subclass of SFThemedExplorerBar (a subclass of
ThemedExplorerBar that currently doesn’t have any changes). It has three instances of
SFThemedExplorerGroup, as you can see in Figure 8. The Tasks and Other Items groups
were filled by dropping controls on them, but Recent Projects is filled programmatically
using the code, taken from StartPageExplorerBar.GetRecentProjects, which is called from
Init:

local llLockScreen, ;
 loContainer, ;
 lnSelect, ;
 laProjects[1], ;
 lnProjects, ;
 lnI, ;
 lcPath, ;
 lcName, ;
 lcLabel

* Lock the screen.

llLockScreen = Thisform.LockScreen
Thisform.LockScreen = .T.

A Deep Dive into the VFPX ThemedControls 19

* If we haven't already done so, add links to recent projects to the recent
* projects group.

loContainer = This.oRecentProjects.cntUserControls
if loContainer.ControlCount = 0
 lnSelect = select()
 select ;
 DATA ;
 from (set('RESOURCE', 1)) ;
 where TYPE = 'PREFW' and ID = 'MRUL' ;
 into cursor _PROJECTS
 lnProjects = alines(laProjects, DATA, 2, chr(0))
 for lnI = 2 to min(lnProjects, 8)
 lcPath = laProjects[lnI]
 lcName = juststem(lcPath)
 lcLabel = 'Project' + transform(lnI)
 loContainer.NewObject(lcLabel, 'ProjectLink', 'Samples.vcx')
 with loContainer.&lcLabel
 .Top = (lnI - 2) * 20 + 13
 .Left = 15
 .Caption = lcName
 .cProjectPath = lcPath
 .ToolTipText = lcName + ' (' + lcPath + ')'
 .Visible = .T.
 endwith
 next lnI
 use
 use in FoxUser
 select (lnSelect)
endif loContainer.ControlCount = 0

* If there aren't any recent projects, collapse the group.

if loContainer.ControlCount = 0
 This.oRecentProjects.Collapse()
endif loContainer.ControlCount = 0

* Restore the screen.

Thisform.LockScreen = llLockScreen

This code opens your VFP resource file, finds the record maintaining the list of most
recently used projects, and adds a ProjectLink object (a subclass of Label, also contained in
Samples.VCX) for each project to oRecentProjects.cntUserControls. Given the spacing used
between links, there’s only enough room for seven links, so the code only processes that
many projects. Thus, the group lists the seven most recently opened projects. The Click
method of the ProjectLink objects raises the OpenProject event of StartPageExplorerBar,
which doesn’t contain any code in this class.

To check out StartPageExplorerBar, drop it on a form and put the following code into the
Init method of the form:

bindevent(This.oBar, 'OpenProject', This, 'OpenProject')

A Deep Dive into the VFPX ThemedControls 20

Create a method called OpenProject with the following code:

lparameters tcProjectPath
messagebox(tcProjectPath)

Run the form and click on a project in the Recent Project group. You should see a message
box displaying the path to the project.

There’s a bug in ExplorerBar version 3.5.8 and earlier: imgBackground.Height isn’t set
properly until the form is resized for the first time. The fix is to make the following change
to Init:

This.InitThemedControl()
*** DH 07/19/2010: call Resize or imgBackground isn't sized correctly
This.Resize()
*** DH 07/19/2010: end of new code
This.Reposition(.T.)

ThemedOutlookNavBar
ThemedOutlookNavBar allows you to implement a Microsoft Outlook-like control in your
applications. Figure 10 shows an example, taken from BasicOutlookBarDemo.SCX.

Figure 10. The ThemedOutlookNavBar control has an Outlook-like appearance.

Here’s how the Outlook bar works:

 At the top of the control is the title bar for the selected panel. It shows the panel
caption.

A Deep Dive into the VFPX ThemedControls 21

 Below the title bar is the selected panel itself. You can place any controls you want
to into the panel since essentially it’s a page in a pageframe.

 Below the selected panel is the panel buttons area. This has one button per defined
panel. The selected panels button has a different appearance than the others (the
difference depends on the current theme).

 To select a panel, click its button. That panel then appears at the top of the control. If
the panel has a hotkey letter assigned to it, you can also press the letter to select the
panel. You can also click the menu button and select the desired panel from the
menu.

