
Understanding DBCX 2 Visual FoxExpress Developers Conference

 1998 Doug Hennig Page 1

Understanding DBCX 2

Doug Hennig

Partner

Stonefield Systems Group Inc.

1112 Albert Street, Suite 200

Regina, SK Canada S4R 1J6

Phone: (306) 586-3341

Fax: (306) 586-5080

Email: dhennig@stonefield.com

Web Site: www.stonefield.com

Overview

DBCX is a public domain data dictionary extension manager for Visual FoxPro. A colloboration between leading

industry vendors Stonefield Systems Group, F1 Technologies, Flash Creative Management, and Micromega Systems,

DBCX provides a core set of functions that allows third party products to effectively share extended data dictionary

information. DBCX was recently rewritten to add speed and flexibility. This session concentrates on the design and

implementation of DBCX so you can understand what goes on “under the hood” in products such as Visual

FoxExpress and Stonefield Database Toolkit.

Understanding DBCX 2 Visual FoxExpress Developers Conference

 1998 Doug Hennig Page 2

What is a Data Dictionary and Why is it Needed?

Until Visual FoxPro (VFP), xBase languages, including FoxPro 2.x, did not include a data dictionary. A data

dictionary is a repository of information about databases. At a minimum, a data dictionary provides the information

about tables and their indexes: field name, size, type, tag name, expression, filter, etc. In xBase, this information is

stored in the headers of DBF and CDX files, so if these headers become corrupted, the only source of information

about their structures is lost.

VFP implements a data dictionary by adding a database container (DBC) to store additional attributes of tables, such

as field captions, field and table rules, default values, etc. However, surprising as this may seem, the DBC still

doesn’t contain structural information, which means you cannot use information in the DBC to create or update

tables, nor recreate their indexes. In addition, many third party developers and consultants see a need to add their

own attributes (such as the caption for grid column headers) to the standard ones supported by VFP.

One of the main advantages of a data dictionary is to use the values of its properties at run-time. This type of data

dictionary is referred to as “active”, and it allows you to create data-driven applications.

What’s the big deal about creating a data-driven application? The main reason is maintainability. A data-driven

application uses the data dictionary as its source of information about how to do its job, rather than hard-coding the

necessary tasks. When the data dictionary changes, the application changes the way it works automatically without

having to rewrite any code.

Here’s an example. Say you want to create a table export module that allows the user to select which table to export.

Of course, you don’t want them to choose just any table: system tables (like next available key values) are hidden

from the user and others (such as lookups tables) wouldn’t make sense to export. You could have a hard-coded

method that added just specific tables to the list displayed to the user, but then you couldn’t reuse the export module

in other applications. Instead, using a data dictionary, you could have an “Export” property for each table, and only

put those tables for which this property is True into the list. This module is now generic and data-driven; it reads the

information from the data dictionary at run-time.

By making your applications data-driven, you make them much more maintainable because you only need to change

meta data in one place, the data dictionary.

DBCX

In the FoxPro 2.x world, each third party vendor created their own data dictionary to store additional properties

about their data. This lead to duplicated meta data so integrating products from several vendors required extra work.

To prevent this problem from occurring with VFP, several leading third party developers collaborated to created a

standard data dictionary extension scheme. The following companies were involved in this effort:

 Stonefield Systems Group Inc.

 F1 Technologies

 Flash Creative Management

 MicroMega Systems

This standard scheme is called DBCX. DBCX was placed into the public domain so any third party developer can

use it.

DBCX allows multiple products to enhance the VFP DBC without “stepping on each other’s toes”. It allows each

developer to decide where and how the extended attributes will be stored by making extensive use of Visual

FoxPro’s object oriented capabilities and polymorphism.

In addition to these companies, other companies can use DBCX to add extensions to the VFP data dictionary for

their own tools. The advantage of using DBCX is that these products can all work together without having to

maintain separate data dictionary extensions.

Understanding DBCX 2 Visual FoxExpress Developers Conference

 1998 Doug Hennig Page 3

The DBCX Model

The model for DBCX starts with the idea that every application has a registry table which contains a list of third

party products that require their own extended data dictionary attributes and are registered for use with this

application. Of course, multiple applications can use the same registry table if they all use the same suite of third

party products. An unlimited number of third party products can be added to the registry table and can work together.

