
VFPX 2018 Edition

Doug Hennig
Stonefield Software Inc.

Email: dhennig@stonefield.com
Corporate Web sites: www.stonefieldquery.com

www.stonefieldsoftware.com
Personal Web site : www.DougHennig.com

Blog: DougHennig.BlogSpot.com
Twitter: DougHennig

It’s been three years since Rick Schummer last presented one of his excellent “deep dive”
sessions into VFPX, so it’s time for an update. We’ll start by looking at the new GitHub-based
VFPX site, then dive into several exciting projects.

mailto:dhennig@stonefield.com
http://www.stonefieldquery.com/
file:///D:/Development/Writing/Sessions/DeployingVFPApps/www.stonefieldsoftware.com
http://www.doughennig.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 2 of 65

Introduction
Since its inception, VFPX has been an incredible resource for VFP developers. It provides
free, production-quality code from some of the best VFP developers on the planet over its
98 separate projects (as of September 27, 2018). I personally use 21 of these projects in my
applications and am looking forward to using some of the new projects added in the last
couple of years as the need arises.

VFPX has gone through a lot of changes in the past couple of years. Early in 2017, Microsoft
announced that it was shutting down CodePlex. Over the years, the administrators of
VFPX—Rick Schummer, Craig Boyd, Jim Nelson, and I—had discussed moving VFPX
somewhere else due to numerous shortcomings in CodePlex, but the sheer volume of work
involved in doing that had always discouraged us. However, now we had no choice: we had
to find a new home.

GitHub seemed like the logical choice since it’s the most popular open source site in the
world. So, starting in April 2017, we secured the VFPX name on GitHub (it was previously
registered to someone else but hadn’t been used in years), set it up as an organization, and
started migrating projects. Some of the work was done by the original project managers
and some was done by us (those projects where the project manager could not be reached,
had moved on from VFP, or were too busy).

Another change is that during the migration process, we decided to split the XSource and
Sedna projects into separate projects for each component, both to make them more
manageable and to make them easier to download and contribute to. For example, only the
Data Explorer and Upsizing Wizard components of Sedna have had any significant changes
since Sedna was released but you had to download the entire Sedna package just to get
those updated versions.

A final change is that Jim Nelson has retired as a VFPX administrator as he is close to
retirement in general. We thank him for all that he has done for the VFP community, not
only as a VFPX administrator but as the developer of some of the most useful and popular
VFPX projects (Thor, PEM Editor, and Finder, updated versions of GoFish and Code
References, and contributions to FoxCharts and other projects) and as a speaker at
Southwest Fox.

Let’s start our look at VFPX 2018 by checking out GitHub.

VFPX on GitHub
Although Git (the distributed version control system, or DVCS) and GitHub (a cloud-based
site for Git repositories) are extremely popular with developers world-wide, they aren’t as
well-known in the VFP community for a couple of reasons:

 VFP developers in general were slow in adopting version control as a best practice. I
myself am in that category, only adopting it in 2011 for .NET projects and in 2013

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 3 of 65

for VFP applications. (I really don’t know why I resisted for so long, as I could not
live without it now.)

 For a while, Mercurial (another DVCS) and Bitbucket (another site for repositories)
were more popular with VFP developers, partly because well-known VFP speakers
such as Rick Borup and Alan Stevens spoke about them at conferences and those of
us who adopted them promoted them to others in our community. I personally only
started using Git and GitHub when we started migrating VFPX to GitHub.

So, I’m going to assume you aren’t very familiar with Git or GitHub. This isn’t intended to be
exhaustive documentation for either; there are many sources of information on both,
including https://guides.github.com/ and https://help.github.com/. I found the GitHub for
Windows Users course at https://mva.microsoft.com/en-US/training-courses/github-for-
windows-users-16749 very helpful. Also, Scott Hanselman’s blog post “The Squishy Side of
Open Source” (http://feeds.hanselman.com/~/527860891/0/scotthanselman~The-
Squishy-Side-of-Open-Source.aspx) has some good ideas for those new to open source.

Let’s start with GitHub, since you don’t actually need Git to work with any VFPX project.

GitHub

VFPX is located at https://github.com/vfpx. However, there isn’t much to see there: just a
list of repositories in reverse chronological order by last update. A better URL is
https://vfpx.github.io/, the GitHub Pages site for VFPX (GitHub Pages provide a web site
for a project). An even better URL is http://vfpx.org, which always redirects to the current
location of VFPX (formerly vfpx.codeplex.com, now vfpx.github.io).

Whichever URL you use, the VFPX home page (Figure 1) is the first thing you see on the
new site.

Figure 1. The VFPX home page.

https://guides.github.com/
https://help.github.com/
https://mva.microsoft.com/en-US/training-courses/github-for-windows-users-16749
https://mva.microsoft.com/en-US/training-courses/github-for-windows-users-16749
http://feeds.hanselman.com/~/527860891/0/scotthanselman~The-Squishy-Side-of-Open-Source.aspx
http://feeds.hanselman.com/~/527860891/0/scotthanselman~The-Squishy-Side-of-Open-Source.aspx
https://github.com/vfpx
https://vfpx.github.io/
http://vfpx.org/

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 4 of 65

The home page describes what VFPX is, how to get involved, and how to promote it. It also
has a menu with the following items:

 Home: a link to the home page.

 Projects: a list of the projects including links to their repositories.

 License: the license all VFPX adhere to unless otherwise stated.

 Posts: news items about VFPX. There’s an RSS feed for this page (the “subscribe via
RSS” link at the bottom) so you’ll be notified when posts are added.

 Project Managers: information for project managers.

 Add a Project: information about how to add a project to VFPX.

 Admin: information for the VFPX administrators (our own documentation).

 About: lists the VFPX administrators.

The Projects page (Figure 2) is the most commonly used page: it lists the projects by
release type (Production, Release Candidate, Beta, Alpha, and Planning) and project name.
The page also lists some other VFP open source projects that aren’t considered to be part of
VFPX. Click the name link to navigate to the repository for the project.

Figure 2. The VFPX Projects page lists each project by name.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 5 of 65

Some projects are hosted on GitHub under the VFPX organization
(https://githib.com/vfpx/ProjectName), some are under the author’s
repository (https://githib.com/Author/ProjectName), and a few are on
Bitbucket, as discussed later.

Figure 3 shows a typical VFPX project repository, in this case the one for the
XLXSWorkbook project. As this document is not intended to be complete GitHub
documentation, I won’t go through everything, just the most common features.

Figure 3. A typical VFPX project repository.

 You can get notification via email when the project is updated by clicking the Watch
button (#1 in Figure 3) and choosing the desired option: Not Watching, Watching, or
Ignoring. Note that you have to be logged in with a GitHub account to turn on
watching.

 To install the project on your system, you can either download the project as a zip
file or clone the repository, which requires have Git installed on your machine (#2 in
Figure 3).

 The project’s README.md file is a Markdown file (Markdown is similar to HTML but
with simplified syntax) that GitHub automatically renders on the page (#3 in Figure
3) so it acts as the welcome page and in many case, provides the documentation for
the project as well.

 The source list (#4 in Figure 3) shows the folder and files that make up the project.
Some projects, such as this one, are just a zip file of source. Most, however, are

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 6 of 65

individual files, such as PRGs, SCXs, and so on. Click a file to view a page containing
its content (most binary files can’t be viewed, but some, such as PDFs can) and its
version history.

 To report a bug, ask a question, or make a feature request, click the Issues tab (#5 in
Figure 3) and create an issue. This is much preferred over sending an email to the
project manager or posting something on a forum because it allows other users to
see and comment on the issue as well.

Git

If you want to clone a project rather than just downloading it, you need to install Git. You
can get Git from a variety of sources, including:

 The main source for Git is at https://git-scm.com/downloads. Choose the Windows
version for VFPX projects.

 A lot of VFP developers use TortoiseGit (https://tortoisegit.org/), which provides a
visual interface for Git (Git is basically a command-line utility). Installing TortoiseGit
automatically installs Git as well.

 Some people like to use GitHub Desktop (https://desktop.github.com/), which is a
visual interface for GitHub. Installing GitHub Desktop automatically installs Git as
well.

To clone a repository, open a command window somewhere and type:

git clone RepositoryURL folder

where RepositoryURL is the URL displayed when you click the Clone or Download button in
the repository and folder is the folder in which to clone the repository (the folder doesn’t
have to exist). If you use TortoiseGit, you can simply right-click some folder in File
Explorer, choose Git Clone, and enter the URL and folder in the dialog that appears.

As I mentioned earlier, I’m not going to go into detail on how to use Git, as there are a lot of
resources available to learn Git.

Thor Check for Updates

Another way to install a project is by installing Thor and then using its Check for Updates
(CFU) function (Figure 4). Simply put a checkmark in the Update column for those projects
you want to install or update and click Install Updates.

Thor CFU downloads files from a folder on a web site unrelated to GitHub. Since project
managers don’t have write access to that site, they have to submit update files to the VFPX
administrators to put them in the proper folder. This mechanism is kind of clunky so it’s
been improved by adding support for updates to be downloaded directly from a project’s
GitHub repository. However, not many projects have been updated to do that yet, so the
version number you see in the Thor CFU dialog doesn’t necessarily match the one in the
project’s repository; the GitHub files could be newer than the ones in the VFPX site.

https://git-scm.com/downloads
https://tortoisegit.org/
https://desktop.github.com/

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 7 of 65

Figure 4. Thor's Check for Updates function can install and update many VFPX projects.

Now let’s dig into what’s new in VFPX.

Project Explorer
Project Explorer is a VFPX project (https://github.com/DougHennig/ProjectExplorer) that
replaces the Project Manager with a modern interface and modern capabilities. It has most
of the features of the Project Manager but adds integration with DVCS (including built-in
support for FoxBin2PRG and optional auto-commit after changes), support for multiple
projects within a “solution,” allows you to organize your items by keyword or other
criteria, and has support for easy “auto-registering” addins that can customize the
appearance and behavior of the tool.

Thanks to many suggestions from the Fox community, I’ve made lots of improvements to
Project Explorer since I presented it at Southwest Fox in October 2017 and the German
DevCon in November 2017.

Creating new classes and forms

When you click the New button in the toolbar for classes, the New Class dialog (Figure 5)
appears. It has similar functionality to that dialog in the Project Manager, with these
additional features:

 Based on is set to the name of the selected class if there is one. This makes it easy to
subclass an existing class by simply selecting it and clicking the New button.

https://github.com/DougHennig/ProjectExplorer

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 8 of 65

 From is set to the selected VCX but it’s a combobox containing the ten most recently
used class libraries, so you can select one from the list. Based on adjusts to display
the classes in the selected library. The libraries are listed in most recent to least
recent order.

 You can create a new class by subclassing the Based on class or by copying it (the
equivalent of dragging a class from one VCX to another and then renaming it in the
Project Manager).

Figure 5. The New Class dialog displays when creating a new class.

There are a couple of ways to choose which class to base a new form on:

 When a form class is selected, right-click the class and choose Create Form from
Class, then specify the name and path of the new form in the file dialog that appears.

 When forms are displayed, click the New button to display the New Form dialog
(Figure 6). The Based on and From controls work the same as they do in the New
Class dialog.

Figure 6. The New Form dialog appears when creating a new form.

Performance improvements

 At startup, the project was opened and closed multiple times in order to get the
version control status of all files. That no longer happens.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 9 of 65

 If only the text equivalents of binary files are stored in the repository, Project
Explorer no longer closes the project when committing changes to a file or getting
the version control status of a file.

 Rather than having a single TreeView control that’s constantly emptied and
reloaded as you change the selected tag, there’s now one TreeView per tag. Selecting
a tag the first time loads and displays that TreeView, including getting the version
control status of every file in that tag, and hides the other ones; the next time that
tag is selected, the TreeView isn’t reloaded but is simply redisplayed. This makes the
performance of switching tags in a large project much faster.

Version control improvements

 Project Explorer now works properly with Git even when TortoiseGit isn’t installed.

 Support was added for other “binary to text” converters besides FoxBin2PRG;
implementing them is left up to others.

 You can now change the setting of the Binary Files in Repository setting in the
Version Control Properties dialog.

 The shortcut menu now has Convert Binary to Text and Convert Text to Binary
functions. This is handy, for example, if you edit the records in a table for which the
text equivalent is stored in the repository.

 Project Explorer now supports FoxBin2PRG configuration settings better.

 When version control is turned on for a solution, it now automatically detects if a
repository folder exists and only prompts the user if one isn’t found.

 When dragging a class to another VCX, Project Explorer assigns new UNIQUEID
values to the members of the new class. This prevents an issue with duplicate values
in FoxBin2PRG.

Other changes

 The Class Library and Class Name labels in the Servers tab of the project properties
are now hyperlinked: clicking them takes you to the VCX or class, respectively.

 If Solution.xml exists in the current folder, it’s opened automatically rather than
prompting the user. Also, if there’s only one PJX file in the current folder and no
Solution.xml, Project Explorer automatically opens that project and creates a
solution file for it.

 If you create a MyAddins subdirectory of the Addins folder in the directory where
Project Explorer is installed, any addin PRGs in that subdirectory override addins in
the Addins folder. This is handy because the addins that come with Project Explorer
are disabled by default, so when a new version is released, the addins PRGs are
overwritten and any you had enabled are disabled again. Simply copy the PRG into
the MyAddins folder and enable it; it won’t be overwritten when an updated version
is installed.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 10 of 65

 You can now define both the forecolor and backcolor for categories and specify
which color is the Category combobox. Also, the solution is reloaded when you close
the Category Editor dialog so changes are displayed immediately.

 You can now edit the OLEPublic and icon properties of a class in Project Explorer
without having to use the Class Designer.

 The shortcut menu now has a Builder function which invokes the same builder or
builder dialog you would see in the Project Manager.

 The shortcut menu for the User and Description editboxes now has a Zoom function
that displays a resizable dialog in which you can view or edit the content of the
editbox.

 Pressing Enter in the TreeView control now acts like double-clicking.