 Between the selected panel and the panel buttons area is a splitter. To change the
height of the selected panel, drag the splitter up or down. Dragging it down
increases the height of the selected panel and reduces the number of panel buttons
while dragging up does the opposite. Another way to do this is to click the menu
button and select Show More to show more panel bars or Show Less to show fewer
panel bars.

 Panel bars that were removed because you increased the height of the selected
panel are still available: they are displayed as icons in the overflow area at the
bottom of the control and in the menu (see Figure 11). To select a panel, click its
icon or click the menu button and select the desired panel from the menu.

Figure 11. Increasing the height of the selected panel using the splitter causes fewer panel buttons to be
displayed.

 The menu also lists the available themes and an “Inherit Windows Theme” function
so you can change the theme.

A Deep Dive into the VFPX ThemedControls 22

 You can collapse the Outlook bar by clicking the collapse button at the top of the
control (Figure 12). Click it again to expand the panel control.

Figure 12. Click the collapse button to toggle between collapsed and expanded states.

 ThemedOutlookNavBar automatically changes its form’s MinHeight property so the
form can’t be resized shorter than the minimum height the bar needs to display
properly. Anchor is set so the bar expands vertically as the form is resized.

Like ThemedButton, ThemedOutlookNavBar is a subclass of OutlookNavBar in
OutlookNavBar.VCX, which has all of the functionality, including theme support. As before,
when I discuss ThemedOutlookNavBar, I’m actually referring to OutlookNavBar.

As you can probably guess, ThemedOutlookNavBar is actually a pretty complex control.
However, it’s quite easy to work with. For the most part, you add panels, either visually or
programmatically, and add controls to those panels. A panel is actually a page in a
pageframe, so you can add any controls you wish. The rest of the Outlook bar is taken care
of by the class.

As with ThemedExplorerBar, I’m not going to go through the theme elements and which
components they apply to because it’s fairly complex and not really all that important to
know for working with the control.

To create an Outlook bar, do the following:

 Drop a ThemedOutlookNavBar on a container of some kind, like a form or a class, or
create a subclass. Let’s call it oOutlookBar for the purposes of this document.

A Deep Dive into the VFPX ThemedControls 23

 Normally, the Outlook bar is fills the height of the form, so set oOutlookBar.Height to
match that of the form. Anchoring is already set so it expands vertically when you
resize the form.

 Set oOutlookBar.Panes.PageCount to the number of panels you want.

 For each panel (that is, each page in Panes), set the Caption, Picture16, and
Picture24 properties to the caption, the image that appears in the overflow panel
and menu, and the image that appears in the panel button for the panel. You can also
set Hotkey to the letter that’s the hotkey for the panel; note that Hotkey is case-
sensitive, so if the caption is “Test” and “e” should be the hotkey, use “e” rather than
“E.”

 Add any desired controls to each page. Note that the controls shouldn’t be taller or
wider than oOutlook.Panes; for example, if you add a container of controls, be sure
to size it so Height <= oOutlook.Panes.Height and Width < oOutlook.Panes.Width.

You can, of course, do these steps programmatically, so you could use a data-driven
Outlook bar rather than a hard-coded one. Use the AddButton method to add a new panel
to the Outlook control. For example, suppose you have a table that has one record per
panel. It contains CAPTION, PICTURE16, PICTURE24, and HOTKEY fields that contain the
values for the appropriate properties, and CLASS and LIBRARY fields for the name of a
container class to add to the panel. This code would fill the Outlook bar programmatically:

with This.oOutlook
 scan
 .AddButton(CAPTION, PICTURE16, PICTURE24, HOTKEY)
 loPane = .Panes.Pages[.Panes.PageCount]
 loPane.NewObject('oControl', trim(CLASS), trim(LIBRARY))
 loPane.oControl.Visible = .T.
 endscan
endwith

I’ve created a subclass of ThemedOutlookNavBar called SFThemedOutlookNavBar (in
SFThemedControls.VCX) that overrides AddButton to return the newly added page, so this
code can be simplified a bit:

with This.oOutlook
 scan
 loPane = .AddButton(CAPTION, PICTURE16, PICTURE24, HOTKEY)
 loPane.NewObject('oControl', trim(CLASS), trim(LIBRARY))
 loPane.oControl.Visible = .T.
 endscan
endwith

