

Error Handling in Visual FoxPro

By Doug Hennig

Introduction

Like most things, error handling is more flexible but a lot more complex in Visual

FoxPro than it was in FoxPro 2.x. While objects have Error methods to provide local

error handling, how do you provide common, global error handling services to your

application? How do you recover when an error occurs? This session looks at a proven

strategy for implementing error handling in Visual FoxPro applications, starting from

individual controls and working up to a global error object.

Error Handling Basics

There are several aspects involved in error handling: setting up the error handler,

determining the cause of an error, informing the user what happened (and possibly

logging it to a file for later analysis), and trying to resolve the problem (trying to execute

the command again, returning to the statement following the one that caused the error,

quitting the application, etc.).

Setting up the Error Handler

Setting up a global error handler in VFP hasn’t changed from FoxPro 2.x: you still use the

on error command. Here’s an example:

on error do ERR_PROC with error(), sys(16), lineno()

These parameters tell the error handler the error number, the name of the routine, and the

line number of the code executing when the error occurred. You can pass any parameters

to the error handler you wish.

VFP has supplemented the global error handler approach with the ability to provide

individual local handlers by implementing the Error event. Every object in the Visual

FoxPro event model has an Error event. Of course, not every object will have an Error

method. If this distinction isn’t clear to you, remember that an event is an action triggered

by something the user or the system does (such as a keystroke, a mouse click, or

something that Visual FoxPro thinks is an error), while a method is the code that executes

when the event occurs. The code for a method will also execute when a message is passed

to an object telling it to execute that method. With many events, such as a mouse click, if

the object doesn’t have any code for the appropriate method, the event is ignored or

default behavior is executed. However, when an error occurs, what happens depends on a

number of things.

The Error method of an object will be called if it exists and an error occurs in a method of

the object or in a non-object program (such as a PRG) called by the object. What happens

if the object doesn’t have an Error method? When I first started working with VFP, I

assumed the Error method of the object’s container (such as a form) would be called.

However, that’s not the case. Instead, if any object on the call stack has code in its Error

method, that method is called; if not, the on error routine (if there is one) is called. If

there’s no on error routine, Visual FoxPro does its own error handling (the infamous

Cancel/Ignore dialog), and we consider that the application has crashed.

Determining the Cause of the Error

Several functions in FoxPro 2.x and VFP help determine the cause of an error, including

error(), message(), lineno(), sys(16), and sys(2018). VFP also provides an

aerror() function, which places information about the most recent error into an array.

Although some of the information in the array can be obtained from other functions, for

some types of errors (such as OLE, OBDC, and triggers), aerror() provides information

not available elsewhere (such as which trigger caused the error).

Informing the User What Happened

Informing the user that an error occurred is fairly straightforward, and is often combined

with allowing the user to determine how the problem should be resolved. The main

concerns here are deciding what to tell the user and what choices to present. The message

to display will vary with the type of error, and should be worded in a calm tone to prevent

the user from panicking and doing a “three-finger salute”. It could even provide

information about how to resolve the problem. For example, something simple like the

printer being off-line can be handled by asking the user to ensure paper is properly loaded

in the printer, that it’s turned on and connected to the computer, etc. The user can be

given the choice of trying to print again or canceling the print job. If a user tries to edit a

record that’s locked by another user, you might tell the user that someone else is editing

the record right now, and give them the choices of trying again or canceling the edit.

Given that there’s over 600 possible errors in VFP, you’re probably horrified thinking

about coming up with meaningful messages for all those errors. Fortunately, if you look

at the VFP help topic on error messages, you’ll see that most of them fall into one of a

few categories:

 “this’ll never happen unless something is seriously hosed”

 “this wouldn’t have occurred if the programmer wasn’t drinking Tequila the night

before writing this code”

 “you mean more than one user is going to use this system at a time?”

 errors that need to be handled individually

In the first category, your application really has no safe choice other than to shut down.

Errors in the second category should be caught in testing, but if they aren’t, the

application should report and log the error, then shut down. Errors in the third category

should also be caught in testing, but a simple “you can’t do this right now” type of

message should suffice if not. It’s really only the fourth category of errors that you need

to specifically address. Some examples of these types of errors are field or table

validation rule failure, primary key failure (this will be minimized if you’re using system-

assigned or “surrogate” keys), trigger failure, and file not found (which you should

usually handle by ensuring the file exists rather than letting the error handler catch it).

Before displaying the error message to the user, many developers like to log the error to a

error log file. This has proven to be invaluable time and again, because users are

frequently vague about the specifics when they report an error to you. The error log file

can be a text file, but I prefer a table with fields for the date and time of the error (this can

be a DateTime field in VFP), name of the user, error number and message, line number

and code where the error occurred, and a memo field containing the current contents of

memory variables.

Resolving the Error

Resolving an error can be complicated. The retry command tries to re-execute the

command that caused the error, but with most errors, this doesn’t help since the ability of

the user to resolve the problem themselves before attempting to retry is limited. return

continues execution from the line following the one that caused the error, but since the

command that caused the error in effect did not execute, frequently a second error will

occur because something didn’t happen, such as a variable not being created (after all, if

the command that caused the error could be bypassed without a problem, what’s it doing

there in the first place? <g>). cancel isn’t a realistic option because it terminates the

application, which may not have a chance to properly clean up after itself. Shutting down

the application in a controlled manner is a valid option, since many errors result from a

programmer or system error, and there’s not much point in carrying on until the problem

is resolved. As a developer, you’d also like an option to cancel the application and return

to the Command window. The code doing that should clean up the environment as much

as possible.

Another option is to use return to master or return to <program> to exit the

program that caused the error and go back to the main program or some other specific

program. You need to be careful with this option, since it might leave the system in a

messy state: forms and windows will still exist, tables or cursors will still be open, etc.

It’s a good idea to clean such things up as much as possible before using the return to

command. We’ll look at this more closely later.

Designing an Error Handling Scheme

A global error handler and an object’s Error method represent two opposite ends of a

spectrum:

 The global handler is far removed from the source of the error while the Error method

is part of the object that caused the error. Thus, the Error method should know a lot

more about the environment it’s in, the potential errors that could occur, and how to

resolve them. For example, the CommonDialogs ActiveX control (which displays

file, print, color, and printer dialogs) can cause an error if the user chooses Cancel.

It’d be dumb to let the global error handler try to handle that error, since it would only

see it as an OLE error of some kind and wouldn’t know what to do about it. It makes

more sense to put code into the Error method of the CommonDialogs control that

knows how to handle a Cancel situation.

 The global error handler is called outside VFP’s event handler using FoxPro’s older

“ON” event scheme (this scheme is still used by menus and on key labels). This

means you can’t use object syntax like Thisform, and issues like private datasessions

can complicate error resolution.

 The global error handler can efficiently consolidate error handling services (such as

error logging and display) into one place. It’s inefficient to try to handle most types of

unanticipated errors (like a network connection going down) in the Error method of

every object in your application.