A DBCX manager class is used as a common interface to all registered third party classes. Anything requiring access

to an extended attribute will access the attribute through the manager class, which automatically accesses the proper

third party class managing that attribute. Thus, the DBCX manager is the only item that will directly access the

extended attributes. The developer need not care what product manages the extended attributes, or even how they’re

stored.

The Registry Table

The registry table is called DBCXREG.DBF (although since this name is stored as a property of the DBCX manager

class, it could have a different name if necessary). There is one copy of this table per application, although it could

also be shared between applications if necessary. DBCXREG contains one record for each manager that manages the

database extensions for an application. You can have as many copies of DBCXREG as you need, but can only use

one for any one instance of the DBCX manager class.

The structure of DBCXREG.DBF is shown in Table 1, and its indexes are shown in Table 2.

Table 1. Structure of DBCXREG.DBF.

Field Type Size Purpose

cProdName C 40 The name of the product the extension manager
is associated with.

mLibPath M 4 The path to the extension manager’s class
library, relative to the location of
DBCXREG.DBF.

cLibName C 12 The name of the extension manager’s class
library.

cClassName C 30 The name of the class in the class library.

cObjName C 30 The name of the object to create when the
extension manager’s class is instantiated. If this
field is empty, the default is “o” + cClassName.

ILastID I 4 The last DBCX ID issued (only used in the
system record; see below).

tLastUpdt T 8 The date and time the record was last updated.

Table 2. Indexes for DBCXREG.DBF.

Tag Name Index Expression Type

Deleted DELETED() Regular

cProdName UPPER(cProdName) Candidate

Understanding DBCX 2 Visual FoxExpress Developers Conference

 1998 Doug Hennig Page 4

There are two types of records in DBCXREG:

 The first record is the “system record” (the cProdName field contains “SYSTEM RECORD”).

Its purpose is to contain the next available ID number for database objects (the iLastID field).

This value is not specific to a particular DBC; all DBCs managed by a particular set of meta

data tables share this value, so each record in each DBC has a unique DBCX ID. Note: DBCX

2 doesn’t use DBCX IDs; this is provided for backward compatibility with DBCX 1 managers.

 The Core Manager record manages the common “Core” properties. It is automatically

registered by the DBCX manager class.

 Other managers each have their own records in DBCXREG if you are using the products that

provide these managers. The following table shows an example of the contents of DBCXREG

when the Core Properties, Stonefield Database Toolkit, and Visual FoxExpress managers are

registered.

Table 3. Example of DBCXREG Contents.

Field Name Record #1 Record #2 Record #3 Record #4

cProdName SYSTEM
RECORD

Core Manager FoxExpress Stonefield
Database Toolkit

mLibPath ..\..\VFEFRAME\
LIBS\

..\..\VFEFRAME\
LIBS\

\STONEFIELD\
SDT\SOURCE\

cLibName DBCXMGR.VCX CVFEMGR.VCX SDT.VCX

cClassName CoreMgr cVFEManager SDTMgr

cObjName oVFEManager

iLastId 157 0 0 0

tLastUpdt 09/22/98
11:29:34 AM

08/22/98
11:29:34 AM

08/22/98
11:29:34 AM

08/22/98
11:29:34 AM

When you instantiate the DBCX manager class, you can specify that it should create a copy of DBCXREG.DBF (if it

doesn’t already exist for the current application) and add a record for the Core Properties manager.

The DBCX Manager Class

DBCXMgr is the name of the DBCX manager class. This class is defined in DBCXMGR.VCX. You instantiate it

like any other class. Here’s an example:

set classlib to DBCXMGR

oMeta = createobject('DBCXMgr')

The easiest way to think of DBCXMgr is as a conductor. Many of the methods in DBCXMgr merely call methods in

the “real” extension managers.

When DBCXMgr is instantiated, its Init() method opens DBCXREG.DBF (actually, the name of the table stored in

the cRegistryName property, which is DBCXREG.DBF by default). It looks in DBCXREG for all installed

managers, and uses AddObject() to add an instance of each manager to itself. The Init() of each extension manager is

fired as it’s instantiated and it generally opens its own meta data tables (DBCXMgr has no tables of its own other

than DBCXREG). DBCXMgr.Init() also calls a method in each manager that adds all of the properties maintained by

that manager (basically, a list of the fields in its extension table preceded by a unique prefix used by the manager) to

a cursor called DBCXPROPS. Thus, after its Init() is done, oMeta will contain one object for each registered

manager, and the following tables will be open: the DBCX registry table, a cursor containing all the properties

Understanding DBCX 2 Visual FoxExpress Developers Conference

 1998 Doug Hennig Page 5

maintained by all the managers, and one table (at least) for each manager. DBCXMgr use a private datasession, so

these tables aren’t directly visible to other forms or objects.