Besides Panes.PageCount and AddButton, there are several other properties and methods
you might find useful:

A Deep Dive into the VFPX ThemedControls 24

 SelectedButton contains the number of the selected panel (1 being the first panel, 2
the second, and so on). Changing SelectedButton changes the selected panel, but
thanks to its Assign method, also fires some events you might want to tie into:

 BeforeChangeSelectedButton fires before the value of SelectedButton changes.
It’s passed the current value of SelectedButton and the value it’s about to change
to. If you return .F. from BeforeChangeSelectedButton, the selected panel doesn’t
change. This might be a good place to put some validation code that prevents the
user from changing panels until they’ve finished what they’re doing with the
current panel.

 ButtonClicked fires after the selected panel has changed. It’s passed the new
value of SelectedButton as well as the Caption and Picture24 values of the
selected panel. You can use this event to refresh the form, such as displaying
properties at the right for the selected panel.

You might want to save and restore the value of SelectedButton so the next time the
user opens the form, the same panel is selected as last time.

 Calling ShowLess is a programmatic way of moving the splitter bar down, showing
one less button. Similarly, ShowMore moves the splitter bar up and displays one
more button.

 ChangeViewMode toggles between collapsed and expanded states. It fires the
ViewModeChanged event, passing it .T. if the bar appears collapsed, which allows
you to perform some additional actions. For example, you might want to change the
Left and Width properties of controls to the right of the Outlook bar so they fill the
space left when the bar collapses; after all, that’s really the reason why the user
would click the collapse button in the first place. Another example is if you include a
ThemedExplorerBar in a panel of ThemedOutlookNavBar; in that case, you need to
hide the explorer bar’s scroll bar when the Outlook bar is collapsed. In the following
code, an instance of a ThemedExplorerBar named oControl is in the first panel:

 lparameters tlShrunk
 if This.SelectedButton = 1 and tlShrunk
 This.Panes.Pages[1].oControl.Ctl32_Scrollbar.ctlVisible = .F.
 endif This.SelectedButton = 1 ...

 ShowedButtons contains the number of panel buttons being displayed. As with
SelectedButton, you may wish to save and restore its value so the position of the
splitter is the same as it was last time. Saving is easy, but restoring is a little more
complicated because changing the value of ShowedButtons doesn’t do anything. In
that case, you need to do something like this:

 do while .oNavBar.ShowedButtons > ValueToRestoreTo
 .oNavBar.ShowLess()
 enddo while .oNavBar.ShowedButtons > ValueToRestoreTo

A Deep Dive into the VFPX ThemedControls 25

 MaxShowedButtons shows the maximum number of panels that can be displayed;
the default is 5. Additional panels beyond this value appear in the overflow area. Set
the property as desired.

 UpdatePane changes the properties of the specified pane. Pass it the pane number
and the values for Caption, Picture16, Picture24, and Hotkey.

A related class is ThemedOutlookNavBarTbr, a Toolbar with a ThemedOutlookNavBar
inside it, which you can use if you want a toolbar-based Outlook control.

There’s a bug in the property editor script for the Picture24 property of the Pane class in
version 3.5.8 and earlier: it incorrectly references Picture16. To fix this, open Pane in the
Class Designer, bring up the MemberData Editor, select Picture24, change “Picture16” in
the script to “Picture24,” and click OK to save the change. One other change: reset the
Picture16 and Picture24 properties to default or the property editor still doesn’t seem to
have any effect.

One bug I haven’t found a fix for (but have reported to Emerson) is that moving the mouse
over the splitter bar sometimes moves the splitter bar down even though the mouse button
isn’t pressed. One way to see this effect is to bring a top-level form up when a form with a
ThemedOutlookNavBar is already open, then close it. Moving the mouse over the splitter
bar now exhibits this effect. I suspect it’s a Windows event binding issue but haven’t
managed to track it down.