 If you manually close a project, Project Explorer automatically closes when it’s
activated.

 The Refresh button in the toolbar was replaced with a Sort/Filter button. Refresh is
now available in the shortcut menu.

 Clicking the “…” button in the Sort and Filter and Assign Tags dialogs displays the
VFP Expression Builder dialog.

 Project items now have a CategoryName property so you can filter on that rather
than the category’s ID number. Also, the Tags property is now a comma-delimited
list of tags instead of a collection for easier filtering.

 There are a couple of new addins. AddWLCHackCXtoShortcutMenu.prg adds a Run
HackCX Professional function to the shortcut menu to launch Hack CX Professional
(http://www.whitelightcomputing.com/prodhackcxpro.htm).
EditViewWithViewEditorPro.prg tells Project Explorer to edit a view using White
Light Computing’s ViewEditor Professional
(http://www.whitelightcomputing.com/prodvieweditorpro.htm) rather than the
VFP View Designer.

 The Run function now works for classes. For non-form classes, the class is
instantiated and added to _SCREEN at position 0, 0. For form classes, the class is
instantiated and a reference to it added to _SCREEN.

 Turn on the new Add and New allow any file type setting in the Options dialog to
allow the Add and New functions to display a dialog in which you can choose any file
type. Turn it off to only allow a file of the selected type to be chosen; for example, if a
form is currently selected, Add and New only allow you to add or create a form.

 Turn on the Remove unused headers setting in the Options dialog to remove headers
that don’t have any items under them in the TreeView, such as “Labels” if there
aren’t any labels in the project.

 Project Explorer can now be installed or updated using the Thor Check for Updates
function.

http://www.whitelightcomputing.com/prodhackcxpro.htm
http://www.whitelightcomputing.com/prodvieweditorpro.htm

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 11 of 65

 Running Project Explorer with “do ProjectExplorer.app with '?'” displays a help
message with the parameters you can pass to it.

 Numerous bugs were fixed.

Summary

I’ve been using Project Explorer in my day-to-day work for over a year now and find it a lot
more useful than the VFP Project Manager. If you haven’t tried it yet, take it for a spin. I
look forward to your feedback.

Log4VFP
Log4NET is a well-respected diagnostic logging library for .NET applications. The Log4VFP
VFPX project that I created, available at https://github.com/VFPX/Log4VFP, provides a
wrapper for Log4NET so you can use it in VFP applications.

Include Log4VFP.prg in your project so it’s built into the EXE. There are only a few files to
deploy Log4VFP with your application:

 Log4VFP.dll, a C# DLL that provides the wrapper for Log4NET that can be used from
VFP (the source code for it is in the Log4VFP subdirectory).

 Log4NET.dll, the Log4NET assembly.

 A configuration file that tells Log4NET how, when, and where to log information.
There are several example config files that accompany Log4VFP.

Log4VFP requires Rick Strahl’s wwDotNetBridge, so if you’re not already using that in your
application, you’ll have to download it (https://github.com/RickStrahl/wwDotnetBridge),
include wwDotNetBridge.prg in your project so it’s built into the EXE, and deploy
ClrHost.dll and wwDotNetBridge.dll with your application.

Sample.prg (Listing 1) shows how easy it is to use Log4VFP in your VFP code. Start by
instantiating the Log4VFP class in Log4VFP.prg, optionally set the cConfigurationFile and
cUser properties to the name and path of the configuration file to use and the name of the
current user, and call the Open method with the name and path of the file to log to. To write
something to the log, call one of the Log* methods, such as LogInfo or LogError, depending
on the level of the logging you want.

Listing 1. Sample.prg shows how easy it is to use Log4VFP.

local lcConfigFile, ;
 lcLogFile, ;
 lcUser, ;
 loLogger, ;
 loException as Exception

* Define some things.

lcConfigFile = fullpath('compact.config')

https://github.com/VFPX/Log4VFP
https://github.com/RickStrahl/wwDotnetBridge

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 12 of 65

 && the name of the configuration file to use; use this for a compact log
*lcConfigFile = fullpath('verbose.config')
 && the name of the configuration file to use; use this for a verbose log
*lcConfigFile = fullpath('database.config')
 && the name of the configuration file to use; use this to log to a SQL
 && Server database
lcLogFile = lower(fullpath('applog.txt'))
 && the name of the log file to write to
lcUser = 'DHENNIG'
 && the name of the current user

* Initialize the logger.

loLogger = newobject('Log4VFP', 'Log4VFP.prg')
loLogger.cConfigurationFile = lcConfigFile
 && optional: uses a basic log4vfp.config (created if necessary) if not
 && specified
loLogger.cUser = lcUser
 && optional: uses Windows user name if not specified
loLogger.Open(lcLogFile)

* Log the application start.

loLogger.LogInfo('=================> App started at {0}', datetime())
loLogger.LogInfo('Application object created: version {0}', '1.0.1234')
loLogger.LogInfo('Using {0} build {1} {2}', os(1), os(5), os(7))

* Log that an error occurred.

try
 x = y
catch to loException
 loLogger.LogError('Error {0} occurred: {1}', loException.ErrorNo, ;
 loException.Message)
endtry

* Log a process.

wait window timeout 2 'Inserting a 2 second delay between logs (1)...'
loLogger.StartMilestone('=================> Started process')
wait window timeout 2 'Inserting a 2 second delay between logs (2)...'
loLogger.LogInfo('Process done')

* Shut down the logger and display the log.

release loLogger
modify file (lcLogFile) nowait

Summary

Log4VFP is very easy to use. Adding it to an existing application is a bit of work because
you have to add method calls to write to the log file. However, you can start slowly, perhaps
in the more error-prone sections of your application, and add more logging as time permits
and needs arise.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 13 of 65

Win32API
For many years, the go-to source of information on calling Windows 32 API (Win32API)
functions from VFP was news2news.com, created and maintained by Anatoliy Mogylevets.
The site included documentation on hundreds of functions, including sample VFP code.
There was even an off-line viewer application (written in VFP, of course) available.
Although most of the site was only accessible by subscription, there were many free pages
as well.

Unfortunately, early in 2018, Anatoliy decided not to renew his site’s hosting. Long-time
VFP developer Tore Bleken, who had just finished spending many hours updating the Thor
documentation for GitHub and was looking for a new challenge, asked Anatoliy for
permission to move the content of news2news.com to VFPX and Anatoliy generously
agreed. That means that the thousands of pages of documentation and samples not only
live on, but are now completely free!

Tore took on the challenge of converting the former news2news content, much of which
lives in VFP tables, into Markdown, the native formatting of GitHub and did a marvelous job
as you can see at https://github.com/VFPX/Win32API. There are five main pages that form
the starting point for the documentation:

 functions_alphabetical.md, an alphabetical listing of the functions.

 functions_group.md, a list of the functions by group.

 Libraries.md, a list of the functions by library (DLL).

 samples_alphabetical.md, an alphabetical listing of the samples, not by function
name but by sample description.

 samples_group.md, a list of the samples by group.

Figure 7 shows the functions_alphabetical page. An index at the top allows you to jump to
the list of functions starting with a certain letter, and each function includes a brief
description and a link to the page for that function. The functions_group page is similar but
lists functions grouped by a “group” name; for example, the Clipboard group lists the 20
functions related to the Windows Clipboard.

https://github.com/VFPX/Win32API
https://github.com/VFPX/Win32API/blob/master/functions_alphabetical.md
https://github.com/VFPX/Win32API/blob/master/functions_group.md
https://github.com/VFPX/Win32API/blob/master/Libraries.md
https://github.com/VFPX/Win32API/blob/master/samples_alphabetical.md
https://github.com/VFPX/Win32API/blob/master/samples_group.md

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 14 of 65

Figure 7. The functions_alphabetical page lists Win32API functions in alphabetical order.

Clicking a function link takes you to the page for that function. The page typically shows the
function name, what group it belongs to (along with a link to the group on the
functions_group page), the library it’s in (including a link to the library on the Libraries
page), the description of the function, links to VFP code samples, the C declaration for the
function and it’s VFP equivalent, descriptions of any parameters and the return value,
comments about the function, and links to any related functions. Figure 8 shows an
example of a function page: the documentation for the ShellAbout function. As you can see,
not every function has sample code, especially the lesser-used functions like ShellAbout.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 15 of 65

Figure 8. The ShellAbout page shows the documentation for the ShellAbout function.

Let’s look at a simple example. Suppose we don’t like the way the VFP FULLPATH()
function always returns a path in upper case. Go to the samples page and search for “case;”
there are several hits but “Converting path to original case” sounds like it does what we

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 16 of 65

want. Click the link to that sample and copy and run the sample code. Indeed, it does return
a path using the correct case. Turning that into a reusable function is a simple matter once
you have the working code.

If you want to view the documentation off-line, clone or download the repository and copy
the APIViewer and Data folders somewhere. You can either run APIViewer.prg or create an
EXE from APIViewer.pjx and run that. Either way, the APIViewer form shown in Figure 9
displays, allowing you to search for functions, samples, and constants by keyword. The
Constants tab is especially useful since it isn’t available in the online documentation and
even MSDN articles on the Win32API functions usually specify a constant name rather than
its value.

Figure 9. The APIViewer application allows you to view the Win32API documentation in a VFP form.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 17 of 65

Summary

Win32API is a wonderful resource for VFP developers; thanks to Anatoliy for doing all the
original work and kindly making it available to VFPX, and to Tore for the many hours he
spent creating the Markdown pages on GitHub.

iCal4VFP
iCal4VFP is one of five new projects from António Lopes. Unlike most other VFPX projects,
these projects are hosted on Bitbucket rather than GitHub because that’s where António
had them before contributing them to VFPX. Because they’re on Bitbucket, downloading the
source is a little different: click Downloads in the sidebar, then click “Download repository”
(see Figure 10). You can also clone the repository by clicking the Clone button on the
Source page to get the appropriate Git command.

Figure 10. Downloading from Bitbucket is a little different than from GitHub.

iCal4VFP, available at https://bitbucket.org/atlopes/ical4vfp, is a library that helps VFP
work with iCalendar files. According to Wikipedia
(https://en.wikipedia.org/wiki/ICalendar), “iCalendar is a computer file format which
allows Internet users to send meeting requests and tasks to other Internet users by sharing
or sending files in this format through various methods. The files usually have an extension
of .ics. With supporting software, such as an email reader or calendar application,
recipients of an iCalendar data file can respond to the sender easily or counter-propose
another meeting date/time. The file format is specified in a proposed internet standard
(RFC 5545) for calendar data exchange.” For example, although we haven’t done it since
2013, the Schedule page of the Southwest Fox web site
(http://www.swfox.net/2013/schedule.aspx for example; see Figure 11) used to include
links to ICS files for each session, the idea being that you could click a link to add that
session to your calendar.

https://bitbucket.org/atlopes/ical4vfp
https://en.wikipedia.org/wiki/ICalendar
http://www.swfox.net/2013/schedule.aspx

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 18 of 65

Figure 11. Clicking the link downloaded an ICS file to add the session to your calendar.

As noted in the Classes page in the repository, there are a lot of classes in this library.
Fortunately, you only need to work with a few of them, as many are simply classes
containing a few properties. For example, there’s one class for each property in the
iCalendar specification, such as iCalPropDURATION for the Duration property. The main
classes you’ll work with directly are iCalendar, defined in iCalendar.prg (all of the classes
are defined in PRGs rather than VCXs), and ICSProcessor, defined in ICSProcessor.prg.

iCal4VFP requires another library, Tokenizer, which you can get from
https://bitbucket.org/atlopes/tokenizer. It’s just a single PRG which you can
copy into the same folder as the iCal4VFP files.

Although it can do a lot of iCalendar-related tasks, we’ll take a look at two: creating an ICS
file so someone can add an event to a calendar, and processing an ICS file.

The code shown in Listing 2, taken from iCalendarTest.prg that accompanies this white
paper, shows how to create an ICS file using iCal4VFP. iCalLoader.prg runs each of the
iCal4VFP programs, which SET PROCEDURE ADDITIVE to themselves. iCalendar is the main
class for working with iCalendar objects. Its AddICComponent method adds a new
“component” to the object, in this case one representing a VEVENT. The AddICProperty
method of the event object sets the values of the various properties of the event and the
Serialize method generates the ICS file content as a string, which is then written to a file.
Run this code to generate and display the file, then double-click it in File Explorer to add
the event to your calendar.

Listing 2. iCalendarTest.prg shows how to create an ICS file using iCal4VFP.

* Get some constants we'll use.

#include iCal4VFP\Source\icalendar.h

* Set the path to find all iCal4VFP files and load the libraries.

set path to iCal4VFP\Source

https://bitbucket.org/atlopes/tokenizer

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 19 of 65

do iCalLoader

* Create an iCalendar object.

loCalendar = createobject('iCalendar')

* Add a VEVENT component to the iCalendar object.

loEvent = loCalendar.AddICComponent(createobject('iCalCompVEVENT'))

* Add properties to the VEVENT component.

text to lcDescription noshow
It's been three years since Rick Schummer last presented one of his excellent
"deep dive" sessions into VFPX, so it's time for an update. We'll start by looking at
the new GitHub-based VFPX site, then dive into several exciting projects.
endtext
loEvent.AddICProperty('DTSTAMP', datetime(), ;
 ICAL_DATE_IS_NOT_UTC)
loEvent.AddICProperty('UID', sys(2015))
loEvent.AddICProperty('DTSTART', {^2018-10-19 14:00:00}, ;
 ICAL_DATE_IS_NOT_UTC)
loEvent.AddICProperty('DTEND', {^2018-10-19 15:15:00}, ;
 ICAL_DATE_IS_NOT_UTC)
loEvent.AddICProperty('CATEGORIES', 'Southwest Fox')
loEvent.AddICProperty('LOCATION', 'Flagstaff')
loEvent.AddICProperty('SUMMARY', 'VFPX 2018 Edition')
loEvent.AddICProperty('DESCRIPTION', lcDescription)

* Save the ICS file.

strtofile(loCalendar.Serialize(), 'VFPX2018.ics')
modify file VFPX2018.ics nowait

ReadICSFile.prg (Listing 3) does just the opposite: it reads the content of an ICS file into a
cursor. It uses the ReadFile method of the ICSProcessor class to read in the file and return
an iCalendar object, then calls the ICSToCursor method to create a cursor named Temp
containing the events in the file.