DBCXMgr can be instantiated with three parameters passed to its Init() method. The first should either be True or

False, depending on whether you want “debug” mode turned on. Debug mode displays useful debugging messages

when something goes wrong, but isn’t really suitable for a production environment. The second parameter is the path

to the DBCXREG table. This is required if DBCXREG isn’t in your VFP path or current directory. The third

parameter should be True if you want DBCXMgr to automatically create the DBCXREG table if it doesn’t exist and

add the CoreMgr record to it. Here’s an example of instantiating DBCXMgr with debug mode turned off and telling

it to look in the METADATA subdirectory for the meta data tables:

oMeta = createobject('DBCXMgr', .F., 'METADATA')

See the DBCX documentation file, DBCXREF.DOC, for the complete list of methods and properties in DBCXMgr.

Extension Manager Classes

In addition to DBCXMgr, DBCXMGR.VCX contains the BaseMgr class. BaseMgr is never instantiated directly, but

is instead subclassed to create extension managers. BaseMgr contains the minimum properties and methods

necessary for an extension manager. A manager subclass will probably add properties and methods to the base set,

and may even override some of the base methods if necessary. We’ll look at the Core Properties manager class,

which is subclassed from BaseMgr, in a moment.

See the DBCX documentation file, DBCXREF.DOC, for the complete list of methods and properties in BaseMgr.

How DBCX Extends a Database

DBCXMgr itself has no extended attributes for a DBC. Instead, each extension manager maintains a set of attributes,

each being stored in a field in the manager’s meta data table. Each record in the meta data table is linked to the

appropriate record in the DBC through the database name, record type, and object name.

You can find the value of a given extended attribute for any database object by calling the DBCXGetProp() method

in DBCXMgr. You specify the name and type of the object (similar to how you specify it to the VFP

DBGETPROP() function) and the name of the property you wish to obtain. The property name can either be the

“long” name of the property or the prefix for a given manager and the name of the field the property is stored in. For

example, to get the Caption property, which is stored in the cCaption field of the Core Properties manager’s table

(which has a prefix of CB), for the CUSTOMER table, use either:

? oMeta.DBCXGetProp('customer', 'Table', 'Caption')

or:

? oMeta.DBCXGetProp('customer', 'Table', 'CBcCaption')

DBCXGetProp() looks in the DBCXPROPS cursor to see which of its manager objects maintains that property, then

calls the DBCXGetProp() method of that manager to do the actual work. Typically, a specific manager won’t

override the BaseMgr’s DBCXGetProp() method, because it’s pretty simple:

 Find the record in the meta data table for the object type and name.

 Strip the prefix off the property name to obtain the name of the field containing the desired

attribute.

 Return the contents of that field.

Once a DBCXMgr method has been called specifying an object name and type, you can call other methods for the

same object without having to specify the object name and type each time. For example, to change the Caption

property for the same table, use:

oMeta.DBCXSetProp('Caption', 'Customer Table')

Understanding DBCX 2 Visual FoxExpress Developers Conference

 1998 Doug Hennig Page 6

To create a new property, use the DBCXCreateProp() method. This method requires the name of the property

(including the manager prefix), the long name, the name of the manager object to add the property to (the manager

object name is usually “o” plus the name of the manager class defined in the registry, but this name can be

overridden by the cObjName field in DBCXREG), and optionally the property type (the default is Memo), size (the

default is 10), and number of decimals (the default is 0). Here are a couple of examples:

oMeta.DBCXCreateProp('CBMyNewProp', 'oCoreMgr', 'MyNewPropertyName')

oMeta.DBCXCreateProp('SDTMyTestProp', 'oSDTMgr', 'MyTestPropertyName', 'C', 2)

The first example creates a Memo field called MyNewProp in the Core Properties manager’s meta data table, and the

second creates a 2 byte Character field called MyTestProp that the SDT manager handles.