ThemedToolbox
The ThemedToolbox control has a UI similar to the VFP Toolbox or the Toolbox in older
versions of Visual Studio. Its purpose is very similar to ThemedOutlookNavBar: providing
panels of different categories and controls inside those panels. However, as you can see in
Figure 13 (taken from ThemedToolboxDemo.SCX), the UI is more spartan: panel buttons
with a “+” or “-” to indicate whether it’s expanded or not. Another difference is that clicking
a panel button doesn’t move it up to the top; rather, it collapses the previously selected
panel and expands the current one, with collapsed panel buttons stacked on top of each
other. Also, unlike ThemedOutlookNavBar, ThemedToolbox expands horizontally as well as
vertically when the form is resized.

A Deep Dive into the VFPX ThemedControls 26

Figure 13. ThemedToolbox is useful for selecting from categories of items.

As we’ve seen with other classes, ThemedToolbox is a subclass without any extra features.
In this case, it’s a subclass of Toolbox in Toolbox.VCX. There are several other supporting
classes in Toolbar.VCX: Panes, a PageFrame subclass (like ThemedOutlookBar,
ThemedToolbox is essentially a fancy pageframe); Pane, a subclass of Page used as the
pages in the pageframe; and Title, which provides the panel buttons.

A related class is ThemedToolboxTbr, a Toolbar with a ThemedToolbox inside it, which you
can use if you want a toolbar-based toolbox.

Using ThemedToolbox is easier than ThemedOutlookNavBar:

 Drop a ThemedToolbox on a container of some kind, like a form or a class, or create
a subclass.

 Set Panes.PageCount to the desired number of panels.

 For each panel, set the Caption of the Pane (page) object and add any controls
necessary.

There’s really only one property and method of interest. Wrap determines whether focus
goes to the top panel (.T.) or the previous one (.F.) when the bottom panel is collapsed; the
default is .T. TitleClicked fires when the user clicks a panel button.

Given the choice, I’d choose to use ThemedOutlookNavBar over ThemedToolbox because of
its richer UI. However, ThemedToolbox might be appropriate for simpler developer tools.

A Deep Dive into the VFPX ThemedControls 27

ThemedZoomNavBar
ThemedZoomNavBar, shown in Figure 14 (taken from ThemedZoomNavBarDemo.SCX),
provides a UI similar to the Mac OS X Leopard desktop. I think this UI provides an attractive
and dynamic alternative to toolbars. The large buttons are easy to click, even with a finger
on a touch screen.

Figure 14. ThemedZoomNavBar can be used for attractive toolbars.

ThemedZoomNavBar has the following features:

 The control appears as a set of images sitting on top of a strip. The strip has two
parts: the top part sits under the images and the bottom part appears in a darker
color of the current theme and displays reflections of the images.

 Images initially appear at 48x48 pixels. When you move the mouse over an image, it
zooms up to 96x96 (hence the name of the class) and images on either side of it
zoom to 72x72. Because of this, you’ll want to use 96x96 or bigger images or else
they’ll appear grainy when zoomed up. You can see this if you move your mouse
over the image of the software box with the CD.

 Images are actually buttons. Clicking one fires the ButtonClicked event for the
ThemedZoomNavBar control, passing it the name of the button. Typically, you’ll use
a CASE statement to determine what action to take based on the button name.

 An image can have a tooltip. However, as you can see in Figure 14, it’s not a normal
tooltip but a Ctl32_BalloonTip tooltip. Ctl32_BalloonTip, one of the classes in
Ctl32.VCX that’s required by the ThemedControls, provides much more capable

A Deep Dive into the VFPX ThemedControls 28

tooltips than VFP does. Notice, for example, the balloon shape of the tooltip window.
For details on Ctl32_BalloonTip, see http://tinyurl.com/23dfgna.

 Separator buttons provide space between buttons, such the space to the left of the
Exit button in Figure 14.

 You can place the control at the top or bottom of a form. It can also sit in a toolbar.
In fact, ThemedZoomNavBarTbr is a Toolbar subclass that contains a
ThemedZoomNavBar, so you can subclass it if desired.

 In addition to buttons across the control, you can also have “stacked” buttons.
Figure 15 shows an example. Stacked buttons are associated with a regular button;
clicking that button displays the stacked buttons. Stacked buttons do not zoom as
you move the mouse over them, but clicking them fires the StackButtonClicked
event, passing it the name of the stacked button. As with ButtonClicked, you’ll likely
use a CASE statement in that event. Note that if you use stacked buttons, you have to
put the ThemedZoomNavBar at the bottom of the form or else there isn’t room for
the stacked buttons to appear.