Let’s look at a design of an error handling scheme that incorporates the best of both

worlds. We want to handle errors in the most efficient manner possible, yet still provide

the ability of individual objects to handle their own specific errors. Here’s the strategy

we’ll use:

 Like most kids, an object knows more about what’s really going on than its parents

do, so the Error method of an object will handle any errors it can. It will pass those it

can’t handle up the class hierarchy using dodefault(). Each subclass in the class

hierarchy will do the same. If a subclass or instance of a class don’t need to handle

any specific errors, no code is placed in the Error method, causing the parent class

code to automatically be used. Thus, SFDeepSubClassTextBox.Error calls

SFSubClassTextBox.Error which calls SFTextBox.Error.

 The Error method of the topmost parent class for the object will handle any errors it

can. It will pass those it can’t handle to its container using This.Parent.Error.

 Because the container classes work the same as the control classes (they pass

unhandled errors to their parent classes, and the topmost parent class passes errors to

their container classes), the net effect is that we move up the class hierarchy then up

the containership hierarchy.

 The Error method of the topmost parent class of the outermost container will handle

any errors it can. It will pass those it can’t handle to the global error handler.

This is a Chain of Responsibility design pattern: each object in the chain either handles

the error or passes it on to the next object in the chain. In this multi-layered scheme, error

handling gets less specific and more generic as you move from the object to the global

error handler, allowing errors to be handled at the appropriate level. Figure 1 illustrates

this strategy.

Figure 1. Error handling strategy.

I decided to make the global error handler an object that’s instantiated into the global

variable oError from the SFErrorMgr class at application startup. One of its methods

(ErrorHandler) is called both directly by objects as described above and indirectly since

it’s also the on error handler. The error handling object should have a simple interface

(meaning the programmatic, not user, interface), so SFErrorMgr accepts only the same

parameters as the Error method of objects (the error number, method, and line number)

and returns a string indicating what choice the user (or object) made for resolving the

error. The error object is at the end of the chain of responsibility, so it doesn’t know much

about the environment it was called from (it might be several objects removed, in a

different data session, etc.). As a result, it can’t really “handle” (that is, resolve) much. Its

purpose is to display a message to the user, log the error for post-mortem purposes, and

either decide what action to take (under certain foreseeable conditions) or more likely ask

the user what action to take. Thus, the error object should really only be used to handle

foreseeable errors you haven’t yet foreseen (once they occur, you’ll change the object,

class, or routine that caused the error to handle that case) and unforeseeable errors (true

bugs or unforeseeable environmental conditions).

The global error handler may take a global resolution itself (bring up the VFP Debugger

or shutting down the application) or may allow the object originating the error to have the

final resolution. To allow the latter, each step in the error handling chain returns a

resolution code to the previous level. For simplicity, I decided to return a string indicating

what resolution is chosen: “retry” to retry the command that caused the error, “continue”

to return to the line of code following the one that caused the error, or “closeform” to

close the form the control is sitting on. Each object then takes the appropriate action

based on the return message. Because the Error method of a container object may have

been called from a member object or by an error that occurred in one of its own methods,

the container must decide whether to pass the return message on or process it itself. We’ll

see the code for this later.

This scheme has one problem: controls sitting on VFP base class Page, Column, or other

containers with no Error method code essentially have no error trapping because they call

an empty method! The solution is to travel up the containership hierarchy until we find a

parent that has code in its Error method. If we can’t find such a parent, then display a

generic error message (this isn’t likely, since I base all forms on the SFForm class, which

does have Error method code).

On thing to keep in mind is that the complete error handling chain must be the most bug-

free part of your application, since the only fallback if an error occurs in any code called

while in the error state is the VFP Cancel/Ignore dialog. Fortunately, since you can put

most of the error handling code into your framework, once you’ve got it working, it won’t

be much of a concern (although flaky environmental conditions can still cause the error

handler itself to fail). Don’t bother trying to create an Error method in the error handling

object: it doesn’t get called when an error occurs in the error handler itself.

The Error Method

Let’s look at the strategy in more detail. The starting point when an error occurs is the

Error method of the object the error occurred in, so let’s start there.

The code for the Error method of most classes in my application base classes, which are

contained in SFCTRLS.VCX, is listed below (constants such as ccMSG_RETRY are

defined in SFERRORS.H, which is included in SFCTRLS.H, the include file for each

class). I say “most classes”, because top-level containers like forms and toolbars have to

work a little differently. This is one of the few times I wish VFP supported multiple

inheritance; as it is, you need to use the VB method of subclassing to put the same code

into the Error method of all classes (select the code in the method to subclass, press Ctrl-

C, put the cursor in new method, and press Ctrl-V to tell it to use the desired parent class

code <g>).

lparameters tnError, ;

 tcMethod, ;

 tnLine

local laError[1], ;

 lcMethod, ;

 loParent, ;

 lcReturn, ;

 lcError

* Get information about the error.

aerror(laError)

lcMethod = This.Name + '.' + tcMethod

* If we're sitting on a form and that form has a

* FindErrorHandler method, call it to travel up the

* containership hierarchy until we find a parent that

* has code in its Error method. Also, if it has a

* SetError method, call it now so we don't lose the

* message information (which gets messed up by TYPE()).

if type('Thisform') = 'O'

 loParent = iif(pemstatus(Thisform, ;

 'FindErrorHandler', 5), ;

 Thisform.FindErrorHandler(This), .NULL.)

 if pemstatus(Thisform, 'SetError', 5)

 Thisform.SetError(lcMethod, tnLine, @laError)

 endif pemstatus(Thisform, 'SetError', 5)

else

 loParent = .NULL.

endif type('Thisform') = 'O'

do case

* We have a parent that can handle the error.

 case not isnull(loParent)

 lcReturn = loParent.Error(tnError, lcMethod, tnLine)

* We have an error handling object, so call its

* ErrorHandler() method.

 case type('oError.Name') = 'C'

 oError.SetError(lcMethod, tnLine, @laError)

 lcReturn = oError.ErrorHandler(tnError, lcMethod, ;

 tnLine)

* A global error handler is in effect, so let's pass the

* error on to it. Replace certain parameters passed to

* the error handler (the name of the program, the error

* number, the line number, the message, and SYS(2018))

* with the appropriate values.

 case not empty(on('ERROR'))

 lcError = strtran(strtran(strtran(strtran(strtran(;

 strtran(upper(on('ERROR')), ;

 'SYS(16)', '"' + lcMethod + '"'), ;

 'PROGRAM()', '"' + lcMethod + '"'), ;

 'ERROR()', 'tnError'), ;

 'LINENO()', 'tnLine'), ;

 'MESSAGE()', 'laError[2]'), ;

 'SYS(2018)', 'laError[3]')

* If the error handler is called with DO, macro expand

* it and assume the return value is "CONTINUE". If the

* error handler is called as a function (such as an

* object method), call it and grab the return value if

* there is one.

 if left(lcError, 3) = 'DO '

 &lcError

 lcReturn = ccMSG_CONTINUE

 else

 lcReturn = &lcError

 endif left(lcError, 3) = 'DO '