Listing 3. ReadICSFile.prg reads an ICS file into a cursor.

* Set the path to find all iCal4VFP files and load the libraries.

set path to iCal4VFP\Source
do iCalLoader

* Read the ICS file into a cursor.

loProc = createobject('ICSProcessor')
loCalendar = loProc.ReadFile('VFPX2018.ics')
if not isnull(loCalendar)
 loProc.ICSToCursor(loCalendar, 'EVENTS', 'temp')
 browse nowait
endif not isnull(loCalendar)

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 20 of 65

The Examples folder that comes with iCal4VFP has several other examples, including one
showing working with time zones.

Summary

iCal4VFP can be used for a lot of iCalendar tasks but likely the most common is creating ICS
files to add an event to a calendar. This is useful if your application deals with
appointments or other calendar-related items where automatically adding an event to the
user’s calendar would be a nice feature. Although you can generate an ICS file yourself in
VFP using text merge functions, iCal4VFP makes it a little easier.

CalendarCalc
According to its description, the CalendarCalc project, also from António Lopes, “provides a
set of classes to perform specific calendrical processing tasks, help with
internationalization, and build multicultural solutions.” It’s basically a library that assists
with calendar calculations and date math but it also includes a pretty nice date picker
control.

CalendarCalc is available at https://bitbucket.org/atlopes/calendar, including both source
files and documentation.

As with iCal4VFP, all the classes that make up CalendarCalc are in PRGs except the date
picker control. The base class is CalendarCalc, defined in Calendar.prg. Subclasses of it
define specific calendars, such as BritishCalendar in British-Calendar.prg; see the Classes
page of the repository for a list of the available calendar classes, which PRG they’re defined
in, what dependencies they have, and which XML file they use for locale information. The
PEM page lists the properties and methods of the classes.

Let’s look at some examples to see how CalendarCalc can be useful. The first is determining
the number of days between two dates. “Easy,” you’re probably thinking, “simply use Date2
– Date1.” Ah, but what if you want to know the number of business days between the dates?
After all, it doesn’t make sense to say that it took 3 days to process an order that was
received on Friday and shipped on Monday if the company isn’t open on weekends. To
complicate things further, what if the item was ordered from an American company on
Friday June 29, 2018 and shipped on Friday July 6, 2018? That isn’t seven days; it’s four
days because of the weekend and the American Independence Day (July 4) holiday.

To handle a business day calendar, use the BusinessCalendar class. To register US holidays
with it, attach a USCalendarEvents processor to it (several event processors can be
attached in case you need to handle events in multiple countries). You can then use
methods of the BusinessCalendar object to determine dates, such as the code shown in
Listing 4.

Listing 4. This code shows how to create a business calendar with US holidays registered.

* Set the path to find all CalendarCalc files and load the libraries we need.

https://bitbucket.org/atlopes/calendar

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 21 of 65

set path to CalendarCalc
do Business-Calendar
do British-Calendar

* Create a BusinessCalendar and attach US calendar events for 2018 to it.

loCalendar = createobject('BusinessCalendar')
loCalendar.AttachEventProcessor('usa', 'USCalendarEvents', ;
 'us-calendar-events.prg')
loCalendar.SetEvents(2018)

* See the calendar events.

loCalendar.EventsToCursor('Temp')
browse
use

* Set the current date as June 29, 2018 (which is a Friday).

loCalendar.SetDate(2018, 6, 29)

* Display how many days later is July 6, 2018 (which is the next Friday).
* Unfortunately, it doesn't take into account just business days.

lnDays = abs(loCalendar.DaysDifference(2018, 7, 6))
messagebox('An order placed on 2018-06-29 and shipped on 2018-07-06 took ' + ;
 transform(lnDays) + ' calendar days to process')

* Instead, we'll calculate it by advancing business days until we get to the
* shipped date.

lnDays = 0
do while loCalendar.ToSystem() < date(2018, 7, 6)
 loCalendar.AdvanceBusinessDays(1)
 lnDays = lnDays + 1
enddo while loCalendar.ToSystem() < date(2018, 7, 6)
messagebox('An order placed on 2018-06-29 and shipped on 2018-07-06 took ' + ;
 transform(lnDays) + ' business days to process')

As you can see from the code, it would be nice if the DaysDifference method took weekends
and holidays into account; instead, it returns the number of calendar days difference
between the reference date (the date stored in the object) and the specified date. So, the
code uses a more brute force method: advancing the business date to the next day in a loop
until we get to the desired date. So, while this isn’t ideal, it’s still a lot less code than you’d
write to handle this yourself.

Where CalendarCalc really shines is handling different calendar systems, especially if you
have to deal with historic dates. For example, France switched to the Gregorian calendar on
December 20, 1582 but Germany didn’t switch until January 11, 1583. CalendarCalc handle
dates that fall between those two, making sure they align properly. A more modern
example is differences between the Gregorian, Hebrew, and Islamic calendars. Seasons.prg,

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 22 of 65

one of the sample programs that comes with CalendarCalc, shows the starting date of each
season in all three calendars. For example, for the start of spring:

Gregorian: 20, March, 2018
Hebrew: 4, Nisan, 5778
Islamic: 3, Rajab, 1439

CalendarCalc provides two date picker controls: TextDatePicker, for use in container and
forms, and ContDatePicker, which was designed for use in grids. Both of these controls are
in DatePicker.vcx. I didn’t look at ContDatePicker, but using TextDatePicker is easy: drop it
on a form, set the IsDateTime property to .T. to support datetime values or leave it at the
default .F. for date only, and set ControlSource as you would any control. If you want it to
support more advanced CalendarCalc behavior, such as calendar events, add code to the
SetCalendars method to instantiate the desired CalendarCalc calendar class and add it to a
collection stored in the Calendars property. For example, the following code, taken from the
sample DatePicker form that comes with CalendarCalc, handles US holidays:

DO LOCFILE("us-calendar-events.prg")

This.Calendars = CREATEOBJECT("Collection")

LOCAL USCalendar AS GregorianCalendar

m.USCalendar = CREATEOBJECT("GregorianCalendar")
m.USCalendar.AttachEventProcessor("usa", "USCalendarEvents")

This.Calendars.Add(m.USCalendar)
* we won't use the system calendar
This.CalendarIndex = 1
This.NoSystemCalendar = .T.

Figure 12 shows what the calendar looks like when the user clicks the arrow beside the
textbox. Calendar events are highlighted and have a tooltip with the name of the event. The
“hamburger” menu provides functions such as displaying the months in a year or years in a
decade or century. The arrow buttons move to the next or previous month. Selecting a date
and clicking the checkmark button closes the calendar.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 23 of 65

Figure 12. The date picker control is a visually appealing control and it supports calendar events.

Summary

CalendarCalc is a little obscure but could be handy if you need to deal with different
calendars or a business calendar that takes holidays and other events into account. If you
aren’t already using a date or datetime picker, the ones that come with CalendarCalc are
very nice.

Name Syntax Checker
The third project from António Lopes, Name Syntax Checker
(https://bitbucket.org/atlopes/names), is quite specialized: it translates a name into one
that’s correct for a particular use. For example, there are certain naming rules for Windows
file names: they cannot contain certain characters (<, >, :, ", /, \, |, ?, and *) and cannot
match certain reserved words, such as “NUL” and “LPT1.”

The Namer class is defined in Namer.prg and it works with specific processors, shown in
Table 1.

Table 1. Processors used by Name Syntax Checker.

Class Library Purpose

JSONNamer json-names.prg JSON elements

MSSQLNamer mssql-names.prg SQL Server, using underscores
MSSQLDelimitedNamer mssql-names.prg SQL Server, using [and] as

delimiters
MySQLNamer mysql-names.prg MySQL, using underscores
MySQLQuotedNamer mysql-names.prg MySQL, using ` as delimiters
VFPNamer vfp-names.prg VFP variable, table, and field

names
VFPShortNamer vfp-names.prg VFP names limited to 10

characters (tags and fields in free
tables)

WindowsNamer windows-names.prg Windows file and folder names

https://bitbucket.org/atlopes/names

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 24 of 65

XMLNamer xml-names.prg XML element and attribute names

To create a valid name for a specific domain, instantiate Namer, attach the desired
processor (you can attach multiple processors if desired), set the original name, and then
call GetName.

Listing 5, taken from TestNamer.prg, demonstrates the use of Name Syntax Checker.

Listing 5. TestNamer.prg shows how to use Name Syntax Checker.

* Set the path to find all the files we need and load the libraries.

set path to NameSyntaxChecker
do Namer

* Create the controller and attach the processor for XML names.

loController = createobject('Namer')
loController.AttachProcessor('XMLNamer', 'xml-names.prg')

* Display the correct XML version of a name.

loController.SetOriginalName('#xml element name')
lcName = loController.GetName('XMLNamer')
messagebox('XML: ' + lcName)

* Attach the processors for SQL Server and MySQL names and display the correct
* versions of names containing a space and a reserved word.

loController.AttachProcessor('MSSQLDelimitedNamer', 'mssql-names.prg')
loController.AttachProcessor('MySQLQuotedNamer', 'mysql-names.prg')
loController.SetOriginalName('Company Name')
lcMSSQL = loController.GetName('MSSQLDelimitedNamer')
lcMySQL = loController.GetName('MySQLQuotedNamer')
messagebox('SQL Server: ' + lcMSSQL + chr(13) + 'MySQL: ' + lcMySQL)
loController.SetOriginalName('Table')
lcMSSQL = loController.GetName('MSSQLDelimitedNamer')
lcMySQL = loController.GetName('MySQLQuotedNamer')
messagebox('SQL Server: ' + lcMSSQL + chr(13) + 'MySQL: ' + lcMySQL)

* Attach the processor for Windows filenames and display the correct version of
* a name.

loController.AttachProcessor('WindowsNamer', 'windows-names.prg')
loController.SetOriginalName('SWFox: Samples')
lcName = loController.GetName('WindowsNamer')
messagebox('Windows: ' + lcName)

Summary

Name Syntax Checker is even more obscure than CalendarCalc but I personally can see a
use for it: in Stonefield Query, we have code similar to Name Syntax Checker than deals
with when to put delimiters on object names in SQL Server, MySQL, and other databases

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 25 of 65

and how to convert one of those names into a valid VFP field name. If Name Syntax Checker
had been around when I wrote that code, I would’ve gladly used it instead.

CSVProcessor
The fourth project from António Lopes, CSVProcessor (https://bitbucket.org/atlopes/csv),
provides CSV processing capabilities. It can do tasks such as importing from and exporting
to CSV files, mapping fields in a cursor to CSV elements, handling multi-line content and
date values with varying formats, handling Unicode and UTF-8 content, and auto-detection
of data types.

The CSVProcessor class is defined in CSV.prg. It has numerous properties, such as
ValueSeparator and DatePattern, which help you define what the CSV content looks like. It
has two main methods, Import and Export, which do as their names suggest, as well as
other supporting methods that may be useful. See the PEM page for documentation on this
class.

CSVProcessor requires Name Syntax Checker, specifically Namer.prg and
VFP-Names.prg.

Let’s look at some examples of how CSVProcessor can make handling CSV files much easier.

Date handling

I’ve seen dates formatted many different ways in CSV files: MM/DD/YYYY, YYYY-MM-DD,
YYYYMMDD, and so on. While you can custom write code to deal with that, or import the
date as a string and then parse each value, that’s a pain to have to do, especially if you have
to import data from multiple sources, each with its own format. CSVProcessor makes it
easy to handle dates: simply set the DatePattern or DateTimePattern property to a string
specifying how date and datetime values are formatted. For example, “%4Y-%2M-%2D”
specifies a four-digit year followed by a dash followed by a two-digit month and a dash
followed by a two-digit day.

DatePattern.prg, shown in Listing 6, demonstrates the use of date patterns. The first time
the CSV file is imported, the default datetime pattern (%4Y-%2M-%2D %2h:%2m:%2s) is
used but the CSV file uses a MM/DD/YYYY HH:MM:SS format, so the datetime values are
stored in a Character column. The second import uses the correct pattern so the values are
placed in a DateTime column. Note also that the Import method automatically handles the
header record in the CSV: it isn’t added as record in the cursor as it would be with the VFP
APPEND FROM command.

Listing 6. DatePattern.prg shows how specifying the date pattern makes import date values easy.

* Set the path to find all the files we need and load the libraries.

set path to CSVProcessor, NameSyntaxChecker
do CSV

https://bitbucket.org/atlopes/csv

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 26 of 65

* Create a CSV file.

text to lcCSV noshow
ID,OccurrenceTime,Description
1,10/23/2017 11:12:40 AM,"Power off, alarm not set"
2,10/23/2017 11:13:21 AM,Restarted
3,10/23/2017 00:07:54 PM,"Signal OK, entering quiet mode"

endtext
strtofile(lcCSV, 'temp.csv')

* Read the CSV file using the default pattern.

loCSV = createobject('CSVProcessor')
loCSV.Import('temp.csv')
select (loCSV.CursorName)
browse
messagebox('Pattern: ' + loCSV.DatetimePattern + chr(13) + ;
 'Type of OccurenceTime: ' + vartype(Occurrencetime))

* Now read it again with the proper datetime format.

loCSV.DatetimePattern = '%2M/%2D/%4Y %2h:%2m:%2s %p'
loCSV.Import('temp.csv')
select (loCSV.CursorName)
browse
messagebox('Pattern: ' + loCSV.DatetimePattern + chr(13) + ;
 'Type of OccurenceTime: ' + vartype(Occurrencetime))

use
erase temp.csv

Appending and field mapping

The Import method can append records to an existing cursor by either passing the alias of
the cursor as the second parameter to the method or by setting the Workarea property to
the alias.