Figure 15. ThemedZoomNavBar buttons can include stacked buttons.

 Buttons and stacked buttons can be disabled, either by passing a parameter to the
AddButton or AddStackButton methods (which I’ll discuss later) or by calling
SetButtonState(cButtonName, lEnabled) or SetStackButtonState(
cParentButtonName, cStackButtonName, lEnabled).

 Normally, the control respects the setting of Width, so it’s only as wide as you make
it. However, if you set the Stretch property to .T., the ThemedZoomNavBar
automatically fills the width of its form.

http://tinyurl.com/23dfgna

A Deep Dive into the VFPX ThemedControls 29

Like some of the other controls we’ve seen, ThemedZoomNavBar is a subclass without any
additional behavior. Its parent is ZoomNavBar in ZoomNavBar.VCX. That class library
contains several supporting classes as well: ZoomImage, which is used for buttons,
StackContainer and StackButton, which are used for stacked buttons, ReflectedImage, used
for reflected images, and SeparatorImage, used for separator buttons.

To use ThemedZoomNavBar:

 Drop a ThemedZoomNavBar on a container of some kind, like a form or a class, or
create a subclass.

 Add buttons using the builder: double-click the CustomBuilder property in the
Properties window to invoke the builder (ZoomBarBarBuilder in
ThemedControlsBuilder.VCX) shown in Figure 16.

Figure 16. ThemedZoomNavBar comes with a builder to add buttons.

 Alternatively, you can call the AddButton method to programmatically add a button.
Pass it the button name, which must be unique, the text to use for the tooltip, the
name of the image file to use, the name of the reflected image to use (optional; it you
don’t pass it, ThemedZoomNavBar used GDIPlusX to create a temporary image), the
name of the disabled version of the image (again, optional), the name of the disabled
version of the reflected image (also optional), and .F. if the button should be
disabled.

 To programmatically create stacked buttons, call AddStackButton, passing it the
name of the parent button, the name of the stacked button, the caption that appears
at the left, the image file to use, the disabled image to use (optional), and .F. if the
button should be disabled.

 Put code into the ButtonClicked and StackButtonClicked events to handle clicks on
buttons and stacked buttons. Both of these methods are passed the name of the
clicked button.

Here’s the code from the Init method of the ThemedZoomNavBar control in
ThemedZoomNavBarDemo.SCX; this code was ripped off, er, adapted from one of
Emerson’s sample forms.

local lcDisableMessage, ;
 lcImageMessage

A Deep Dive into the VFPX ThemedControls 30

dodefault()
lcDisableMessage = 'You can disable/enable a button either by passing a ' + ;
 'parameter to the AddButton and AddStackButton methods or using the ' + ;
 'SetButtonState and SetStackButtonState methods.'
lcImageMessage = 'This shows why you should use 96x96 images. Otherwise, ' + ;
 'when the image is resized to 96x96, it looks grainy.'
with This
 .AddButton('Printers', 'Manage printers.', 'Printer96.png')
 .AddButton('Display', 'Change display settings.', 'Monitor96.png')
 .AddButton('Photo', lcDisableMessage, 'Photo96.png', , , , .F.)
 .AddButton('Search', 'Search for files.', 'Search96.png')
 .AddButton('Browser', 'Explore the web.', 'Explorer96.png')
 .AddButton('Explorer', 'Show files and folders.', 'Folder96.png')
 .AddButton('Software', lcImageMessage, 'Software32.png')

 .AddButton('Separator')

 .AddButton('Samples', 'Click here to show stacked buttons', 'Wizard96.png')
 .AddStackButton('Samples', 'Button1', 'Stacked button 1', 'NewWindow32.png')
 .AddStackButton('Samples', 'Button2', 'Stacked button 2', 'NewWindow32.png')
 .AddStackButton('Samples', 'Button3', 'Stacked button 3', 'Extensions32.png')
 .AddStackButton('Samples', 'Button4', 'Stacked button 4', 'Extensions32.png')
 .AddStackButton('Samples', 'Button5', 'Stacked button 5', 'Extensions32.png')
 .AddStackButton('Samples', 'Button6', 'Disabled button', 'Worker32.png', , .F.)