* Display a generic dialog box with an option to display

* the debugger (this should only occur in a test

* environment).

 otherwise

 lnChoice = messagebox('Error #: ' + ;

 ltrim(str(tnError)) + ccCR + ;

 'Message: ' + laError[2] + ccCR + ;

 'Line: ' + ltrim(str(tnLine)) + ccCR + ;

 'Code: ' + message(1) + ccCR + ;

 'Method: ' + tcMethod + ccCR + ;

 'Object: ' + This.Name + ccCR + ccCR + ;

 'Choose Yes to display the debugger, No to ' + ;

 'continue without the debugger, or Cancel to ' + ;

 'cancel execution', MB_YESNOCANCEL + MB_ICONSTOP, ;

 _VFP.Caption)

 do case

 case lnChoice = IDYES

 lcReturn = ccMSG_DEBUG

 case lnChoice = IDCANCEL

 lcReturn = ccMSG_CANCEL

 endcase

endcase

* Ensure the return message is acceptable. If not,

* assume "CONTINUE".

lcReturn = iif(vartype(lcReturn) <> 'C' or ;

 empty(lcReturn) or not lcReturn $ ccMSG_CONTINUE + ;

 ccMSG_RETRY + ccMSG_CANCEL + ccMSG_DEBUG, ;

 ccMSG_CONTINUE, lcReturn)

* Handle the return value.

do case

* It wasn't our error, so pass it back to the calling

* method.

 case '.' $ tcMethod

 return lcReturn

* Display the debugger.

 case lcReturn = ccMSG_DEBUG

 debug

 suspend

* Retry the command.

 case lcReturn = ccMSG_RETRY

 retry

* Cancel execution.

 case lcReturn = ccMSG_CANCEL

 cancel

* Go to the line of code following the error.

 otherwise

 return

endcase

The first thing this method does is use aerror() to capture the information about the

error. This is important because the type() function, which will get used later in this

routine, can mess up some of the error information, especially the name of a property or

variable in a “Variable not found” error. This is discussed in further detail near the end of

this document.

This code then checks to see if the form the control is sitting on has a FindErrorHandler

method, and if so, calls it to locate the first parent of the control with code in its Error

method (we won’t bother looking at this code; you can check it out yourself in the

supplied source code). This prevents the problem of error handling stopping on base class

Page, Column, or other containers because they have no code in the Error method. It also

calls the form’s SetError method to save the previously gathered error information rather

than letting the form do it because, as I mentioned earlier, any error information obtained

after using type() may no longer be accurate.

If a parent prepared to handle the error is found, its Error method is called with the same

parameters this Error method received, except the name of the object is added to

tcMethod so our error handling services can know which object the error originated in. If

a parent isn’t found but a global error handler exists (we’ll look at the global handler

later), its SetError method is called to save the captured error information and then its

ErrorHandler method is called. If an on error routine exists, we call it (first adjusting

any parameters it might expect to match the values we have), either as a function or as a

procedure. If we have nothing to pass the error on to, we’ll use messagebox() to display

an error message.

The return value from the error handler is then used to decide how to resolve the error.

First, we must return the resolution message rather than handling it ourselves if the error

is not our own. We’ll check for this by looking for a period in the name of the method

where the error occurred; since VFP passes just the method name if the error occurred in

a method of the class but member objects pass the name of the object and the method,

this provides a quick way to distinguish errors caused by the object itself or a member. If

this isn’t the case, this is our error, so we’ll display the debugger, retry, cancel, or return.

Because they are the “top-level” containers (I don’t use Formsets), the Error method for

the SFForm and SFToolbar classes are different than other objects. This method uses the

custom SetError method to populate some custom properties with information about the

error; SetError doesn’t do much if the custom lErrorInfoSaved property is .T., which is

set within this method, to prevent the error information from being overwritten after it

was populated by another class. Error then calls the HandleError method to handle the

error. It then processes the return value, either taking an action itself (such as closing the

form) or returning it to the object that called this method. Notice it doesn’t return a value

if the object is the DataEnvironment but instead handles those errors itself. You may wish

to change this behavior. Also notice the use of return to; we’ll discuss this in more

detail later.

lparameters tnError, ;

 tcMethod, ;

 tnLine

local laError[1], ;

 lcReturn, ;

 lcReturnToOnCancel, ;

 lnPos, ;

 lcObject

with This

* Use SetError() and HandleError() to gather error

* information and handle it.

 aerror(laError)

 .SetError(tcMethod, tnLine, @laError)

 .lErrorInfoSaved = .F.

 lcReturn = .HandleError()

* Figure out where to go if the user chooses "Cancel".

 do case

 case left(sys(16, 1), ;

 at('.', sys(16, 1)) - 1) = 'PROCEDURE ' + ;

 upper(.Name)

 lcReturnToOnCancel = ''

 case type('oError.cReturnToOnCancel') = 'C'

 lcReturnToOnCancel = oError.cReturnToOnCancel

 case type('.oError.cReturnToOnCancel') = 'C'

 lcReturnToOnCancel = .oError.cReturnToOnCancel

 otherwise

 lcReturnToOnCancel = 'MASTER'

 endcase

endwith

* Handle the return value, depending on whether the

* error was "ours" or came from a member.

lnPos = at('.', tcMethod)

lcObject = iif(lnPos = 0, '', ;

 upper(left(tcMethod, lnPos - 1)))

do case

* We're supposed to close the form, so do so and return

* to the master program (we'll just cancel if we *are*

* the master program).

 case lcReturn = ccMSG_CLOSEFORM

 This.Release()

 if empty(lcReturnToOnCancel)

 cancel

 else

 return to &lcReturnToOnCancel

 endif empty(lcReturnToOnCancel)

* This wasn't our error, so return the error resolution

* string.

 case lnPos > 0 and not ;

 (lcObject == upper(This.Name) or ;

 'DATAENVIRONMENT' $ upper(tcMethod))

 return lcReturn

* Display the debugger.

 case lcReturn = ccMSG_DEBUG

 debug

 suspend

* Retry.

 case lcReturn = ccMSG_RETRY

 retry

* If Cancel was chosen but the master program is this

* form, we'll just cancel.

 case lcReturn = ccMSG_CANCEL and ;

 empty(lcReturnToOnCancel)

 cancel

* Cancel was chosen, so return to the master program.

 case lcReturn = ccMSG_CANCEL

 return to &lcReturnToOnCancel

* Return to the routine in error to continue on.

 otherwise

 return

endcase

Here’s the code for the SetError method:

lparameters tcMethod, ;

 tnLine, ;

 taError

local lnRows, ;

 lnCols, ;

 lnLast, ;

 lnError, ;

 lnRow, ;

 lnI

external array taError

with This

* If we've already been called, just update the method

* information.

 if .lErrorInfoSaved

 .aErrorInfo[.nLastError, cnAERR_METHOD] = tcMethod

 else

* Flag that an error occurred.

 .lErrorOccurred = .T.