If the structure of the CSV file doesn’t match the structure of the cursor (in my experience,
it rarely does), you can specify how to map the fields in the cursor to those in the CSV file.
FieldMapping is a collection, so call the Add method to specify the name of the field in the
cursor. If you don’t specify a second parameter, the column number in the CSV file is used,
so the first call to Add is for the first column, the second call is for the second, and so on.
You can also specify the name of the column as specified in the CSV header record
(assuming there is one) as the second parameter, in which case the columns are matched
up by name rather than position.

Listing 7, taken from FieldMapping.prg, demonstrates appending to an existing cursor and
how field mapping works.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 27 of 65

Listing 7. FieldMapping.prg shows how to append a CSV file into an existing cursor and how to map fields
between the cursor and the CSV.

* Set the path to find all the files we need and load the libraries.

set path to CSVProcessor, NameSyntaxChecker
do CSV

* Create a CSV file.

text to lcCSV noshow
Identifier,Time,Status
2,2017-10-23 11:12:40,"Power off, alarm not set"
3,2017-10-23 11:13:21,Restarted
4,2017-10-23 00:07:54,"Signal OK, entering quiet mode"

endtext
strtofile(lcCSV, 'temp.csv')

* Create a cursor and import from the CSV into it. Note the order of the
* columns is different in the cursor than the CSV file so the original cursor
* is overwritten (we don't see ID 1).

CreateCursor()
loCSV = createobject('CSVProcessor')
loCSV.Import('temp.csv', alias())
browse

* Appended into an existing cursor. The columns don't match so the data is
* messed up.

CreateCursor()
loCSV.Workarea = 'TargetCursor'
loCSV.Import('temp.csv')
select (loCSV.CursorName)
browse

* This time we'll tell it how to match columns by position (the first item in
* the collection is for CVS column 1, etc.).

CreateCursor()
loCSV.FieldMapping.Add('ID')
loCSV.FieldMapping.Add('OccurrenceTime')
loCSV.FieldMapping.Add('Description')
loCSV.Import('temp.csv')
browse

* Do a mapping matching cursor and CSV column names rather than position.

CreateCursor()
loCSV.FieldMapping.Remove(-1)
loCSV.FieldMapping.Add('ID', 'Identifier')
loCSV.FieldMapping.Add('Description', 'Status')
loCSV.FieldMapping.Add('OccurrenceTime', 'Time')
loCSV.Import('temp.csv')

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 28 of 65

browse

* Unmapped fields aren't imported so that can be used to "field filter".

CreateCursor()
loCSV.FieldMapping.Remove('Status')
loCSV.Import('temp.csv')
browse

use
erase temp.csv

* Create a cursor and add a record so we can see if Import appends into the
* existing cursor.

function CreateCursor
create cursor TargetCursor (ID integer, Description varchar(64), ;
 OccurrenceTime datetime)
insert into TargetCursor values (1, 'All systems ON', {^2017-10-23 18:00:01})

Encoding

CSVProcessor automatically handles encoded data. Encoding.prg, shown in Listing 8,
demonstrates that while the VFP APPEND FROM command fails with both Unicode and
UTF-8, CSVProcessor imports the data properly.

Listing 8. Encoding.prg shows that CSVProcessor automatically handles character encoding.

* Set the path to find all the files we need and load the libraries.

set path to CSVProcessor, NameSyntaxChecker
do CSV

* Create a CSV file as Unicode with a Byte Order Mark (BOM).

text to lcCSV noshow
Country,City,Population,Latitude,Longitude
BR,Belém,1452275,-1.455833,-48.503889
PT,Coimbra,143396,40.211111,-8.429167
ES,A Coruña,246056,43.365,-8.41

endtext
strtofile(strconv(strconv(lcCSV, 1), 5), 'temp.csv', 2)

* First use the VFP APPEND FROM command to see what happens.

create cursor Temp (Country C(2), City C(10), Population N(7), ;
 Latitude N(10, 6), Longitude N(10, 6))
append from temp.csv type delimited
browse
use

* Import it.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 29 of 65

loCSV = createobject('CSVProcessor')
loCSV.Import('temp.csv')

* Show the file to see its encoding.

modify file temp.csv

* Show the imported file.

select (loCSV.CursorName)
browse

* Now do the same but using UTF-8.

strtofile(strconv(strconv(lcCSV, 1), 9), 'temp.csv', 4)
create cursor Temp (Country C(2), City C(10), Population N(7), ;
 Latitude N(10, 6), Longitude N(10, 6))
append from temp.csv type delimited
browse
use

loCSV.Import('temp.csv')
modify file temp.csv
select (loCSV.CursorName)
browse
use

erase temp.csv

Exporting to CSV

Although it isn’t common, sometimes you’ll run across the need to create CSV files with
more than one structure. I’ve seen this, for example, where one section is a header (such as
an invoice) and another is the detail (such as invoice lines). CSVProcessor’s Export function
can not only export to a CSV file, it can handle appending to an existing file, so you can
export from multiple cursors. You have controls over the order of the exported columns via
field mapping, whether a header record is output or not, and the names of the columns in
the header. Exporting.prg, shown in Listing 9, demonstrates this.

Listing 9. Exporting.prg shows how CSVProcessor can export multiple cursors to a single CSV file.

* Set the path to find all the files we need and load the libraries.

set path to CSVProcessor, NameSyntaxChecker
do CSV

* Create the first cursor.

create cursor HeaderInformation (InfoType varchar(40), InfoValue memo)
insert into HeaderInformation values ('Type', 'Music')
insert into HeaderInformation values ('Genre', 'Pop, folk, rock, fusion')
insert into HeaderInformation values ('Medium', 'Vinyl record')

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 30 of 65

* Create the second cursor.

create cursor Discography (ID_Record integer, Artist varchar(40) null, ;
 Title varchar(40) null, DateRelease date null, Duration integer)
insert into Discography values (1, 'Frank Zappa', 'Sleep Dirt', ;
 {^1979-01-19}, 2353)
insert into Discography values (2, 'The Waterboys', "Fisherman's Blues", ;
 {^1988-10-17}, 3277)
insert into Discography values (3, 'Eugenio Finardi', 'Sugo', ;
 .null., 2309)
insert into Discography values (4, 'Krafwerk', .null., ;
 {^1970-11-01}, 2379)

* Export the first cursor with no header row.

loCSV = createobject('CSVProcessor')
loCSV.Workarea = 'HeaderInformation'
loCSV.HeaderRow = .F.
loCSV.Export('temp.csv', .T.)

* Export the second cursor; this time, we'll specify the column names in the
* CSV file and put them in a different order than the cursor, put two blank
* lines after the records for the first cursor, and use a header row.

loCSV.Workarea = 'Discography'
loCSV.FieldMapping.add('Id_Record', 'ID#')
loCSV.FieldMapping.add('Title', 'Album title')
loCSV.FieldMapping.add('Artist', 'Artist(s)')
loCSV.FieldMapping.add('DateRelease', 'Release on')
loCSV.FieldMapping.add('Duration', 'Duration (in seconds)')
loCSV.HeaderRow = .T.
loCSV.SkipRows = 2
loCSV.Export('temp.csv', .T., .T.)

* Show the result.

modify file temp.csv
erase temp.csv

Summary

CSVProcessor is a very useful class, as importing CSV data into VFP has numerous
complications, such as date format, column order, and character encoding, that make a
seemingly easy process using APPEND FROM far more complicated than you think.

XML Library Set
The last project from António Lopes is XML Library Set, available at
https://bitbucket.org/atlopes/xml. It provides classes for processing XML. Its three main
classes are:

 XMLSerializer (xml-serializer.prg).

 XMLCanonicalizer (xml-canonicalizer.prg).

https://bitbucket.org/atlopes/xml

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 31 of 65

 XMLSampler (xml-sampler.prg).

Documentation for all three is available in appropriately named Markdown files.

XML Library Set requires Name Syntax Checker, specifically Namer.prg, XML-
Names.prg, and VFP-Names.prg.

XMLSerializer

Sometimes it’s handy to serialize a VFP object; that is, save the values of its properties so
they can be later restored to the same values. One example is a configuration object that
stores settings such as the size and position of the main form and what font to use for
controls. XMLSerializer has VFPtoXML and XMLtoVFP methods that do just that.

VFPtoXML is straightforward: pass it an object to serialize and the name of the root
element in the XML. It returns an XML DOM object containing the XML for the object.
Listing 10, taken from TestXMLSerializer.prg, shows how to use this method.

Listing 10. VFPtoXML serializes a VFP object.

* Create an XMLSerializer object and serialize the configuration object.

loConfiguration = createobject('Configuration')
loSerializer = createobject('XMLSerializer')
loXMLDOM = loSerializer.VFPtoXML(loConfiguration, 'configuration')
strtofile(loXMLDOM.xml, 'config.xml')

define class Configuration as Custom
 BackColor = rgb(255, 255, 255)
 ForeColor = rgb(0, 0, 0)
 FontName = 'Segoe UI'
 FontSize = 10
enddefine

Here’s what the XML looks like (formatted here with line breaks and tabs to make it easier
to read):

<?xml version="1.0"?>
<configuration>
 <BACKCOLOR><![CDATA[16777215]]></BACKCOLOR>
 <FONTNAME><![CDATA[Segoe UI]]></FONTNAME>
 <FONTSIZE><![CDATA[10]]></FONTSIZE>
 <FORECOLOR><![CDATA[0]]></FORECOLOR>
</configuration>

To deserialize the object, pass the XML to the XMLtoVFP method. Note that the object
returned is based on Empty rather than the class the original object was based on. Also, it
has a different hierarchy than the original object: it has a member with the same name as

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 32 of 65

the root name specified when you serialized the object, and that object has the properties
of the original object. For example, deserializing the XML generated by the code in Listing
10 creates an object with a Configuration property, which contains an object with
BackColor, ForeColor, FontName, and FontSize properties. There are also numerous
properties in both objects that start with “XML;” these contain serialization settings. If you
want a simpler object without those properties, pass the GetSimpleCopy method the
deserialized object. Listing 11 shows code also taken from TestXMLSerializer.prg that
demonstrates this.

Listing 11. XMLtoVFP deserializes an object.

lcXML = filetostr('config.xml')
loXMLObject = loSerializer.XMLtoVFP(lcXML)
loConfig = loSerializer.GetSimpleCopy(loXMLObject)
loConfiguration = loConfig.Configuration
messagebox(loConfiguration.FontName)

XMLSerializer can handle more complex objects. The code in Listing 12 creates a Customer
object which has an array of Contact objects (I first tried using a collection rather than an
array but XMLSerializer doesn’t currently support a collection). Again, be aware that the
deserialized object isn’t an instance of Customer nor are the objects in the Contacts array
instances of Contact; they’re Empty objects with the appropriate properties added.

Listing 12. XMLSerializer can support complex objects as well.

loCustomer = createobject('Customer')
loCustomer.CompanyName = 'Geek Gatherings'
loCustomer.AddContact('Rick Schummer')
loCustomer.AddContact('Tamar Granor')
loCustomer.AddContact('Doug Hennig')
loXMLDOM = loSerializer.VFPtoXML(loCustomer, 'customer')
lcXML = loXMLDOM.xml

loXMLObject = loSerializer.XMLtoVFP(lcXML)
loCust = loSerializer.GetSimpleCopy(loXMLObject)
loCustomer = loCust.Customer
messagebox(loCustomer.Contacts[1].ContactName)

define class Configuration as Custom
 BackColor = rgb(255, 255, 255)
 ForeColor = rgb(0, 0, 0)
 FontName = 'Segoe UI'
 FontSize = 10
enddefine

define class Customer as Custom
 CompanyName = ''
 dimension Contacts[1]

 function Init
 This.Contacts[1] = null

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 33 of 65

 endfunc

 function AddContact(tcName)
 loContact = createobject('Contact')
 loContact.ContactName = tcName
 lnContacts = alen(This.Contacts)
 if not isnull(This.Contacts[1])
 lnContacts = lnContacts + 1
 endif not isnull(This.Contacts[1])
 dimension This.Contacts[lnContacts]
 This.Contacts[lnContacts] = loContact
 endfunc
enddefine

define class Contact as Custom
 ContactName = ''
enddefine

XMLSerializer has other methods; see the XML-Serializer page in the repository for details.

XMLCanonicalizer and XMLSampler

XMLCanonicalizer converts XML into W3C canonical form. XMLSampler creates sample
XML that matches the specified schema. I don’t see a lot of use for these classes so I didn’t
look at them in any detail except reviewing the documentation in the appropriate pages in
the repository.

Summary

XMLSerializer may be useful if you need to serialize an object and aren’t concerned that
when you deserialize it, you end up with something based on Empty (that is, you aren’t
going to call any methods of the class, just access its properties). The other classes in this
library are very specialized so check out the documentation to see if they may of any use to
you.

Cursor and Connector Properties Viewer
Cursor and Connector Properties Viewer (https://github.com/VFPX/CCPropsViewer) is a
library by Martina Jindrová that allows you to display and set cursor and connection
properties. It works with any cursor, whether opened from a table, local view, remote view,
or CursorAdapter. It can be used either at runtime or in the IDE as a debugging aid.

As you can see in Figure 13, it displays the various properties of a cursor. In this case, the
cursor comes from a remote view, so it shows that as well as the name of the database the
view is defined in, the current buffer mode, the SQL statement, the update settings, the
connection settings, and other view settings such as FetchSize and MaxRecords. You can
change the values of some of these settings.

https://github.com/VFPX/CCPropsViewer

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 34 of 65

Figure 13. Cursor and Connector Properties Viewer displays the settings of cursors.

Summary

Cursor and Connector Properties Viewer is a useful tool for debugging cursors, especially
those created from views or CursorAdapters. Rather than issuing a series of
CURSORGETPROP statements in DEBUG OUT or MESSAGEBOX, you can easily see the
settings, and even change them, visually.

DBC Low Level Functions
DBC Low Level Functions (https://github.com/VFPX/DBCLowLevelFunctions) is another
library by Martina Jindrová. As its name suggests, this one allows you to read from and
write to values of all properties and objects without opening a database with OPEN
DATABASE. This could serve as the starting point for your own DBC-related utilities.