The Core Properties Manager

The Core Properties manager (the class CoreMgr contained in DBCXMGR.VCX) provides the “common” set of

extended attributes. It defines extensions for the structural information of tables and indexes, as well as some other

attributes. It stores its extensions in a table called COREMETA.DBF. Since CoreMgr is considered the “common”

manager, third party developers should not duplicate the attributes it maintains, but should maintain their own.

The Core Properties manager uses “CB” as its prefix, so when you want to use DBCXGetProp() or DBCXSetProp()

to get or change the value of a CoreMgr property, you can optionally specify the field name with “CB” as the prefix.

For example, use “CBcCaption” to get the caption for a table.

Table 4 shows the structure of COREMETA.DBF and Table 5 shows its indexes.

Table 4. COREMETA.DBF Structure.

Field Type Size Purpose Used For

iID I 4 This will be an incremented value. The last value
used will be stored in the DBCX registry table.

All

cDBCName C 119 The name of the database container (without a
path or extension) associated with a data item.
This field will be empty if the data item is not
associated with a database container, such as a
free table.

All

cRecType C 1 A letter that describes what the record
represents. The following are the possible
values:

C = Connection

D = Database

F = Field

I = Index

R = Relation

T = Table

V = View

U = User-defined object, such as a virtual field

All

cObjectNam C 120 The name of the data object. All

mPath M 4 The path to the object if it isn’t associated with a
database container.

All

nCodePage N 5 The code page for the table. Table

Understanding DBCX 2 Visual FoxExpress Developers Conference

 1998 Doug Hennig Page 7

Field Type Size Purpose Used For

nBlockSize N 5 The block size for the memo file for the table. Table

cCaption C 128 The caption for the object. All

mTagFilter M 4 The expression used if the index tag is a filtered
index.

Index

mTagExpr M 4 The index expression. Index

cTagType C 1 The type of index. The values are as follows:

C = Candidate

P = Primary

U = Unique

R = Regular

Index

cCollate C 10 The collate sequence for the index. Index

lAscending L 1 The default order of an index tag. This will be
True for ascending and False for descending.

Index

mExpr M 4 The expression for a virtual field. Field

nField N 3 The field number in a table. Field

cType C 1 The data type for a field. Valid values are:

C = Character or Character Binary

D = Date

T = Datetime

L = Logical

M = Memo or Memo Binary

G = General

Y = Currency

N = Numeric

B = Double

F = Float

P = Picture

I = Integer

Field

lBinary L 1 If the field type is C or M, this will indicate if the
data is character binary or memo binary data that
you want to maintain without change across code
pages.

Field

nSize N 3 The size of a field. Field

nDecimals N 3 The number of decimal places in a numeric field. Field

lNull L 1 This will be True if a field can contain .NULL.
values.

Field

mFormat M 4 The Format for the field. Field

mInputMask M 4 The InputMask for the field. Field

mNotes M 4 Stores any additional notes that may be
necessary.

All

mComment M 4 Comments about the object. All

Understanding DBCX 2 Visual FoxExpress Developers Conference

 1998 Doug Hennig Page 8

Field Type Size Purpose Used For

tLastMod T 8 The DateTime of the last modification. All

Table 5. Indexes for COREMETA.DBF

Tag Name Index Expression Type

Deleted DELETED() Regular

iId iId Regular

ObjectName UPPER(cDBCName + cRecType + cObjectNam) Regular

Using DBCX

This section describes how to use DBCX from the Command window or programs and how VFE 98 uses DBCX.

Using DBCX From the Command Window or Programs

As we discussed earlier, DBCXMgr can be instantiated with up to three parameters. The first is whether “debug”

mode should be used or not, the second is the directory where the meta data tables can be found, and the third is

whether the meta data tables should be created if they’re not found. Here’s an example:

set classlib to DBCXMGR

oMeta = createobject('DBCXMgr', .T., '', .T.)

In this case, DBCXMgr will be in debug mode, the meta data tables will be located in the current directory, and

DBCXMgr will create them if they’re not found. If DBCXMgr has to create the meta data tables, it creates

DBCXREG.DBF, automatically registers CoreMgr by adding a record for it to DBCXREG, then instantiates

CoreMgr and calls its CreateDBCXMeta method to create COREMETA.DBF. Note that creating the meta data

tables doesn’t populate them with meta data about database objects; we’ll get to that in a minute.