 .lErrorInfoSaved = .T.

 lnRows = alen(taError, 1)

 lnCols = alen(taError, 2)

 lnLast = iif(empty(.aErrorInfo[1, 1]), 0, ;

 alen(.aErrorInfo, 1))

 dimension .aErrorInfo[lnLast + lnRows, cnAERR_MAX]

* For each row in the error array, put each column into

* our array.

 for lnError = 1 to lnRows

 lnRow = lnLast + lnError

 for lnI = 1 to lnCols

 .aErrorInfo[lnRow, lnI] = taError[lnError, lnI]

 next lnI

* Add some additional information to the current row in

* our array.

 .aErrorInfo[lnRow, cnAERR_METHOD] = tcMethod

 .aErrorInfo[lnRow, cnAERR_LINE] = tnLine

 .aErrorInfo[lnRow, cnAERR_SOURCE] = ;

 iif(message(1) = .aErrorInfo[lnRow, ;

 cnAERR_MESSAGE], '', message(1))

 .aErrorInfo[lnRow, cnAERR_DATETIME] = datetime()

 next lnError

 .nLastError = alen(.aErrorInfo, 1)

 endif not .lErrorInfoSaved

endwith

Here’s the code for the HandleError method:

local lnError, ;

 lcMethod, ;

 lnLine, ;

 lcErrorMessage, ;

 lcErrorInfo, ;

 lcSource, ;

 loError, ;

 lcMessage, ;

 lcReturn, ;

 lcError

with This

 lnError = .aErrorInfo[.nLastError, ;

 cnAERR_NUMBER]

 lcMethod = .Name + '.' + ;

 .aErrorInfo[.nLastError, cnAERR_METHOD]

 lnLine = .aErrorInfo[.nLastError, ;

 cnAERR_LINE]

 lcErrorMessage = .aErrorInfo[.nLastError, ;

 cnAERR_MESSAGE]

 lcErrorInfo = .aErrorInfo[.nLastError, ;

 cnAERR_OBJECT]

 lcSource = .aErrorInfo[.nLastError, ;

 cnAERR_SOURCE]

* Get a reference to our error handling object if there

* is one. It could either be a member of the form or a

* global object.

 do case

 case vartype(.oError) = 'O'

 loError = .oError

 case type('oError.Name') = 'C'

 loError = oError

 otherwise

 loError = .NULL.

 endcase

 lcMessage = ccMSG_ERROR_NUM + ccTAB + ;

 ltrim(str(lnError)) + ccCR + ccMSG_MESSAGE + ;

 ccTAB + lcErrorMessage + ccCR + ;

 iif(empty(lcSource), '', ccMSG_CODE + ccTAB + ;

 lcSource + ccCR) + iif(lnLine = 0, '', ;

 ccMSG_LINE_NUM + ccTAB + ltrim(str(lnLine)) + ;

 ccCR) + ccMSG_METHOD + ccTAB + lcMethod

 do case

* If the error is "cannot set focus during valid" or

* "DataEnvironment already unloaded", we'll let it go.

 case lnError = cnERR_CANT_SET_FOCUS or ;

 lnError = cnERR_DE_UNLOADED

 lcReturn = ccMSG_CONTINUE

* We have an error handling object, so call its

* ErrorHandler() method.

 case not isnull(loError)

 lcReturn = loError.ErrorHandler(lnError, ;

 lcMethod, lnLine)

* A global error handler is in effect, so let's pass the

* error on to it. Replace certain parameters passed to

* the error handler (the name of the program, the error

* number, the line number, the message, and SYS(2018))

* with the appropriate values.

 case not empty(on('ERROR'))

 lcError = strtran(strtran(strtran(strtran(;

 strtran(strtran(upper(on('ERROR')), ;

 'SYS(16)', '"' + lcMethod + '"'), ;

 'PROGRAM()', '"' + lcMethod + '"'), ;

 'ERROR()', 'lnError'), ;

 'LINENO()', 'lnLine'), ;

 'MESSAGE()', 'lcErrorMessage'), ;

 'SYS(2018)', 'lcErrorInfo')

* If the error handler is called with DO, macro expand

* it and assume the return value is "CONTINUE". If the

* error handler is called as a function (such as an

* object method), call it and grab the return value if

* there is one.

 if left(lcError, 3) = 'DO '

 &lcError

 lcReturn = ccMSG_CONTINUE

 else

 lcReturn = &lcError

 endif left(lcError, 3) = 'DO '

* We don't have an error handling object, so display a

* dialog box.

 otherwise

 lnChoice = messagebox('Error #: ' + ;

 ltrim(str(lnError)) + ccCR + ;

 'Message: ' + lcErrorMessage + ccCR + ;

 'Line: ' + ltrim(str(lnLine)) + ccCR + ;

 'Code: ' + lcSource + ccCR + ;

 'Method: ' + lcMethod + ccCR + ;

 'Object: ' + .Name + ccCR + ccCR + ;

 'Choose Yes to display the debugger, ' + ;

 'No to continue without the debugger, or ' + ;

 'Cancel to cancel execution', ;

 MB_YESNOCANCEL + MB_ICONSTOP, _VFP.Caption)

 lcReturn = ccMSG_CONTINUE

 do case

 case lnChoice = IDYES

 lcReturn = ccMSG_DEBUG

 case lnChoice = IDCANCEL

 lcReturn = ccMSG_CANCEL

 endcase

 endcase

endwith

lcReturn = iif(vartype(lcReturn) <> 'C' or ;

 empty(lcReturn) or ;

 not upper(lcReturn) $ upper(ccMSG_CONTINUE + ;

 ccMSG_RETRY + ccMSG_CANCEL + ccMSG_CLOSEFORM + ;

 ccMSG_DEBUG), ccMSG_CONTINUE, lcReturn)

return lcReturn

HandleError tries to pass the error to a global error handling object, referenced either

through a global oError variable or through an oError property of the form. This scheme

allows you to have a customized version of the global error handler associated with a

specific form if desired. If an on error routine exists, we call it (first adjusting any

parameters it might expect to match the values we have), either as a function or as a

procedure. If no global error handler can be found, messagebox() is used to display an

error message. The return value from the error handler is then passed back to the Error

method.

Global Error Handler

SFErrorMgr is a non-visual class based on SFCustom. It’s contained in SFMGRS.VCX

and uses the SFERRORMGR.H include file for the definitions of several constants. It’s

instantiated into the global variable oError at application startup (see SYSMAIN.PRG).

We won’t look at all the code for this class, only those methods which help illustrate the

overall scheme of error handling services. Feel free to examine any other methods

yourself.

The Init method accepts three parameters: the title to use for the dialog displayed when an

error occurs (stored in the cTitle property), a flag indicating whether Init should save the

current on error handler and change it to its ErrorHandler method, and the name of the

object the class is being instantiated into (this is needed for the on error command,

because we can’t use This).

As is usually the case, the Destroy method cleans up things the class has changed; in this

case, it resets VFP’s error handler to the one that was in effect before the object was

instantiated.