The library consists of a single program, DBC.prg, along with an accompanying include file,
DBC.h. Documentation is provided in the Doc folder

Start by instantiating _DBC_Check in DBC.prg, then call OpenTable to open the specified
database as a table using the specified alias:

set procedure to dbc.prg
lcDBC = 'MyDatabase.dbc'
lcAlias = sys(2015)
loDBC = createobject('_DBC_Check')
if loDBC.OpenTable(lcDBC, lcAlias, '')
 wait window 'Cannot open DBC.'
 return
endif

https://github.com/VFPX/DBCLowLevelFunctions

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 35 of 65

You can then call various methods:

 EnumObjects fills an array with the names of all objects or just certain types of
objects, such as tables or fields in a specific view.

 EnumProperty fills an array with the property values for the specified object.

 GetProperty reads the value of the specified property for the specified object.

 SetProperty saves the value of the specified property for the specified object.

 ClearProperty removes the specified property for the specified object.

 GetSP reads the stored procedures.

 SetSP saves the specified code as the stored procedures.

 GetIDObject gets the DBC’s OBJECTID value for the specified object name.

 RIInfo gets the referential integrity information for a specific relation.

See the sample DBCC.prg and DBCT.prg programs that come with the project for examples
of its use.

One of the interesting things about this project is that it allows you to change the values of
properties that VFP considers read-only, such as the Path and PrimaryKey properties of a
table. This is useful if, for example, you need to manually move things around and can’t set
these properties the usual way.

Summary

DBC Low Level Functions is a very specialized project. It’s one of those things that you
normally won’t need but when you need it, you really need it.

FoxTypes
FoxTypes (https://github.com/eselje/FoxTypes) is a new project by Eric Selje that makes
VFP data types act like .NET data types. That is, it treats them as objects with properties
and methods rather than functions that act on data types. For example, to get the current
date and time in UTC (Coordinated Universal Time), you can use:

loValue = createobject('DateTime')
loValue.Date = date()
ltUTC = loValue.UTCNow

The DateTime class has properties and methods that closely match those in the .NET
DateTime class, making it easy to convert .NET code working with DateTime values into
VFP code. For example, the AddDays function adds the specified number of days to the
DateTime value.

The most useful method is the Format method of the String class, which mimics the static
String.Format method in .NET. It takes a format string followed by up to 10 parameters of

https://github.com/eselje/FoxTypes

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 36 of 65

any data types and returns a formatted string with the values of the parameters inserted.
The format string uses parameter numbers (zero-based) surrounded by curly braces as
place holders. The place holder can also contain a format specifier. For example:

String = createobject('String')
lcMessage = String.Format('Today is {0:D}. There are {1:c2} invoices to process', ;
 datetime(), lnInvoices)

The format string specifies that the two value parameters are inserted into the indicated
places in the string with the first (remember, it’s zero-based so {0} means the first value
parameter and {1} means the second) formatted as a long date (the “d”) and the second as a
currency value (the “c”) with two decimal places (the “2”).

Another useful method is String.NumberToWords, which converts a numeric value to
spelled-out English words. For example:

messagebox(String.NumberToWords(1234.56))
 && displays One Thousand Two Hundred Thirty Four and 56/100

See the FoxTypes documentation for the complete list of properties and methods in the
classes.

As of this writing, a lot of the properties and methods in the FoxTypes classes
haven’t been implemented yet.

Summary

FoxTypes has some useful methods now but will be a lot more useful once the classes are
finished. In addition to providing the Format and NumberToWords methods, you may find
FoxType useful if you’d rather work with properties and methods rather than functions or
need to translate .NET code into its VFP equivalent.

FastXTab
FastXTab (https://github.com/VFPX/FastXTab) is a replacement for VFPXTab which
comes with VFP. Its purpose is to create a “cross-tabulation” cursor (similar to a PivotTable
in Microsoft Excel) that can be used for reporting. FastXTab is a lot faster than VFPXTab
and has a lot more functionality.

FastXTab was originally created by Alexander Golovlev and improved by Vilhelm-Ion
Praisach. There are versions for VFP 9 and VFP 6. If you attended Southwest Fox 2017,
Tamar Granor’s Turning Data Sideways: Crosstabs and Pivot Tables session discussed
FastXTab at length.

The FastXTab class, defined in FastXTab.prg, processes a cursor with at least three
columns. By default, the data in the first column becomes the rows in the result, the data in
the second column becomes the columns, and the data in the third column is aggregated

https://github.com/VFPX/FastXTab

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 37 of 65

(summed by default) to form the data. However, the source cursor can be more complex:
FastXTab only processes the fields you tell it to by setting various properties such as
cRowField, cColField, and cDataField.

Let’s start looking at FastXTab by creating a cursor of sales from the VFP sample
Northwind database (the code shown here was taken from TestFastXTab.prg which
accompanies this document). Figure 14 shows what the result looks like.

open database (addbs(_samples) + 'Northwind\Northwind')
select Customers.CompanyName, ;
 Customers.Country, ;
 year(Orders.OrderDate) as SaleYear, ;
 Categories.CategoryName, ;
 OrderDetails.Quantity, ;
 OrderDetails.UnitPrice * OrderDetails.Quantity as TotalPrice ;
 from Customers ;
 inner join Orders on Customers.CustomerID = Orders.CustomerID ;
 inner join OrderDetails on Orders.OrderID = OrderDetails.OrderID ;
 inner join Products on OrderDetails.ProductID = Products.ProductID ;
 inner join Categories on Products.CategoryID = Categories.CategoryID ;
 into cursor Sales

Figure 14. The cursor used as the source for creating cross-tab cursors.

The first example creates a cross-tab cursor showing sales by company and year, displaying
zero rather than null. The result is shown in Figure 15. Notice there’s only one row per
company (which the cursor is sorted on) and separate columns for each year, named “N_”
followed by the year since a value like “1996” isn’t a valid field name.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 38 of 65

loXTab = newobject('FastXTab', 'FastXTab.prg')
loXTab.cRowField = 'CompanyName'
loXTab.cColField = 'SaleYear'
loXTab.cDataField = 'TotalPrice'
loXTab.lCloseTable = .F.
loXTab.lCursorOnly = .T.
loXTab.lBrowseAfter = .T.
loXTab.lDisplayNulls = .F.
loXTab.cOutFile = 'SalesByCompanyAndYear'
loXTab.RunXTab()

Figure 15. A cross-tab cursor showing sales by company and year.

The next one does the same thing but displays nulls. Note that we select the Sales cursor
first since the selected workarea has to contain the source data. Also note that since we’re
reusing the same FastXTab object, we only have to change the things that are different from
the previous run. The result is the same as Figure 15 except “.NULL.” displays in place of
“0.0000.”

select Sales
loXTab.lDisplayNulls = .T.
loXTab.RunXTab()

Let’s add a totals row to the results. Notice the totals in the last row in Figure 16.

select Sales
loXTab.lDisplayNulls = .F.
loXTab.lTotalRows = .T.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 39 of 65

loXTab.RunXTab()

Figure 16. A cross-tab cursor with a totals row.

Let’s show multiple data fields: both the quantity sold and total price. nMultiDataField
specifies the number of data fields and the acDataField array specifies the source fields for
the data fields. In Figure 17, the first column for each year (for example, “N_1997”) is the
sum of the quantity and the second column (for example, “N_1997_2”) is the sum of the
total price.

select Sales
loXTab.nMultiDataField = 2
loXTab.acDataField[1] = 'Quantity'
loXTab.acDataField[2] = 'TotalPrice'
loXTab.RunXTab()

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 40 of 65

Figure 17. A cross-tab cursor with multiple data fields.

Let’s show both the sum and average of the total price. The anFunctionType array has the
same number of columns as acDataField, so the first element is for the first data field, the
second one for the second, and so on. A value of 1 means sum, 2 means Count, 3 means
Average, 4 means min, 5 means max, and 6 means use a custom function (see the FastXTab
documentation for details). In Figure 18, the first column for each year (for example,
“N_1997”) is the sum of the total price and the second column (for example, “N_1997_2”) is
the average.

#define cnSUM 1
#define cnAVERAGE 3

select Sales
loXTab.nMultiDataField = 2
loXTab.acDataField[1] = 'TotalPrice'
loXTab.anFunctionType[1] = cnSUM
loXTab.acDataField[2] = 'TotalPrice'
loXTab.anFunctionType[2] = cnAVERAGE
loXTab.RunXTab()

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 41 of 65

Figure 18. This cross-tab cursor shows the sum and the average of the total price in the data fields.

The next example creates a cross-tab cursor by category and year with country as the page
field; see Figure 19.

select Sales
loXTab = newobject('FastXTab', 'FastXTab.prg')
loXTab.cPageField = 'Country'
loXTab.cRowField = 'CategoryName'
loXTab.cColField = 'SaleYear'
loXTab.cDataField = 'TotalPrice'
loXTab.lCloseTable = .F.
loXTab.lCursorOnly = .T.
loXTab.lBrowseAfter = .T.
loXTab.cOutFile = 'SalesByCountryCategoryYear'
loXTab.RunXTab()

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 42 of 65

Figure 19. A cross-tab cursor with a page field.

Rather than creating a source cursor with the desired calculations, we can make FastXTab
do some of the work. In this case, we’ll just grab the order date rather than using the
YEAR() function on it; instead, we’ll tell FastXTab to use YEAR(OrderDate) for the columns.
The result looks the same as Figure 15.

select Customers.CompanyName, ;
 Customers.Country, ;
 Orders.OrderDate, ;
 Categories.CategoryName, ;
 OrderDetails.Quantity, ;
 OrderDetails.UnitPrice * OrderDetails.Quantity as TotalPrice ;
 from Customers ;
 inner join Orders on Customers.CustomerID = Orders.CustomerID ;
 inner join OrderDetails on Orders.OrderID = OrderDetails.OrderID ;
 inner join Products on OrderDetails.ProductID = Products.ProductID ;
 inner join Categories on Products.CategoryID = Categories.CategoryID ;
 into cursor Sales

loXTab = newobject('FastXTab', 'FastXTab.prg')
loXTab.cRowField = 'CompanyName'
loXTab.cColField = 'year(OrderDate)'
loXTab.cDataField = 'TotalPrice'
loXTab.lCloseTable = .F.
loXTab.lCursorOnly = .T.
loXTab.lBrowseAfter = .T.
loXTab.cOutFile = 'SalesByCompanyAndYear'
loXTab.RunXTab()

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 43 of 65

FastXTab has a lot more capabilities: see Tamar’s white paper from her 2017 session, the
sample programs that come with FastXTab, and the documentation in the repository.

Summary

FastXTab is a very useful tool for creating cursors suitable for reporting, such as those you
might use with FoxCharts (discussed next). We use it in Stonefield Query when outputting
cross-tab reports to Microsoft Excel PivotTables.

FoxCharts
FoxCharts is a very cool library: it provides beautiful charts and graphs to your VFP
applications using 100% VFP code. Creating even complex charts is relatively easy and you
have a great deal of control over the appearance and behavior of the charts. Although there
are a lot of properties to learn, the documentation is excellent.

However, the FoxCharts project (https://github.com/VFPX/FoxCharts) is frankly a bit of a
mess. There are three separate versions of FoxCharts in that repository:

 FoxCharts_1.37b: the latest version created by Cesar Chalom.

 FoxCharts1.46_Beta: a newer version updated by Alex Yudin.

 FoxCharts1.47b: an even newer version from Alex.

I’m not sure why Alex split 1.47 off from 1.46 rather than just updating 1.46 to 1.47.
However, since 1.47 is newer, that’s likely the one you’ll want to use if you want the new
features Alex added. The list of new features up to 1.46.1 is included in the README.md for
the project, while the README.md in the FoxCharts1.47b folder has the 1.47 changes
(although as of this writing there isn’t much there).

Let’s look at some of the new features.

 There are several new bar types (the BarType property): cone (3), pyramid (4),
conoid (a cone with the top cut off, 5), and frustrum (a pyramid with the top cut off,
6).

 There are a couple of new brush types (the BrushType property): texture (4) and
colored hatch (5). A texture brush uses images to paint with; set the new
TextureTheme property to the name of a subdirectory of the Textures folder
containing the images to use. The existing hatch brush (3) is monochrome; if you set
BrushType to 5, FoxCharts uses the color for the data point as the color of the brush.

 The new GradientShapeDirection property determines the gradient direction for
gradient brush charts: 0 = Horizontal, 1 = Vertical, 2 = Diagonal1, and 3 = Diagonal 2.

 The new GradientVertCount and GradientHorCount properties determine the Shape
Gradient Brush stripes count.

 Clicking an item in the legend draws lines from the legend to each data point that
the clicked item represents; see Figure 20.

https://github.com/VFPX/FoxCharts

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 44 of 65

Figure 20. Clicking an item in the legend draws lines to data points for that item.

 A new editor form, shown in Figure 21, allows you to change more properties of the
chart visually. Right-click the chart to display the form.

Figure 21. This chart editor form is accessed by right-clicking the chart.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 45 of 65

To check out some of these new features, run ChartsSamples_v1_4x.scx in the SamplesBeta
folder.

Summary

FoxCharts is one of the most useful VFPX project available and the latest update from Alex
Yudin have made it even better. There are a few bugs in Alex’s code but they should be easy
to fix.

Dynamic Forms
Matt Slay’s Dynamic Forms project (https://github.com/mattslay/DynamicForms) creates
forms on the fly using markup code similar in purpose, although not in syntax, to XAML or
HTML. I was initially uncertain whether I would make use of Dynamic Forms myself; after
all, it’s not that hard to create a form for a specific task. However, I came across the need to
ask the user for input about things that can change from user to user or application to
application, and Dynamic Forms soon became a frequently used tool in my toolbox.

Let’s look at some advanced uses of Dynamic Form, especially data driving the creating of
the markup code for the forms. Although you may certainly use the code that accompanies
this document as is, I expect it will more likely serve as a source of inspiration for you to
create your own dynamic forms.