Since DBCXMgr is in a private datasession, it doesn’t “see” the databases used by your application, so you must do

one of two things: specify the database name every time you specify an object name to a DBCX method (which

would be a pain) or use the SetDatabase() method to tell DBCX the default database to use. Here’s an example that

opens the TESTDATA database that comes with VFP and tells DBCXMgr we’re using it:

open database (_SAMPLES + 'DATA\TESTDATA')

oMeta.SetDatabase(dbc())

To create meta data for the objects in the database, use the Validate() method. If you want to see the progress of

Validate(), set the lShowStatus property to .T. Validate() can accept object name and type parameters to just validate

a single object; passing no parameters tells it to validate the entire default database.

oMeta.lShowStatus = .T.

oMeta.Validate()

Since free tables don’t belong to a database, they have to be added to the meta data separately. Here’s an example

that creates a free table and meta data for it. Notice the leading “!” in the call to Validate() so we indicate this table

isn’t part of the default database; use this syntax for all method calls for free tables.

create table TEST free (FIELD1 C(10), FIELD2 C(10))

index on FIELD1 tag FIELD1

index on FIELD2 tag FIELD2

oMeta.Validate('!test', 'Table')

Understanding DBCX 2 Visual FoxExpress Developers Conference

 1998 Doug Hennig Page 9

Let’s see how to set and get extended properties. Although a default caption is assigned to all non-field objects (field

captions are stored in the DBC, so there’s no need to store them in an extended property), a more appropriate caption

may be desired. Also, since a free table doesn’t have database properties, we’ll want to assign field captions and

comments as extended properties. If you use several calls in a row for the same object, you don’t have to specify the

object name or type each time; DBCX will use the same values as the previous call.

oMeta.DBCXSetProp('customer.company', 'Index', 'Caption', 'Company Name')

? oMeta.DBCXGetProp('Caption')

oMeta.DBCXSetProp('!test.field1', 'Field', 'Caption', 'First Field')

oMeta.DBCXSetProp('Comment', 'First Field Comment')

oMeta.DBCXSetProp('!test.field2', 'Field', 'Caption', 'Second Field')

oMeta.DBCXSetProp('Comment', 'Second Field Comment')

Calculated fields can be defined by putting the calculation expression into the mExpr field in CoreMeta (the long

property name is Expression). Here’s an example that defines a Total Price field for the ORDITEMS table with the

calculation ORDITEM.UNIT_PRICE * ORDITEMS.QUANTITY (in other words, the total price for a line item in

an order), then uses the expression in a browse window. Note the use of ISNULL() on the return value of

DBCXGetProp() to see if an object exists in the meta data, and AddRow() to create a new meta data record.

if isnull(oMeta.DBCXGetProp('orditems.total_price', 'User', 'Expression'))

 oMeta.AddRow('orditems.total_price', 'User')

 oMeta.DBCXSetProp('Expression', 'orditems.unit_price * orditems.quantity')

 oMeta.DBCXSetProp('Caption', 'Total Price')

 oMeta.DBCXSetProp('Comment', 'A calculated field of the total price')

endif isnull(oMeta.DBCXGetProp(...

lcExpr = oMeta.DBCXGetProp('Expression')

use ORDITEMS

browse fields ORDER_ID, LINE_NO, UNIT_PRICE, QUANTITY, TOTAL_PRICE = &lcExpr

New properties can be created using DBCXCreateProp(). You specify the name of the property (manager prefix and

field name), the name of the manager maintaining this property, the long name of the property, and its data type and

size (optional for those data types that have a fixed size such as Date, Logical, and Currency). The following code

creates a Select (can the index be selected by the user) extended property for indexes and set it to .T. for some but

not all indexes.

oMeta.DBCXCreateProp('CBlSelect', 'oCoreMgr', 'Select', 'L')

oMeta.DBCXSetProp('customer.company', 'Index', 'Select', .T.)

oMeta.DBCXSetProp('customer.contact', 'Index', 'Select', .T.)

oMeta.DBCXSetProp('customer.postalcode', 'Index', 'Select', .T.)

oMeta.DBCXSetProp('customer.country', 'Index', 'Select', .T.)