The ErrorHandler method is called both directly by objects as the last object in the chain

of responsibility and indirectly since it’s also the on error handler. Here’s the code for

this method:

lparameters tnError, ;

 tcMethod, ;

 tnLine

local lcCurrTalk, ;

 laError[1], ;

 lcChoice, ;

 lcProgram

with This

* Ensure TALK is off.

 if set('TALK') = 'ON'

 set talk off

 lcCurrTalk = 'ON'

 else

 lcCurrTalk = 'OFF'

 endif set('TALK') = 'ON'

* First, save the error information.

 aerror(laError)

 .SetError(tcMethod, tnLine, @laError)

 .lErrorInfoSaved = .F.

* If errors aren't being suppressed, display the error

* and get the user's choice of action.

 lcChoice = ccMSG_CONTINUE

 if not .lSuppressErrors

* Log the error if necessary.

 if .lLogErrors

 .LogError()

 endif .lLogErrors

* Display the error and get the user's choice if

* desired.

 if .lDisplayErrors

 lcChoice = .DisplayError()

 do case

* Cancel or Quit in development environment: remove any

* WAIT window, revert all open cursors and issue a CLEAR

* EVENTS (in the case of Quit), and then return to the

* top-level program.

 case lcChoice = ccMSG_CANCEL or ;

 (lcChoice = ccMSG_QUIT and version(2) <> 0)

 wait clear

 if lcChoice = ccMSG_QUIT

 .lQuit = .T.

 .RevertAllTables()

 clear events

 endif lcChoice = ccMSG_QUIT

 lcProgram = .cReturnToOnCancel

 return to &lcProgram

* Retry programmatic code: we must do the retry here,

* since nothing will receive the RETRY message (as is

* the case with an object).

 case lcChoice = ccMSG_RETRY

 lcMethod = upper(tcMethod)

 if at('.', lcMethod) = 0 or ;

 inlist(right(lcMethod, 4), '.FXP', '.PRG', ;

 '.MPR', '.MPX')

 if lcCurrTalk = 'ON'

 set talk on

 endif lcCurrTalk = 'ON'

 retry

 endif at('.', lcMethod) = 0 ...

* Quit: revert all open cursors, then quit.

 case lcChoice = ccMSG_QUIT

 .lQuit = .T.

 .RevertAllTables()

 on shutdown

 quit

 endcase

 endif .lDisplayErrors

 endif not .lSuppressErrors

* Restore TALK.

 if lcCurrTalk = 'ON'

 set talk on

 endif lcCurrTalk = 'ON'

endwith

return lcChoice

When an error occurs, three parameters are passed to ErrorHandler: the error number, the

name of the routine in which the error occurred, and the line number where the error

occurred. Like SFForm.Error, ErrorHandler uses the SetError method to set the

lErrorOccurred property to .T. and put information about the error into the aErrorInfo

property; it only does this if the error information hasn’t already been saved. If the

lSuppressErrors property is .T., the error isn’t logged and no error message is displayed

(this is used when you want an error to be trapped but not logged or displayed to the

user). Otherwise, the LogError method is called to log the error and the DisplayError

method is used to display a message about the error and get the user’s choice about what

action to take. The choices are:

 Debug: this option, which is only available if the lShowDebug property is .T. and

we’re running a development version of VFP, brings up the Trace and Debug

windows. lShowDebug should be set to .T. only for developers (this can be looked up

in a user table or the Windows Registry).

 Continue: returns to the command following the one that caused the error.

 Retry: retries the command. This gets a little tricky: if ErrorHandler was explicitly

called (that is, from the Error method of an object), it can’t just issue the retry

command, since that would simply return control to the method which called it, rather

than the method which caused the error. In that case, we’ll just return the message

“retry”. However, if the error occurred in programmatic code (a PRG or MPR),

ErrorHandler got called as the on error routine, so just returning this message won’t

work. In this case, ErrorHandler must directly issue the retry command itself.

 Cancel: a frequent question about error handling is: how do you prevent the rest of the

code in the method or program that caused the error from executing? You can’t use

cancel, since that cancels the entire application. return returns to the same method

so that doesn’t help either. The solution is to return to the routine containing your

application’s read events statement (which is normally where you’re sitting when

method code isn’t executing). Since this routine may not be the first program in the

application, we’ll return to the program specified in the cReturnToOnCancel property

rather than return to master. When you instantiate SFErrorMgr, you can set this

property appropriately (you can set it to “MASTER” if the first program in the

application contains the read events). If your read events statement is in a method

of an object, leave off the object name; for example, if your read events statement

is in oApp.EventHandler, put “EventHander” into the cReturnToOnCancel property.

 Quit: quits the application. We have different needs here depending on whether we’re

running a development copy of VFP or not. It’d be a pain if you had to restart VFP

every time you got an error in development mode, so in that case, this option should

clear events and return to the main program so the application can shut down in an

orderly manner and then return to the Command window. If this is a runtime version

of VFP, we’ll just clean up and quit. In both cases, we’ll use a custom RevertTables

method to perform a tablerevert(.T.) on all cursors in all datasessions so we don’t

get additional errors (such as the infamous “uncommitted changes” error) on the way

out.

Handling Specific Errors

The error handling scheme we’ve looked at so far is generic: every error will cause the

“Cancel, Continue, Retry, Quit” dialog to appear. This isn’t appropriate for foreseeable

errors, but should only be used for unforeseeable errors. Foreseeable errors should be

handled in the Error method of objects that may cause them.

As an example of handling specific errors, we’ll look at look the SFMaintForm class (in

SFFORMS.VCX), a subclass of SFForm designed specifically for data entry forms. This

is a good example of how an object has specific knowledge of the environment and

foreseeable errors and how they should be handled.

Since the Error method of SFForm calls the HandleError method, which simply passes

the error to the SFErrorMgr’s ErrorHandler method, we’ll override the behavior of

HandleError in SFMaintForm to handle specific data-based errors. Here’s the code for

HandleError:

local lnError, ;

 lcMethod, ;

 lcReturn, ;

 loObject

with This

* Get the error number and method.

 lnError = .aErrorInfo[.nLastError, cnAERR_NUMBER]

 lcMethod = upper(.aErrorInfo[.nLastError, ;

 cnAERR_METHOD])

 do case

* Handle "DataEnvironment already unloaded" by not

* displaying anything.

 case lnError = cnERR_DE_UNLOADED

 lcReturn = ccMSG_CONTINUE

* Handle a problem in the DataEnvironment.

 case 'DATAENVIRONMENT' $ lcMethod

 lcReturn = .ErrDataEnvironment(lnError)

* Handle a trigger failed.

 case lnError = cnERR_TRIGGER_FAILED

 lcReturn = .ErrTriggerFailed()

* Handle a field rule failed by calling

* ErrFieldRuleFailed(). If it returns an object

* reference, we'll set focus to that object so the

* user can correct the problem.

 case lnError = cnERR_FIELD_RULE_FAILED

 loObject = .ErrFieldRuleFailed()

 if not isnull(loObject)

 .ActivateObjectPage(loObject)

 loObject.SetFocus()

 endif not isnull(loObject)

 lcReturn = ccMSG_CONTINUE

* Handle a table rule failed.