The code for this document uses a version of DynamicForm.prg that I’ve
customized a bit. I’ve passed on the changes I made to Matt but also included
my copy of DynamicForm.prg with the sample file accompanying this
document.

Custom fields

Some applications were built to be customized. For example, GoldMine and Act!, two
popular customer relationship management (CRM) systems, both allow users to add
custom fields to their tables. The reason is that often organizations want to record
additional details about customers beyond the standard things like company name and
address, such as type of customer and what month their yearend is. Both programs allow
the user to specify the field name, data type, size, caption, and other meta data for the
custom fields, and provide a data entry form in which the user can enter the values of those
custom fields for a customer.

Let’s look at doing something similar in a VFP application. We’ll start with FieldDef.dbf, a
table which contains the definitions of the custom fields. Its structure is shown in Table 2.
As you can see, FieldDef contains both the definition of the custom fields (the actual custom
field values are stored in CustomFields.dbf) and the specifications for the controls used to
edit the values of the fields. Figure 22 shows the records in the copy of FieldDef.dbf
included in the code for this document.

https://github.com/mattslay/DynamicForms

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 46 of 65

Presumably, the application includes a data entry form that allows the user to define new
custom fields, which adds records to FieldDef and new fields to CustomFields. We won’t
look at that part, just how they can edit the values of the custom fields, since this document
is about creating dynamic forms.

Table 2. The structure of FieldDef.dbf.

Name Type Purpose
Order I The order of the field in the data entry form
Name C(30) The field name

DataType C(1) The field data type
Length I The field length

Decimals I The number of decimals
Caption C(60) The caption
Class C(30) The class for the control used to edit the field; empty to use a class based on

DataType, such as a textbox for character fields
Library C(30) The VCX containing the class

Top I The top position of the control; 0 to auto-position

Left I The left position of the control; 0 to auto-position
Height I The height of the control; 0 for auto

Width I The width of the control; 0 for auto

Anchor I The Anchor setting for the control
Properties M The values of properties for the control using Dynamic Form syntax

Events M A comma-delimited list of events to handle for the control

Code M The event code to execute

Figure 22. The FieldDef table contains the definitions of the custom fields and the controls used to edit them.

The CustomFields class in FieldControls.vcx is a simple form class used to edit the values of
the custom fields for the specified customer. It has OK and Cancel buttons and an instance
of the SFDynamicRender class, but no other controls. The Init method (Listing 13) accepts
as parameters the name of the current customer and the customer’s ID. It finds the
customer’s record in CustomFields.dbf, creating one if necessary. It then uses SCATTER to
create a data object for the record (the properties of this object are the ControlSource for
the controls that Dynamic Form adds to the form), opens the FieldDef table, and asks the
SFDynamicRender object on the form to render the controls for the custom fields. We’ll
look at SFDynamicRender later.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 47 of 65

Listing 13. The Init method of the CustomFields class.

lparameters tcCustomerName, ;
 tiCustNo
This.Caption = 'Custom Fields for ' + tcCustomerName

* Open the CUSTOMFIELDS table and find the record for the specified customer,
* creating it if necessary.

if used('CUSTOMFIELDS')
 select CUSTOMFIELDS
 set order to CUSTNO
else
 select 0
 use CUSTOMFIELDS order CUSTNO again shared
endif used('CUSTOMFIELDS')
seek tiCustNo
if not found()
 insert into CUSTOMFIELDS (CUSTNO) ;
 values (tiCustNo)
endif not found()

* Create a data object from the record for the rendering engine.

scatter memo name This.oDataObject
This.oRender.oDataObject = This.oDataObject

* Render controls for the custom fields.

select 0
use FIELDDEF order ORDER again shared
This.oRender.Render(This)
use

The Click methods of the OK and Cancel buttons close the form, but OK first uses GATHER
to save the properties of the data object to the record in CustomFields.

SFDynamicRender, contained in SFDynamicForm.vcx, is a Custom subclass that uses
Dynamic Form to render the controls defined in a table or cursor in the current workarea.
It isn’t specific for working with custom fields; we’ll use this same class later for a different
purpose. It can be used for any data-driven form as long as the structure of the table or
cursor is similar to FieldDef.dbf (DataType, Length, and Decimals aren’t used but the other
fields are) and as long as the form it’s used with has an oDataObject property containing an
object with properties matching the contents of the Name field in the table or cursor. For
example, if there’s a record in the table with Name containing “SalesRep,” the object
referenced by oDataObject must have a SalesRep property. The Init method, shown in
Listing 14, instantiates a DynamicFormRenderEngine object and sets its properties the
way we want. Note that it specifies my base classes defined in SFCtrls.vcx; feel free to
change this to use your own classes instead.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 48 of 65

Listing 14. The Init method of SFDynamicRender.

* Create a Dynamic Form rendering engine object and use our classes as defaults.

This.oRenderEngine = newobject('DynamicFormRenderEngine', 'DynamicForm.prg')
with This.oRenderEngine
 .cLabelClass = 'SFLabel'
 .cLabelClassLib = 'SFCtrls.vcx'
 .cTextboxClass = 'SFTextBox'
 .cTextboxClassLib = 'SFCtrls.vcx'
 .cEditboxClass = 'SFEditBox'
 .cEditboxCLassLib = 'SFCtrls.vcx'
 .cCommandButtonClass = 'SFCommandButton'
 .cCommandButtonClassLib = 'SFCtrls.vcx'
 .cOptionGroupClass = 'SFOptionGroup'
 .cOptionGroupClassLib = 'SFCtrls.vcx'
 .cCheckboxClass = 'SFCheckBox'
 .cCheckboxClassLib = 'SFCtrls.vcx'
 .cComboboxClass = 'SFComboBox'
 .cComboboxClassLib = 'SFCtrls.vcx'
 .cSpinnerClass = 'SFSpinner'
 .cSpinnerClassLib = 'SFCtrls.vcx'

* Specify that we don't want the container resized to fit the controls, we don't want
* Save and Cancel buttons (we'll use buttons on the form), we're using the form's
* data object, we don't want controls numbered, and we want objects 5 pixels apart
* vertically.

 .lResizeContainer = .F.
 .cFooterMarkup = ''
 .cDataObjectRef = 'Thisform.oDataObject'
 .lAddControlNumberToName = .F.
 .nVerticalSpacing = 5
endwith

* Create a collection of behavior objects.

This.oBehaviors = newobject('SFCollection', 'SFCtrls.vcx')

The Render method (Listing 15), called from the form’s Init method, creates the markup
code Dynamic Form uses to render the controls from the records in the current workarea
and has the DynamicFormRenderEngine object render the controls to the specified
container (in this example, the form).

Listing 15. The Render method of SFDyanmicRender.

#define ccCR chr(13)
lparameters toContainer
local lcRender, ;
 lcName, ;
 loBehavior, ;
 llSetupBehaviors

* Create Dynamic Form markup to create a control for each record in the current

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 49 of 65

* workarea.

This.oContainer = toContainer
lcRender = ''
scan
 lcName = trim(NAME)
 lcRender = lcRender + lcName + " .Caption = '" + trim(CAPTION) + "'" + ccCR
 if not empty(CLASS)
 lcRender = lcRender + ".Class = '" + trim(CLASS) + "'" + ccCR + ;
 iif(empty(LIBRARY), '', ".ClassLibrary = '" + trim(LIBRARY) + "'" + ccCR)
 endif not empty(CLASS)
 if TOP > 0
 lcRender = lcRender + " .Top = " + transform(TOP) + ccCR
 endif TOP > 0
 if LEFT > 0
 lcRender = lcRender + " .Left = " + transform(LEFT) + ccCR
 endif LEFT > 0
 if HEIGHT > 0
 lcRender = lcRender + " .Height = " + transform(HEIGHT) + ccCR
 endif HEIGHT > 0
 if WIDTH > 0
 lcRender = lcRender + " .Width = " + transform(WIDTH) + ccCR
 endif WIDTH > 0
 if ANCHOR > 0
 lcRender = lcRender + " .Anchor = " + transform(ANCHOR) + ccCR
 endif ANCHOR > 0
 if not empty(PROPERTIES)
 lcRender = lcRender + PROPERTIES + ccCR
 endif not empty(PROPERTIES)
 lcRender = lcRender + '|' + ccCR

* If we have behavior code, create a behavior object to handle it.

 if not empty(CODE)
 loBehavior = newobject('SFDynamicBehavior', 'SFDynamicForm.vcx')
 loBehavior.cEvents = EVENTS
 loBehavior.cCode = CODE
 This.oBehaviors.Add(loBehavior, lcName)
 llSetupBehaviors = .T.
 endif not empty(CODE)
endscan

* If we have any behavior code, call SetupBehaviorEvents for every control
* created.

if llSetupBehaviors
 bindevent(This.oRenderEngine, 'AddControl', This, 'SetupBehaviorEvents', 1)
endif llSetupBehaviors

* Render the markup into the container.

with This.oRenderEngine
 .oDataObject = This.oDataObject
 .cBodyMarkup = lcRender
 .Render(toContainer)

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 50 of 65

endwith

* Clean up before we exit.

if llSetupBehaviors
 unbindevent(This.oRenderEngine)
endif llSetupBehaviors
This.oContainer = .NULL.

The behaviors code requires some explanation. Since you can’t add code to a class at
runtime, if you want a control to do something special in some events, such as Refresh or
InteractiveChange, you either need to use a control that has code in those events or you
need to use BINDEVENT to bind from the control to an object that handles the events.
Assuming you don’t want to create special subclasses just for this, I went with the latter.
FieldDef.dbf (or whatever table you’re using with this class) has an EVENTS field that lists
the events we need to bind to and a CODE field that contains the code for the events. The
Render method instantiates an SFDynamicBehavior object and fills in its cEvents and cCode
properties with the values of those fields, then adds the object to a collection. Once all of
the records have been processed, Render uses BINDEVENT to bind the AddControl method
of the DynamicFormRenderEngine object, which creates a control, to the
SetupBehaviorEvents method (Listing 16). This method finds the control the engine just
created and for each of the events the behavior object is supposed to bind to, binds that
event to the appropriate Handle method of the behavior object.

Listing 16. The SetupBehaviorEvents method of SFDynamicRender.

lparameters tcControlClass, ;
 tcClassLib, ;
 tcControlSource, ;
 tcDataType
local loControl, ;
 lcControl, ;
 loBehavior, ;
 laEvents[1], ;
 lnEvents, ;
 lnI, ;
 lcEvent
loControl = This.oContainer.Controls(This.oContainer.ControlCount)
if lower(loControl.BaseClass) <> 'label'
 lcControl = substr(loControl.Name, 4)
 loBehavior = This.oBehaviors.Item(lcControl)
 if not isnull(loBehavior)
 loBehavior.oObject = loControl
 lnEvents = alines(laEvents, loBehavior.cEvents, 5, ',')
 for lnI = 1 to lnEvents
 lcEvent = laEvents[lnI]
 if pemstatus(loControl, lcEvent, 5)
 bindevent(loControl, lcEvent, loBehavior, 'Handle' + lcEvent, 1)
 endif pemstatus(loControl, lcEvent, 5)
 next lnI
 endif not isnull(loBehavior)
endif lower(loControl.BaseClass) <> 'label'

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 51 of 65

Here’s an example. One of the custom fields in the sample FieldDef table is the type of
company: Prospect or Customer. If they’re a Customer, we want to record the name of their
salesperson and their yearend. If they’re a Prospect, we don’t need that information. So, we
want the control for Type to refresh the form when its value changes and the controls for
salesperson and year end to disable themselves if Type is Prospect when they’re refreshed.
The Events field in FieldDef for the Type custom field contains “InteractiveChange” and the
Code field contains:

lparameters toObject, ;
 tcEvent
toObject.Parent.Refresh()

Code in the Code field has to accept two parameters: a reference to the control the code
applies to and the name of the event in upper case. If a control needs to handle more than
one event, use a CASE statement like this:

lparameters toObject, ;
 tcEvent
do case
 case tcEvent = 'INTERACTIVECHANGE'
 toObject.Parent.Refresh()
 case tcEvent = 'REFRESH'
 * do something
endcase

So, through event binding, when the user changes the value of Type, the form is refreshed.

The Events field for both the SalesRep and YearEnd custom fields contains “Refresh” and
the Code field contains:

lparameters toObject, ;
 cEvent
toObject.Enabled = toObject.Parent.opgType.Value = 2

This causes the controls for those fields to only be enabled when Type is Customer (the
second choice in the option group specified as the control for Type).

We won’t look at the code in SFDynamicBehavior, as it’s quite simple: the various Handle
methods simply use EXECSCRIPT to execute the code specified in the cCode property,
which comes from the Code field in the definition table.

Main.prg in the code accompanying this document calls the CustomFields class like this:

loForm = newobject('CustomFields', 'FieldControls.vcx', '', 'ACME Supplies Ltd.', 1)
loForm.Show()

In a real-world application, the form would likely be displayed by clicking a button in the
Customers form or choosing a “Edit Custom Fields” menu item and rather than hard-coding
the customer name and ID, something like TRIM(CUSTOMERS.COMPANYNAME),
CUSTOMERS.CUSTOMERID would be used.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 52 of 65

The resulting form is shown in Figure 23. The values displayed in the form are stored in
CustomFields.dbf. Adding a new custom field is as simple as adding a new record to
FieldDef.dbf and a new field to CustomFields.dbf.

Figure 23. The custom fields form.

Dynamic application settings

Most applications need configuration settings of some type. Configurable settings allow a
user to customize how the application works for them. Examples of settings are where data
files are located (making that configurable allows the user to run the application on their
local workstation but store the data on a server where it can be shared), what email
settings to use (if the application sends emails), and what the company’s yearend is (if the
application works with accounting data).

After creating what seemed like the hundredth dialog allowing a user to change
configuration settings, I decided to create a generic one. I’ve always like the look of the
Visual Studio Options dialog (Figure 24), so I modeled my form after that.