 .AddButton('Separator')

 .AddButton('Exit', 'Click here to exit.', 'OpenedDoor96.png')
endwith

This is the code in the ButtonClicked event; in a real form, this code would probably use a
CASE statement to decide what action to take based on the name of the clicked button.

lparameters tcName
if tcName = 'Exit'
 Thisform.Release()
else
 messagebox('You clicked ' + tcName)
endif tcName = 'Exit'

One downside of ThemedZoomNavBar is that it takes up a fair bit of room. It’s 125 pixels
tall and as wide as it needs to be for the number of large buttons displayed. However, on a
navigation-type form, that wouldn’t be a problem.

Ribbon
Ribbon.VCX provides a ribbon navigation control similar to that in Microsoft Office 2007
and later. Ribbon is still in development, so we’ll take a cursory rather than in-depth look at
it.

A ribbon consists of several parts as you can see in Figure 17, taken from Microsoft Word.
The application button is actually a menu, similar to the Windows Start button. The tabs

A Deep Dive into the VFPX ThemedControls 31

and group are essentially a pageframe with a slightly different UI. The dialog button
displays a tooltip when you hover the mouse button over it and brings up a dialog when
you click it.

Figure 17. The Microsoft Office ribbon is a complex navigation control.

As you can see in Figure 18, the ThemedControls Ribbon matches the Office ribbon fairly
closely.

Figure 18. The ThemedControls Ribbon control provides an interface like the Microsoft Office ribbon.

The ribbon actually consists of several controls:

 CntForm: provides the appearance of a form: a custom title bar, including custom
minimize, maximize, and close buttons, and a themed background.

 QuickAccessToolbar: as its name implies, it provides the quick access toolbar,
including the curved shapes in the border.

 ApplicationButton: again, its name makes it obvious what this class is for.

 Ribbon: the tabs and groups part of the ribbon.

 Group: provides a group container, including dialog button.

 RibbonButton: used for buttons in the ribbon.

 Spacer: provides a vertical space between controls, such as that between the Pen
and Email buttons in Group Two in Figure 18.

I’m not going to discuss how to use the ribbon control because, as it’s still in development,
the details might change completely.

A Deep Dive into the VFPX ThemedControls 32

ThemedControls includes a sample form, Ribbon.SCX, which demonstrates the ribbon
control UI.

Summary
There’s no excuse for creating a boring looking VFP application. Using several of the VFPX
projects, including ThemedControls, you can create a new, modern user interface for your
forms that’ll add years to the life of your applications. Your forms can resemble Microsoft
Office applications so your users will feel more at home using your applications. With a few
days of effort, your apps can be as pretty as any .Net application. Get started today!

Biography
Doug Hennig is a partner with Stonefield Systems Group Inc. and Stonefield Software Inc.
He is the author of the award-winning Stonefield Database Toolkit (SDT); the award-
winning Stonefield Query; the MemberData Editor, Anchor Editor, and CursorAdapter and
DataEnvironment builders that come with Microsoft Visual FoxPro; and the My namespace
and updated Upsizing Wizard in Sedna.

Doug is co-author of “Making Sense of Sedna and SP2,” the “What’s New in Visual FoxPro”
series (the latest being “What’s New in Nine”), “Visual FoxPro Best Practices For The Next
Ten Years,” and “The Hacker’s Guide to Visual FoxPro 7.0.” He was the technical editor of
“The Hacker’s Guide to Visual FoxPro 6.0” and “The Fundamentals.” All of these books are
from Hentzenwerke Publishing (http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written numerous articles in FoxPro Advisor,
Advisor Guide to Visual FoxPro, and CoDe. He currently writes for FoxRockX
(http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the annual Southwest Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community extensions Web site
(http://vfpx.codeplex.com). He has been a Microsoft Most Valuable Professional (MVP)
since 1996. Doug was awarded the 2006 FoxPro Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

http://www.hentzenwerke.com/
http://www.foxrockx.com/
http://www.swfox.net/
http://vfpx.codeplex.com/
http://tinyurl.com/ygnk73h

A Deep Dive into the VFPX ThemedControls 33

Copyright, 2010 Doug Hennig.