 case lnError = cnERR_TABLE_RULE_FAILED

 lcReturn = .ErrTableRuleFailed()

* Handle a primary/candidate index violation.

 case lnError = cnERR_DUPLKEY

 lcReturn = .ErrDuplicatekey()

* Handle the case where someone else has the record

* locked.

 case lnError = cnERR_RECINUSE

 lcReturn = .ErrRecordInUse()

* Handle the case where the record was modified by

* another user during a delete.

 case lnError = cnERR_RECMODIFIED and ;

 lcMethod = 'DeleteRecord'

 messagebox(ccERR_REC_MODIFIED, ;

 MB_OK + MB_ICONSTOP, _VFP.Caption)

 .Refresh()

 lcReturn = ccMSG_CONTINUE

* Handle the case where the record was modified by

* another user during an edit.

 case lnError = cnERR_RECMODIFIED

 lcReturn = .ErrRecChangedByAnother()

* Otherwise use the default error handler.

 otherwise

 lcReturn = dodefault()

 endcase

endwith

return lcReturn

As you might expect, a routine handling specific errors will likely consist of a set of case

statements handling all the foreseen errors and an otherwise statement passing any

unhandled errors to SFErrorMgr. In the case of SFMaintForm, we’ll handle the following

errors:

 DataEnvironment errors or trigger or field rule failed: we’ll look at these errors in

more detail in a moment.

 Table rule failed, primary/candidate index violation, or someone else has the record

locked: other than designing a system that minimizes these types of problems (such as

using system-assigned keys and using optimistic rather than pessimistic locking),

there isn’t much we can do about them; it’s up to the user to correct the problem. So

we’ll just call custom methods that display an appropriate error message.

 The record was modified by another user when we tried to delete it: we’ll display a

message to the user and refresh the form to show the other user’s changes.

 The record was modified by another user when we tried to edit it: we’ll use conflict

resolution code to resolve the changes made by each user (we won’t look at this code

here; feel free to examine the ErrRecChangedByAnother method yourself).

Of course, this isn’t the entire range of errors that could be trapped here, but is a good

representative sample.

DataEnvironment

Although the DataEnvironment has its own Error method, classes don’t have a DE, so

we’d have to manually put code into DataEnvironment.Error for every form we create.

Interestingly, the DE is the one object that automatically calls its form’s Error method if

its own Error method has no code. Thus, we’ll handle DE errors in the SFMaintForm’s

ErrDataEnvironment method. These include “table or database not found”, “table access

denied”, “table in use”, and “primary key invalid” errors (I’m sure you can think of others

to trap as well). Generally, there isn’t much we can do other than display an error

message and close the form. However, we want some error handling services, so we call

oError.ErrorHandler after setting the lDisplayErrors property to .F. This causes errors to

be logged but not displayed. We’ll display our own message before returning “closeform”

to the Error method.

One thing to watch out for is a “DataEnvironment already unloaded” error. This may

occur as the form is being closed by one of the previous errors, so we’ll do nothing when

we get this error.

Triggers

If a trigger fails, the Error method of the object causing the trigger to be called is fired,

not the on error routine set up by the trigger (the RIError procedure). This is a big

problem: RIError sets the public variable pnError to a non-zero value, which is then used

by other routines to know that the trigger has failed. Imagine the following situation: the

user takes some action in a form, such as deleting a record, that causes a trigger to fail.

Trigger failure causes the error handler to be called, but since the trigger was fired from

an object with code in its Error method, that method gets called rather than the RIError

routine in the stored procedures of the database. When the Error method is done,

execution returns to the trigger code. However, since pnError hasn’t changed from its

original zero value, the trigger code doesn’t know an error occurred, so it carries on. As a

result, the trigger might just partially fail.

Here’s a concrete example. CUSTOMER has a cascade delete rule into ORDERS while

ORDERS has a restrict delete rule into ORDITEMS. The current CUSTOMER record

has two related ORDERS records, the first of which has no related ORDITEMS records

and the second of which has one related ORDITEMS record. When you delete the

CUSTOMER record, what do you think happens? You get an error that the trigger failed

but you’ll find that the CUSTOMER record and the first ORDERS record were deleted

anyway. Only the second ORDERS record exists, and of course, it’s now an orphan.

(In case you think this is an arcane example, it actually happened to me with a different

database, which is how I discovered this problem in the first place.)

The solution is to have the error handler set pnError to a non-zero value value; if you

examine the code in the ErrTriggerFailed method of SFMaintForm, you’ll see it does just

that. However, that doesn’t completely solve the problem: a bug in the RIDelete and

RIUpdate procedures (which delete or update a child record) generated by the VFP RI

Builder must also be fixed (see below for the code in RIDelete). These routines both set

llRetVal (the return value) to .F. if pnError is non-zero, which tells other routines that the

trigger failed. However, because the RIOpen routine (which is called to open child tables

so they can be checked for records related to the parent record) opens tables in non-

buffered mode, the next level of trigger (for example, checking into grandchild tables)

isn’t fired until the unlock statement, which occurs after llRetVal is set. Thus, an error in

trying to delete or update a grandchild record (which causes the trigger error message to

appear) will not cause llRetVal to be set to .F., so this level of trigger doesn’t fail even

though it should. The solution is to move the llRetVal assignment statement after the

unlock command as shown below. Since RIDelete and RIUpdate are generic routines,

you could copy the code for these routines in the stored procedures of the database, paste

it at the end of the stored procedures (below the RI footer comment line) and make the

changes there. This way, you don’t have to make the same changes every time you

regenerate the RI code.

procedure RIDELETE

local llRetVal

llRetVal=.t.

 IF (ISRLOCKED() and !deleted()) OR !RLOCK()

 llRetVal=.F.

 ELSE

 IF !deleted()

 DELETE

 IF CURSORGETPROP('BUFFERING') > 1

 =TABLEUPDATE()

 ENDIF

*** CUT THE FOLLOWING LINE ...

* llRetVal=pnerror=0

 ENDIF not already deleted

 ENDIF

 UNLOCK RECORD (RECNO())

*** ... AND PASTE IT HERE

 llRetVal=pnerror=0

RETURN llRetVal

As an aside, you can get around this and other bugs in the code generated by VFP’s RI

Builder if you use the RI code written by Steve Sawyer and published in the book he and

Jim Booth wrote called “Effective Techniques for Application Development With Visual

FoxPro 6.0”, published by Hentzenwerke Publishing (www.hentzenwerke.com).

Field Rule Violation

A bug in the sys(2018) and aerror() functions in VFP 5 and 6 prevents the actual field

name from being available when a field rule is violated. Instead, you get one of two

strings: either the RuleText property for the field if it was filled in or the generic message

“Field <field> validation rule is violated” if not.

So what? Well, what if you want to display a message like “Please enter a valid value for

<field caption>” if there is no RuleText for the field? The problem is that if you don’t

know which field rule was violated, how do you know which field to get the caption for?