Figure 24. The Visual Studio Options dialog.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 53 of 65

Let’s start with where the settings are stored. They can be stored in lots of places, but a
table, an INI file, and the Windows Registry are the most common. To be flexible, I use a set
of persistence classes I wrote about a very long time ago (see “Persistence without
Perspiration” at http://doughennig.com/papers/default.html) that have the same
programmatic interface but different storage mechanisms: SFPersistentINIFile is for INI
files, SFPersistentTable is for tables, and SFPersistentRegistry is for the Registry. Here’s an
example that uses Settings.ini to store settings:

loPersist = newobject('SFPersistentINIFile', 'SFPersist.vcx', '', .T.)
loPersist.cFilePath = 'Settings.ini'
loPersist.cSection = 'Options'

Here’s one that stores settings in the Registry in the specified key under
HKEY_CURRENT_USER:

loPersist = newobj('SFPersistentRegistry', 'SFPersist.vcx', '', .T.)
loPersist.cKey = 'Software\Stonefield 'Software Inc.\MyApplication\Options'

How does the persistence object know what values to store? That’s handled with an
options class, SFOptions in SFOptions.vcx. SFOptions uses a data-driven approach; it uses a
table whose name is specified in the cOptionsFile property (defaults to Options.dbf) to
define which settings are used.

Options.dbf has almost the same structure as FieldDef.dbf that I discussed earlier because
it’s used by SFDynamicRender to display the settings to the user. It has a few additional
fields:

 Rectype contains “P” for a Page record (the item in the TreeView defining a page of
settings) or “O” for an Option record (a specific setting).

 Page contains the name of the page the option belongs to.

 Parent contains the name of the parent page the current page belongs under. This
allows hierarchical pages. Figure 25 shows an example of this: Email appears under
the General item. To have Email appear at the top level instead, simply blank the
Parent field in the sample Options.dbf accompanying this document.

 GetValue contains custom code to execute to convert the value from how it’s stored
to how it’s displayed. For example, GetValue contains the following code for the
Password record to decrypt the encrypted password:

 lparameters toOptions, ;
 tcProperty
 set library to VFPEncryption
 lcValue = evaluate('toOptions.' + tcProperty)
 if not empty(lcValue)
 lcValue = Decrypt(lcValue, 'MyKey', 1024)
 endif not empty(lcValue)
 return lcValue

http://doughennig.com/papers/default.html

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 54 of 65

 SaveValue contains custom code to convert the value from how it’s displayed to how
it’s stored. SaveValue for the Password record contains similar code to GetValue but
calls Encrypt instead.

There are two main methods in SFOptions: LoadSettings and SaveSettings. We’ll just look at
the code for LoadSettings, shown in Listing 17.

Listing 17. The LoadSettings method of SFOptions.

local lnSelect, ;
 lcAlias, ;
 loException, ;
 lcProperty, ;
 lcDataType, ;
 luValue

* Open the options table and create properties for each of the settings, plus add an
* item to the persistent object so it knows what to save and restore.

lnSelect = select()
lcAlias = sys(2015)
with This
 select 0
 try
 use (.cOptionsFile) alias (lcAlias) again shared
 catch to loException
 .cErrorMessage = loException.Message
 endtry
 if used(lcAlias)
 scan for RECTYPE = 'O'
 lcProperty = trim(NAME)
 lcDataType = DATATYPE
 do case
 case lcDataType = 'C'
 luValue = ''
 case lcDataType = 'L'
 luValue = .F.
 case lcDataType = 'D'
 luValue = {/}
 case lcDataType = 'T'
 luValue = {/:}
 otherwise
 luValue = 0
 endcase
 try
 addproperty(This, lcProperty, luValue)
 .oPersist.AddItem(lcProperty, 'This.oObject.' + lcProperty, lcDataType)
 catch to loException
 .cErrorMessage = loException.Message
 endtry
 endscan for RECTYPE = 'O'

* Now use the persistence object to load the values of the settings. Note that to
* avoid dangling references, we don't keep the object reference around any longer

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 55 of 65

* than we need to.

 .oPersist.oObject = This
 .oPersist.Restore()
 .oPersist.oObject = .NULL.

* Handle any settings that have code to execute to get the value.

 scan for RECTYPE = 'O' and not empty(GETVALUE)
 lcProperty = trim(NAME)
 store execscript(GETVALUE, This, lcProperty) to ('This.' + lcProperty)
 endscan for RECTYPE = 'O' ...
 use
 endif used(lcAlias)
endwith
select (lnSelect)

This code goes through the options table and adds properties to itself for each one. That
allows you to access the settings using code like loSettings.YearStart and
loSettings.DataDirectory. LoadSettings also configures the persistence object stored in
oPersist so it knows which settings to read and write. Then it calls Restore to actually load
the settings from the appropriate persistence location, and finally executes any custom
code in the GetValue memo for each record. SaveSettings is similar but it calls Save rather
than Restore and executes custom code in the SaveValue memo.

To load the settings for an application at startup, do something like this:

loPersist = newobject('SFPersistentINIFile', 'SFPersist.vcx', '', .T.)
loPersist.cFilePath = 'Settings.ini'
loPersist.cSection = 'Options'
loPersist.lSaveOnDestroy = .F.
loSettings = newobject('SFOptions', 'SFOptions.vcx', '', loPersist)
loSettings.LoadSettings()

Here’s an example that uses the YearStart setting, which contains which month a
company’s fiscal year starts in (for example, 11 for November), to determine which fiscal
quarter a date is in:

lnQuarter = quarter(ldDate, loSettings.YearStart)

SFOptionsDialog (shown in Figure 25) is the class used to edit the settings. It consists of an
SFTreeViewContainer object (see “The Mother of All TreeViews” part 1 and 2 at
http://doughennig.com/papers/default.html for a discussion of that class) to display the
list of pages of settings and a pageframe with Tabs set to .F. to contain the controls to edit
the setting. Selecting an item in the TreeView sets the ActivePage property of the
pageframe to the specified page.

http://doughennig.com/papers/default.html

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 56 of 65

Figure 25. SFOptionsDialog allows the user to edit their settings.

We won’t look at the code in this form other than the part related to Dynamic Forms. The
following is used to get a list of the options for the current page and render them to the
appropriate page of the pageframe:

select * from OPTIONS ;
 where RECTYPE = 'O' and trim(PAGE) == lcPage ;
 into cursor RENDER ;
 order by ORDER
loPage = Thisform.pgfOptions.Pages[lnPage]
Thisform.oRender.Render(loPage)

As with the CustomFields class we saw earlier, SFOptionsDialog uses an SFDynamicRender
object to do the hard work. To display the Options dialog to the user, use code like this:

loForm = newobject('SFOptionsDialog', 'SFOptions.vcx', '', loSettings)
loForm.Show()

Summary

If you need the ability to create forms that appear differently for different users or different
applications, Dynamic Forms is a great tool that’ll save you a lot of time. Being able to data-
drive the markup code makes Dynamic Forms even more flexible than I originally
imagined. Feel free to use the code or the ideas in this document in your own applications.

XLSXWorkbook
Most applications I’ve worked on had to interact with Microsoft Excel documents in one
way or another. Outputting data to Excel is extremely common, as most people are
comfortable working with Excel and often want to analyze or massage the data in their
applications in ways a developer can’t foresee. But importing data from Excel is also
popular, both because it can be a common interchange format between different

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 57 of 65

applications and because people often treat Excel like a database, with its row and column
layout making data entry fast and easy.

Built-in commands

The VFP COPY TO and EXPORT TO commands support creating Excel 2.0 (using the “TYPE
XLS” clause) and 5.0 (using “TYPE XL5”) files. Newer versions of Excel can open both types
of files, but there are some problems:

 Both formats ignore memo fields.

 You may not be able to output all records: VFP 8 and 9 only output a maximum of
65,535 rows, and with VFP 7 and earlier it’s only 16,384.

 Neither command can create an XLSX file (Excel 2007 and later).

 Excel 2.0 format doesn’t handle date fields correctly: they give a “text date with 2-
digit year” warning and have to be edited to work as actual date values.

The first and second points are usually the biggest problems for most people. If you can live
with these issues, then these commands are your best solution since they’re fast and take
only one line of code.

The VFP APPEND FROM and IMPORT FROM commands support reading from Excel version
2.0 (using the “TYPE XLS” clause), version 5.0 (using “TYPE XL5”), and Excel 97 (using
“TYPE XL8”) files (all versions are XLS files). APPEND FROM appends records into an
existing table while IMPORT FROM creates a new table, either a free table or one in a
database container, depending on keywords you supply with the command (see VFP help
for details). As with exporting data, there are a few issues:

 Reading from some XLS files saved from Excel 2007 or later causes errors; for
example, importing from EmployeesFromXLSX.xls included with the sample files for
this document causes VFP to crash.

 The columns in the table created with IMPORT FROM are named A, B, C, etc. You
have to use ALTER TABLE or MODIFY STRUCTURE to give them more meaningful
names.

 Column headings in the first row are treated as a record so you have to delete that
record after reading from the Excel file.

 Memo fields are ignored. For example, USE EMPLOYEES to open Employees.DBF
(included with the sample files for this document), then APPEND FROM
Employees.XLS TYPE XLS. The last column in Employees.XLS is a 254-character text
field but after the APPEND FROM command, you’ll find the NOTES memo field, the
last field in the table, is empty.

 There is no support for reading from XLSX files (Excel 2007 and later).

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 58 of 65

Again, if you can live with these issues, especially the last one, then these commands are
your best solution since they’re the fastest way to import from Excel and take only one line
of code.

XLSXWorkbook

If the export and import issues are deal-breakers, you have other choices. Some of them
need COM and require that Excel be installed, which can be an issue on servers or when
called from a scheduled task. Greg Green’s XLSXWorkbook VFPX project, on the other hand,
writes directly to XLSX files, which are actually XML files zipped into a file with an XLSX
extension, so Excel isn’t required. You can download it from
https://github.com/ggreen86/XLXS-Workbook-Class; the download includes a number of
test programs and forms, but all of the actual code for the utility is in a single VCX,
VFPxWorkbookXLSX.VCX. The download also includes extensive documentation in a PDF
file.

To use XLSXWorkbook, start by instantiating the VFPXWorkbookXLSX class in
VFPXWorkbookXLSX.VCX. XLSXWorkbook has a couple of methods that make quick work
of creating a spreadsheet from VFP data: SaveTableToWorkbook, which saves the specified
table to a workbook, and SaveGridToWorkbook, which save the content and some of the
formatting of the specified grid to a workbook.

The code in Listing 20 outputs the Employee sample table to
EmployeeXLSXWookbook.XLSX. This file is very similar to those created using the other
techniques.

Listing 18. Test code for XLSXWorkbook.

open database (_samples + 'data\testdata')
use Employee
loExport = newobject('VFPXWorkbookXLSX', 'VFPXWorkbookXLSX\VFPXWorkbookXLSX.vcx')
loExport.SaveTableToWorkbook(alias(), 'EmployeeXLSXWookbook.xlsx', .T., .T.)

Creating a workbook from a grid is easy too, needing just a single line of code:

loExport.SaveGridToWorkbook(This.grdGrid, 'MyWookbook.xlsx', .T., .T.)

However, XLSXWookbook provides a lot more control over the workbook if you wish. You
can format cells (color, font, border, style, etc.), manage worksheets within the workbook,
use custom numeric formatting, and so on. So, you don’t have to create a plain spreadsheet
if your users want something more attractive. The code in FormatXLSXWorkbook.PRG,
shown in Listing 19 and included with the code accompanying this document, creates the
workbook shown in Figure 26.

https://github.com/ggreen86/XLXS-Workbook-Class

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 59 of 65

Figure 26. This formatted Excel workbook was created with XLSXWookbook.

Listing 19. This code creates a formatted Excel document.

#DEFINE BORDER_LEFT 1
#DEFINE BORDER_RIGHT 2
#DEFINE BORDER_TOP 4
#DEFINE BORDER_BOTTOM 8

loExport = newobject('VFPXWorkbookXLSX', 'VFPXWorkbookXLSX\VFPXWorkbookXLSX.vcx')
with loExport
 lnWorkbook = .CreateWorkbook('ExcelTest.xlsx')
 lnSheet = .AddSheet(lnWorkbook, 'Test Sheet 1')

* Create some dummy data.

 for lnRow = 1 to 10
 for lnCol = 1 to 9
 .SetCellValue(lnWorkbook, lnSheet, lnRow, lnCol, sys(2015))
 next lnCol
 next lnRow

* Set the row and column heights.

 .SetRowHeight(lnWorkbook, lnSheet, 6, 25)
 .SetColumnWidth(lnWorkbook, lnSheet, 1, 25)
 for lnCol = 2 to 9
 .SetColumnWidth(lnWorkbook, lnSheet, lnCol, 14)
 next lnCol

* Set font, size, color, and style.

 .SetCellFont(lnWorkbook, lnSheet, 1, 1, 'Calibri', 14, .T., .T., rgb(255, 0, 0))
 .SetCellFont(lnWorkbook, lnSheet, 2, 1, 'Tahoma', , , , rgb(0, 0, 255))
 .SetCellFont(lnWorkbook, lnSheet, 3, 1, , 14, .T.)
 .SetCellFont(lnWorkbook, lnSheet, 4, 1, 'Arial', 14, .T., .T., rgb(0, 0, 255))
 .SetCellFont(lnWorkbook, lnSheet, 6, 1, , , , , , 'single')
 .SetCellFont(lnWorkbook, lnSheet, 7, 1, , , , 'double')

* Set borders.

 lnBorder = BORDER_LEFT + BORDER_RIGHT + BORDER_TOP + BORDER_BOTTOM
 .SetCellBorder(lnWorkbook, lnSheet, 3, 4, lnBorder, 'thin', rgb(16, 100, 200))
 .SetCellBorder(lnWorkbook, lnSheet, 3, 6, lnBorder, 'thick', rgb(100, 150, 200))
 .SetCellBorder(lnWorkbook, lnSheet, 3, 8, lnBorder, 'double', rgb(200, 150, 100))

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 60 of 65

 .SetCellBorderEx(lnWorkbook, lnSheet, 5, 2, 'thin', ,'thin', ,'thick', ,'thick')

* Save and open the workbook.