A new method in DBCX 2 called DBCXGetAllObjects() creates an array of all objects with a certain property set to

a specified value. By default, this method just puts the name of matching objects into a one-dimensional array, but

you can specify another property (most commonly Caption) to put into the first column of a two-dimensional array

(the second column is the object name). This method is ideal for creating an array used as the RowSource for a

combobox or listbox in which the user can select an object from the list of matching object. The following code, for

example, gets the name and caption of all indexes from the CUSTOMER table that have the Select property set to

.T.; this could then be displayed to the user in a combobox so they can choose the sort order for a report or data entry

form.

dimension laIndexes[1]

lnObjects = oMeta.DBCXGetAllObjects('index customer', @laIndexes, 'Caption', ;

 'Select', .T.)

? ltrim(str(lnObjects)) + ' indexes selectable for CUSTOMER'

display memory like laIndexes

How VFE 98 Uses DBCX

VFE provides a new tool called DBCX Explorer that provides an interface to the DBCX properties it uses.

Understanding DBCX 2 Visual FoxExpress Developers Conference

 1998 Doug Hennig Page 10

The cGrid class (in CCONTRLS.VCX) has an AddFieldColumn method for adding a column to the grid for a

particular field. This method uses DBCX meta data for the specified field in the following ways:

 The VFEcGrdCaptn property is used as the Caption for the column header.

 The CBnSize property is used to determine the width of the column.

 The VFEcObjType property specifies the class used for the ActiveControl of the column.

 The VFEcQFindTag property is used as the tag for the “quick find” function for the field.

The cAbstractDataItem class (in CDATA.VCX) has an abstract DBCXGetProp method that wraps DBCXMgr’s

DBCXGetProp method. This method is specified in each subclass (for example, cCursor and cField) to get the

desired property for the specific data element. Calling DBCX methods allows these classes to be data-driven;

changing the meta data for a table or field changes the behavior of the class without having to modify any code. Here

are some of the ways these classes use DBCX meta data:

 Several of the property Access methods look up and return the appropriate DBCX value. For

example, cField’s DefinedSize_Access returns the CBnSize property for the field while

Type_Access returns CBcType.

 The CheckRequired(), CheckMin(), CheckMax(),and CheckIsInList() methods ensure a value

was entered for the data item if required (the VFElRequired property) and compare the value

against defined minimum (VFEmRangeLo), maximum (VFEmRangeHi), and enumerated

(VFEuListValues) values.

 The SetPropFromDBCX() method is interesting: it adds a new property (using AddProperty)

to the object and sets its value to the specified DBCX property. This method is called from the

CheckRequired(), CheckMin(), CheckMax(),and CheckIsInList() methods mentioned above

so DBCXGetProp() is only called the first time it’s used; after that, the desired value is

assumed to be in newly created property. For example, CheckRequired() calls

SetPropFromDBCX() to add a new lRequired property and set its value to the VFElRequired

DBCX property the first time it’s called. Subsequent calls to CheckRequired() just check the

Understanding DBCX 2 Visual FoxExpress Developers Conference

 1998 Doug Hennig Page 11

value of the lRequired property. This provides a performance boost because testing the value

of a property is obviously faster than querying DBCX each time the value must be checked.

 The DecorateObject() method sets the values of various properties of a specified object to the

corresponding DBCX properties of the data item. This method is used to set the properties of

a control bound to the data item to the appropriate values. For example, the cSecurityName

property is set to the VFEcSecurity property, ToolTipText is set to VFEmToolTip, and

ReadOnly is set to VFElReadOnly.

The cQueryForm class (in CQUERY.VCX) uses several DBCX properties to determine its behavior. The

VFElSearch property is used to determine if a data item should appear or not, the VFEcDlgCaption is the caption to

display for the item, and VFEnDispOrder is the order to display the items in.

Summary

DBCX helps us get away from the “minefield” of FoxPro 2.x: each third party product having its own incompatible

data dictionary. DBCX allows multiple products to enhance the VFP DBC, and provides a mechanism for these

products to work together without having to maintain separate data dictionary extensions. Several companies use

DBCX to add extensions to the VFP data dictionary for their own tools: Visual FoxExpress and Stonefield Database

Toolkit. It also provides a mechanism to add additional attributes to existing managers so you don’t need to go to the

effort of creating your own manager.