What if you want to set focus to the control bound to that field after displaying the error

message, making it easier for the user to edit the value? What if you want to change the

background color for that control, making it obvious which fields are in error?

To work around this bug (or “undocumented behavior” as ‘Softies like to call it <g>) in

VFP 5.0 (not 5.0a), we need to do one of two things: if the string is “Field <field>

validation rule is violated”, we’ll dig the field out of the string. If that isn’t the string, we

have to find out which field in the database has the given string for its RuleText property.

Fortunately, in VFP 5.0a, an undocumented feature of aerror() is that element 5 of the

array it creates contains the field number, from which we can determine the field name.

The SFMaintForm.ErrFieldRuleFailed method handles this behavior; here’s the code:

local loCurrObject, ;

 lnWorkArea, ;

 lcAlias, ;

 lcTable, ;

 lcField, ;

 loObject, ;

 lcMessage

* If the field rule was checked and failed because the

* user clicked on a button with the Cancel property set

* to .T. or if the button has an lCancel property (which

* is part of the SFCommandButton base class) and it's

* .T., don't bother doing anything else.

loCurrObject = sys(1270)

if lastkey() = 27 or ;

 (type('loCurrObject.lCancel') = 'L' and ;

 loCurrObject.lCancel)

 return .NULL.

endif lastkey() = 27 ...

with This

* Figure out which field failed and find the object

* whose ControlSource is the field.

 lnWorkArea = .aErrorInfo[.nLastError, cnAERR_WORKAREA]

 if type('lnWorkArea') = 'N' and ;

 between(lnWorkArea, 1, 32767)

 lcAlias = alias(lnWorkArea)

 lcTable = cursorgetprop('SourceName', lcAlias)

 lcField = lower(lcAlias + '.' + ;

 field(.aErrorInfo[.nLastError, cnAERR_TRIGGER], ;

 lcAlias))

 loObject = .FindControlSourceObject(lcField)

 else

 loObject = .NULL.

 endif type('lnWorkArea') = 'N' ...

* Display the error message

 lcMessage = .aErrorInfo[.nLastError, cnAERR_MESSAGE]

 messagebox(lcMessage, MB_OK + MB_ICONSTOP, ;

 _VFP.Caption)

* Set the lFieldRuleFailed flag to .T.

 .lFieldRuleFailed = .T.

endwith

return loObject

One of the first things ErrFieldRuleFailed does is check if user clicked on a “cancel”

button in the form, which tries to set focus to that button and thus fires the field validation

rule for the field bound to the current control. Since it’d be dumb to display an error

message under these conditions, ErrFieldRuleFailed simply returns without doing

anything else.

After ErrFieldRuleFailed figures out which field has the problem, it calls the

FindControlSourceObject method to find which object in the form is bound to that field.

If such a object can be found, it returns a reference to the object so HandleError can set

focus to it.

ErrFieldRuleFailed also sets a form property called lFieldRuleFailed to .T. This can be

used by the Valid method of a control to prevent the control from losing focus when a

field rule fails. The reason this is needed is because the field validation rule violation

occurs before the Valid of the control fires. After the error has been handled, the Valid

method fires and normally returns .T., allowing the control to lose focus even though it

contains a bad value. Here’s some code from the Valid method of SFTextBox that

prevents this:

if type('Thisform.lFieldRuleFailed') = 'L' and ;

 Thisform.lFieldRuleFailed

 Thisform.lFieldRuleFailed = .F.

 return 0

endif type('Thisform.lFieldRuleFailed') = 'L' ...

Examples

To see examples of how both specific and unforeseeable errors are handled in this error

handling mechanism, run MYAPP.APP from the sample files provided. Choose Error

Form 1 from the File menu and click on the “This will cause an error” button. The Click

method of this button has two errors in it, so if you choose Continue in the error dialog

that appears for the first error, the second error will occur and the error dialog will come

up again. If you choose Cancel instead, the second error won’t occur but the application

stays running and the form is still open. Choosing Quit exits the application cleanly,

restoring the menu bar, closing all forms, and resetting the environment to the way it was

before the application was run. Retry, of course, causes the same error message to appear,

since the problem hasn’t been corrected.

To see how specific errors are handled, choose the Customer form from the File menu.

Choose New from the File menu, enter “ALFKI” for the Customer ID, then choose Save

from the File menu. You’ll get an error that the Customer ID already exists; since that

field is the primary key for the table and a record already exists with ALFKI in that field,

a primary key violation error occurs and is handled as shown. To see the result of a field

rule failure, enter “Test” for the Company; this field has a rule preventing that value from

being stored. When you try to leave the Company field, you’ll see the error message that

results from the field rule failure. Blank out the Company field. Move to the City field

and enter “Regina”, then choose Save from the File menu. You’ll get an error message

caused by a table rule failure; the table has a rule that prevents “Regina” from being

stored in the City field (after all, who’d want to live there? <g>). Choose Revert from the

File menu to remove the newly added record.

To see how SFMaintForm avoids giving a field rule failure message when a “cancel”

button is pressed, enter “Test” for the Company but click on the “Revert” button before

trying to exit the field.

To see how DE problems are handled, exit the application, rename CUSTOMER.DBF to

CUST.DBF in the Windows Explorer, then run MYAPP and open the Customer form.

Notice that after you respond to the error message that appears, the form closes. Rename

CUST.DBF back to CUSTOMER.DBF.

To see the trigger failure problem, exit the application, open the TESTDATA database,

and use the CUST_ORDERS view and browse it. This view displays information from

CUSTOMER, ORDERS, and ORDITEMS records. Notice the ALFKI customer has

several orders but the first one (ORDER_ID = 10062) has no order items (LINE_NO is

.NULL.). Run MYAPP, open the Customer form, choose Delete from the File menu, and

select Yes when asked to confirm the deletion. Notice the trigger failure message that

comes up; this is because of the restrict delete rule between ORDERS and ORDITEMS.

However, notice that you get this message several times, and after responding to it for the

last time, the ALFKI customer is gone. Exit the application, use CUSTOMERS, and

notice that indeed ALFKI is gone. Now use ORDERS order CUST_ID and notice that lots

of orders for customer ALFKI still exist; of course, they’re all orphans.

To fix the problem, do the following:

 close all

 Unzip DATA.ZIP (we’ve messed up the data so we need to put it back the way it

was).

 open database TESTDATA

 modify procedures

 Move the assignment to llRetVal in the RIDelete procedure to the line after the

unlock statement as described earlier. Save and close the code window.

 modify project MYAPP

 Open the SFMaintForm class in the SFForms class library, open the code window for

the ErrTriggerFailed method, go to the bottom of the code, and uncomment the

assignment to pnError. Save and close the code window and the class.

 Rebuild MYAPP and run it.

 Open the Customer form, choose Delete from the File menu, and respond Yes when

you’re asked to confirm the deletion.

This time, you’ll get a single trigger failure message and the ALFKI customer still exists.

That bug is squashed!