 .SaveWorkbook(lnWorkbook)
endwith
Execute('ExcelTest.xlsx')

XLSXWorkbook can also import data from Excel. It doesn’t have a specific method to read
all the rows from a worksheet into a table, but it does have a method, GetSheetRowValues,
that reads all columns from the specified row in the specified worksheet, so you just need a
loop to process all rows. Pass GetSheetRowValues a handle to a document you opened with
OpenXlsWorkbook, the name or number of a worksheet in the document, and the row
number to read from. GetSheetRowValues returns an object with a Count property,
containing the number of columns read, and a Values array, with one row per column read.
The first column in the array contains the cell value and the second column the data type of
the value.

The code in Listing 20 imports Employees.XLSX into Employees.DBF.

Listing 20. Test code for XLSXWorkbook.

use Employees exclusive
zap
loExport = newobject('VFPXWorkbookXLSX', 'VFPXWorkbookXLSX\VFPXWorkbookXLSX.vcx')
lnWB = loExport.OpenXlsxWorkbook('Employees.xlsx')
llDone = .F.
lnRow = 2
do while not llDone
 loRow = loExport.GetSheetRowValues(lnWB, 1, lnRow)
 lnRow = lnRow + 1
 if not isnull(loRow) and not isnull(loRow.Values[1, 1])
 append blank
 for lnI = 1 to loRow.Count
 lcField = field(lnI)
 replace &lcField with loRow.Values[lnI, 1]
 next lnI
 else
 llDone = .T.
 endif not isnull(loRow) ...
enddo while not llDone
browse

Summary

XLSXWorkbook is a great addition to the VFPX family. I use it in Stonefield Query, for both
outputting a report and documenting the data dictionary. It can both read from and write
to formatted Excel documents. I highly recommend this project.

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 61 of 65

FoxBin2PRG
FoxBin2PRG is one of several utilities that convert FoxPro binary files, such as SCXs, VCXs,
FRXs, and so on, to text files so they can be compared to other versions of those files (such
as a previous version in a version control system). FoxBin2PRG has numerous advantages
over its competitors including:

 Its author, Fernando Bozzo, continues to enhance and support it and is very
responsive to issues (often less than 24 hours response time).

 It provides two-way conversion so it can be used to regenerate the binary files after
merging changes made by other developers or on different branches in the text
equivalents.

 The text files it generates look like PRGs (although they cannot be compiled or run),
making them easily readable to a VFP developer.

 The methods and properties of classes and forms are sorted alphabetically for easy
comparison.

 It can process a single file or all the files in a project.

 It’s highly configurable.

You can find FoxBin2PRG at https://github.com/fdbozzo/foxbin2prg.

I’m not going to go into a lot of detail on FoxBin2PRG; it is well documented in its GitHub
repository. I’m going to focus on how to use it and how to configure it.

Using FoxBin2PRG

There are several ways you can use FoxBin2PRG:

 If you create the appropriate shortcuts in the Windows Send To folder (the
documentation describes how), you can right-click a VFP binary file and convert it to
text or vice versa. Although this is a manual task, it’s very convenient for processing
a single file.

 You can run FoxBin2PRG.exe, passing it the appropriate parameters, such as the
name of a VFP binary file to convert to text. This can be automated to process
multiple files, including from a BAT file or PowerShell script.

 You can run FoxBin2PRG.prg, passing it the appropriate parameters, such as the
name of a VFP binary file to convert to text. Note that the VFP path has to be set to
include the folder where FoxBin2PRG is installed so it can find its support files.

 You can instantiate the c_foxbin2prg class in FoxBin2PRG.prg and call the desired
methods. This can be automated from VFP code to process multiple files.

Here are some of the ways I use it:

https://github.com/fdbozzo/foxbin2prg

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 62 of 65

 After adding, deleting, or edit records in a VFP table that’s built into an application
(such as meta data), I right-click the DBF file and choose “FoxBin2PRG – Binary to
Text” from the Send To submenu in the shortcut menu, since it’s typically the text
file I keep in version control not the binary file.

 After editing the help file for an application using West Wind’s HTML Help Builder, I
copy the HBP file (the source for the CHM, which is really a VFP table with a
different extension) to a DBF file (since FoxBin2PRG doesn’t know the HBP file is a
table) then use FoxBin2PRG to generate the text equivalent by running a BAT file:

copy sqconfig.hbp sqconfig.dbf
path\foxbin2prg sqconfig.dbf

 Project Explorer uses a little more complex version of the following code to convert
binary to text and vice versa (simplified here for readability):

loConvert = newobject('c_foxbin2prg', This.cConverterPath + ;
 'foxbin2prg.prg')

* Get the FoxBin2PRG settings for the folder the file is in.

loSettings = loConvert.get_DirSettings(justpath(tcFile))

* If the file type is supported, convert it. If it's a DBF, close it first.

if not empty(This.GetFileType(tcFile, loSettings))
 if lower(justext(tcFile)) = 'dbf'
 CloseFile(tcFile)
 endif lower(justext(tcFile)) = 'dbf'
 loConvert.Execute(tcFile, iif(tlAll, '*', ''))
endif not empty(This.GetFileType(tcFile, loSettings))

Since you can configure FoxBin2PRG to not convert certain types of VFP binaries,
this code calls the GetFileType method that checks whether we should convert the
specified file. The code in that method includes the following and returns an empty
string if the specified file shouldn’t be processed:

lcExt = lower(justext(tcFile))
llBinary = inlist(lcExt, 'pjx', 'vcx', 'scx', 'mnx', 'frx', 'lbx', 'dbf', ;
 'dbc')
do case
 case lcExt = 'dbf' and toSettings.DBF_Conversion_Support > 0
 lcType = lower(toSettings.c_DB2)
 case lcExt = 'dbc' and toSettings.DBC_Conversion_Support > 0
 lcType = lower(toSettings.c_DC2)
 case llBinary and evaluate('toSettings.' + lcExt + ;
 '_Conversion_Support') > 0
 lcType = lower(evaluate('toSettings.c_' + strtran(lcExt, 'x', '2')))

Configuring FoxBin2PRG

FoxBin2PRG’s behavior can be configured using a file named FoxBin2PRG.cfg, which is just
a text file containing settings. A template for that file named FoxBin2PRG.cfg.txt is included

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 63 of 65

with FoxBin2PRG. If you want to change any of the default settings, copy the file, rename it
to FoxBin2PRG.cfg, make the desired changes, and put it into one of two places:

 The FoxBin2PRG install folder for global settings (that is, affecting all conversions)

 The source folder for your project for project-specific settings

FoxBin2PRG uses a hierarchy of settings. It uses its default values, then overrides those
with any specified in the cfg file in its own folder, then overrides those with any specified in
the cfg file in the folder where the binary or text files being processed are located. Table 3
shows the settings.

Table 3. FoxBin2PRG configuration settings.

Setting Default Purpose
Extension extension: pj2=pj2

extension: vc2=vc2
extension: sc2=sc2
extension: fr2=fr2
extension: lb2=lb2
extension: mn2=mn2
extension: db2=db2
extension: dc2=dc2

Specifies the extension for the text file for each file
type. Generally, the text extension replaces the “x”
in the binary extension with “2” (for example, PJ2
for a PJX file) except DBF is DB2 and DBC is DC2.

ShowProgressbar 1 Display a progress bar during file processing:
0=don’t show, 1=always show, 2= show only for
multi-file processing

DontShowErrors 0 Set to 1 to disable displaying error messages

NoTimestamps 1 Clear timestamps to minimize differences; disable
by setting to 0

Debug 0 Set to 1 to create individual <file>.Log files

ExtraBackupLevels 1 The number of BAK files to create/preserve
ClearUniqueID 1 Clear UniqueID values (useful for diff and nerge);

disable by setting to 0
OptimizeByFilestamp 0 Optimize file regeneration depending on file

timestamp: 0=not optimized, 1=skip processing if
output file is newer, 2=skip processing if output
file timestamp equals input file’s

RemoveNullCharsFromCode 1 Remove NULLs from source code; disable by
setting to 0

RemoveZOrderSetFromProps 0 Set to 1 to remove ZOrderSet property from
objects

Language (auto) Language of messages and lo files: EN=English,
FR=French, ES=Español, DE=German

ClearDBFLastUpdate 1 Clear DBF LastUpdate (useful for diff); disable by
setting to 0

ExcludeDBFAutoincNextval 0 Set to 1 to exclude this value from db2
PJX_Conversion_Support 2 0=no support, 1=generate text only (useful for

diff), 2=generate text and binary (useful for diff
and merge)

VCX_Conversion_Support 2 0=no support, 1=generate text only (useful for
diff), 2=generate text and binary (useful for diff
and merge)

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 64 of 65

Setting Default Purpose
SCX_Conversion_Support 2 0=no support, 1=generate text only (useful for

diff), 2=generate text and binary (useful for diff
and merge)

FRX_Conversion_Support 2 0=no support, 1=generate text only (useful for
diff), 2=generate text and binary (useful for diff
and merge)

LBX_Conversion_Support 2 0=no support, 1=generate text only (useful for
diff), 2=generate text and binary (useful for diff
and merge)

MNX_Conversion_Support 2 0=no support, 1=generate text only (useful for
diff), 2=generate text and binary (useful for diff
and merge)

DBC_Conversion_Support 2 0=no support, 1=generate text only (useful for
diff), 2=generate text and binary (useful for diff
and merge)

DBF_Conversion_Support 1 0=no support, 1=generate text for structure only
(useful for diff), 2=generate text and binary for
structure only (useful for diff and merge),
4=generate text for structure and data (useful for
diff), 8=generate text and binary for structure and
data (useful for diff and merge)

DBF_Conversion_Included * If DBF_Conversion_Support is 4, you can specify
filemasks for tables to include in the process

DBF_Conversion_Excluded If DBF_Conversion_Support is 4, you can specify
filemasks for tables to exclude in the process

UseClassPerFile 0 0=one text file for VCX/DBC, 1=multiple
file.class.tx2 files, 2=multiple
file.baseclass.class.tx2 files including DBC
members

RedirectClassPerFileToMain 0 0=don’t redirect to file.tx2, 1=redirect to file.tx2
when selecting file.class.tx2

ClassPerFileCheck 0 0=don’t check file.class.tx2 inclusion, 1=check
file.class.tx2 inclusion

Here’s what my FoxBin2PRG.cfg contains:

ExtraBackupLevels: 0
DBF_Conversion_Support: 8

Summary

I use FoxBin2PRG multiple times a day, both through Project Explorer integration (saving
changes to a form, class, report, or label automatically calls FoxBin2PRG to regenerate the
text file) and using the Send To shortcuts to manually generate text from binary or vice
versa. If you use version control, FoxBin2PRG is the tool you need to make diffs and merges
possible.

Summary
VFPX has changed a lot in the past few years. It has a completely new home, is much more
oriented towards version control and collaboration, and has several new useful projects

VFPX 2018 Edition

Copyright 2018, Doug Hennig Page 65 of 65

and enhancements to existing ones. If you’re new to VFPX or haven’t visited in a while,
check it out at http://vfpx.org and see what projects you can make use of. Of course, we
welcome ideas you have for new projects as well.

Biography
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-
winning Stonefield Database Toolkit (SDT); the award-winning Stonefield Query; the
MemberData Editor, Anchor Editor, and CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My namespace and updated Upsizing Wizard in
Sedna.

Doug is co-author of VFPX: Open Source Treasure for the VFP Developer, Making Sense of
Sedna and SP2, the What’s New in Visual FoxPro series, Visual FoxPro Best Practices For The
Next Ten Years, and The Hacker’s Guide to Visual FoxPro 7.0. He was the technical editor of
The Hacker’s Guide to Visual FoxPro 6.0 and The Fundamentals. He wrote over 100 articles
in 10 years for FoxRockX and FoxTalk and has written numerous articles in FoxPro
Advisor, Advisor Guide to Visual FoxPro, and CoDe.

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the annual Southwest Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community extensions Web site (http://vfpx.org). He
was a Microsoft Most Valuable Professional (MVP) from 1996 through 2011. Doug was
awarded the 2006 FoxPro Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

http://vfpx.org/
http://www.swfox.net/
http://vfpx.org/
http://tinyurl.com/ygnk73h
http://www.hentzenwerke.com/catalog/hackfox7.htm
http://www.hentzenwerke.com/catalog/newin7.htm
http://www.hentzenwerke.com/catalog/wnvfp8.htm
http://www.hentzenwerke.com/catalog/wnvfp9.htm
http://www.hentzenwerke.com/catalog/vfpbp10.htm
http://www.hentzenwerke.com/catalog/makingsos.htm
http://www.stonefieldquery.com/sdt.html
http://www.stonefieldquery.com
http://vfpx.codeplex.com/
http://www.swfox.net
http://www.foxrockx.com/seite.htm

	Introduction
	VFPX on GitHub
	GitHub
	Git
	Thor Check for Updates

	Project Explorer
	Creating new classes and forms
	Performance improvements
	Version control improvements
	Other changes
	Summary

	Log4VFP
	Summary

	Win32API
	Summary

	iCal4VFP
	Summary

	CalendarCalc
	Summary

	Name Syntax Checker
	Summary

	CSVProcessor
	Date handling
	Appending and field mapping
	Encoding
	Exporting to CSV
	Summary

	XML Library Set
	XMLSerializer
	XMLCanonicalizer and XMLSampler
	Summary

	Cursor and Connector Properties Viewer
	Summary

	DBC Low Level Functions
	Summary

	FoxTypes
	Summary

	FastXTab
	Summary

	FoxCharts
	Summary

	Dynamic Forms
	Custom fields
	Dynamic application settings
	Summary

	XLSXWorkbook
	Built-in commands
	XLSXWorkbook
	Summary

	FoxBin2PRG
	Using FoxBin2PRG
	Configuring FoxBin2PRG
	Summary

	Summary
	Biography