Other things to check out:

 To see how SFErrorMgr logs errors, use ERRORLOG and browse it. Especially

notice the MEMVARS memo; it contains the value every variable in each routine in

the calling stack had at the time the error occurred.

 Change the value of the Developer entry in APPLIC.INI to Yes. This value is used by

STARTUP.PRG to set the lDeveloper property of oError. Open the Windows

Explorer and press F5 (this is necessary so VFP sees that the INI file has changed),

then run MYAPP. Choose Error Form 1 from the File menu and click on the first

button. Notice that a Debug option appears in the error dialog. This is really useful for

debugging an error while the application is still running. Of course, the Trace window

displays the code in the Error method of the object that caused the error, since that’s

where the DEBUG command was executed. To return to the code that actually caused

the error, you have to click on the Step Out button in the Debugger toolbar.

 The “This should cause an error but doesn’t” button in Error Form 1 does just what it

says: clicking on it does nothing. If you examine the Click method for this button, this

might seem surprising, since there are two errors in the code. However, look at the

Error method and notice that unlike other objects, it calls the Error method of its

parent object immediately. This is a problem: the button is sitting in a page in a

PageFrame, and since the page is a VFP base class page, it has no Error method code,

which means that nothing happens when an error occurs. Like on error *, this is a

good way to make your applications error message free. Not error free, just error

message free <g>. This is why all base classes in SFCTRLS.VCX look up the

containership hierarchy to find the first parent object with Error method code.

Miscellaneous Error Information

Here are a bunch of other things you should know about error handling in VFP.

 Prior to VFP 6, VFP Automation servers couldn’t properly return an error condition

to their callers. That’s changed with the addition of the comreturnerror() function.

This function populates the COM exception structure with information about the error

that occurred. It accepts two parameters: cExceptionSource, which is the name of the

server, and cExceptionText, any message you want to return. The Error Form 1 form

in MYAPP.APP demonstrates this by calling the Test() method of an Automation

server called MyServer (the MyServer project is included with the sample files).

 As I mentioned earlier, if type() is used anywhere in the error handling chain, you

may not always get the correct error message. The reason is that type() uses some of

VFP’s error handling itself, and as a result, the contents of message() can be

overwritten if the variable or property checked with type() doesn’t exist. This

explains “variable not found” messages your error hander may sometimes report when

the error was in fact caused by something else. See the code in the Error method of

each class for a way to handle this.

 In VFP 5 and later, the Error method of a bound control is called when the validation

rule for the field the control is bound to is violated. This allows you to control what

message is displayed and how. In VFP 3, these errors are untrappable; VFP displays

the RuleText property for the field (or an ugly generic message if the RuleText isn’t

filled in) in a messagebox() dialog that you have no control over.

 Even though variables defined as local are invisible except in the routine that

defined them, the list memory command can see all variables defined in all routines

in the calling stack. This is a good thing, because it allows you to take a snapshot of

all variables at the time the error occurred and log them to a file. The LogError

method of SFErrorMgr shows how to do this.

 The list status command isn’t quite as helpful: it only sees things affected by the

current data session (such as open tables and set settings), so if the error handler is in

the default session, it won’t see things in the private data session of a form that caused

the error. If this is important to you, you could switch to the data session of the form

before using this command or you could instantiate an instance of SFErrorMgr into

the oError property of the form so it’s in the same data session as the form.

 For performance reasons, you might not want to call up the containership hierarchy

one step at a time when an error occurs, so you could jump directly from an object to

the form’s Error method or even SFErrorMgr.ErrorHandler if desired. In my opinion,

performance isn’t a factor when an error occurs, so I keep the class design cleaner

using the mechanism described in this session.

 The error command is interesting: it causes an error to be triggered. It’s handy if you

want to treat certain types of “soft” errors as if they were VFP errors. For example, if

file() returns .F. indicating a file is missing, you could use the error command to

force the error handler to fire so you get the usual error services (logging, display,

etc.). I tend to do this only rarely; after all, why bother checking for a soft error if

you’re going to treat it like a hard error? Also, depending on where you use the error

command, you may not have accurate method and line number information, since

they’ll reflect where the error command was used rather than where you actually

detected the problem.

 If an error occurs in programmatic code called from an object method, the object’s

Error method is fired rather than on error. This means two different mechanisms

may be used to handle an error in programmatic code, depending on how the program

was called. Thus, error handling in programmatic code isn’t as simple as it is with

objects. This is another reason to move away from PRG libraries and move to object

libraries.

 The previous point has an interesting side effect: if your read events statement is in

a method of a global object (such as an application object), the Error method of that

object in effect becomes a global error handler since the object is always in the call

stack. You could do away with on error completely in this case, since it’s only

needed to handle errors in programmatic code not called from objects.

 You can’t normally trap the case where the user enters an invalid date into a TextBox;

VFP displays “Invalid Date” itself and doesn’t fire the Valid method of the control.

You can turn off the “Invalid Date” message with set notify off, but if you want

the Valid method of the control to fire (for example, to give a different message or

bring up a calendar), you’ll have to set the StrictDateEntry property of the control to

0-Loose. One caveat: if the user enters an invalid date, it’ll get blanked, so if you want

to redisplay the former value, you’ll have to save it in the GotFocus method of the

control and restore it in the Valid.

 on error doesn’t trap errors in reports and in the skip for clauses of a menu; these

errors are untrappable, so make sure you’ve tested your reports and your menus under

all skip for conditions. To confirm this, edit APPLIC.INI and set the

NoSuchVariable entry to No. Open the Windows Explorer and press F5 (this is

necessary so VFP sees that the INI file has changed), then run MYAPP. Click on the

menu, and notice the VFP error that appears.

Conclusion

In this session, we looked at an error handling scheme that uses the best of both worlds

(local handling for most errors and global services for the rest). This scheme has been

successfully used in several applications, although we continue to refine it. I hope you

find it useful in your applications. Please let me know of any enhancements you add to it

or things you think need improvement.

Acknowledgements

I would like to acknowledge the following people who directly or indirectly helped with

the information in this session: Philip Kelley, Darrel Miller, Lisa Slater Nicholls, Jeff

Pace, Mac Rubel, Brad Schulz, and Paul Slate.

Copyright © 1999 Doug Hennig. All Rights Reserved

Doug Hennig

Partner

Stonefield Systems Group Inc.

1112 Winnipeg Street, Suite 200

Regina, SK Canada S4R 1J6

Phone: (306) 586-3341

Fax: (306) 586-5080

Email: dhennig@stonefield.com

World Wide Web: www.stonefield.com

Biography

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan,

Canada. He is the author of Stonefield’s add-on tools for FoxPro developers, including

Stonefield Database Toolkit and Stonefield Query. He is also the author of “The Visual

FoxPro Data Dictionary” in Pinnacle Publishing’s “The Pros Talk Visual FoxPro” series.

Doug has spoken at the 1997 and 1998 Microsoft FoxPro Developers Conferences

(DevCon) as well as user groups and regional conferences all over North America. He is a

Microsoft Most Valuable Professional (MVP).

mailto:dhennig@stonefield.com
http://www.stonefield.com/

