
Role-Based Security
Doug Hennig

Role-based security allows you to specify which users have rights to particular secured entities, but

at a group, or role, level. This month, Doug Hennig starts a discussion of how he implements role-

based security in his applications.

For my 100
th

 article (yes, it has been that long!), I’m going to start a multi-part series on something I

recently added to one of my applications: role-based security.

In the September through November 2004 issues of FoxTalk, Andy Kramek and Marcia Akins

discussed this topic in great detail. So why cover it again? Although their design was great and I learned a

lot from it, I need a different approach. In particular:

 I need users to be in more than one role. The administrator of the application isn’t necessarily a

power-user; they’re just the person who has access to the form where rights are assigned to

different roles. Although it’s unlikely, it’s possible that a department secretary could be the

application administrator. That doesn’t mean she has the right to see salary data in a payroll table,

however. So, the secretary may also be in an “administrative staff” role, which allows access to

parts of the application and restricts access to other parts.

 Andy and Marcia use security by exception, in which a user is assumed to have full access to

something unless otherwise specified. For a variety of reasons, I need the opposite; a user has no

access to something unless they are specifically assigned rights to it.

 Their design implements field-level security, which I also need, but in a different way. Rather than

securing the controls bound to fields in forms by hiding or disabling them, my application needs to

know what fields the user can see in reports (if a user can’t see any of the fields in a report, they

can’t see the report at all).

 Finally, I want to expose all methods that maintain security, such as adding users, changing a

user’s role, and so forth, as methods of a security manager class so these tasks can be done

programmatically, such as through a COM object, if necessary.

Although I’d rather use existing code than reinventing the wheel, my needs were too different from

Andy and Marcia’s design, so I had to start from scratch (well, not quite—as I mentioned earlier, I did get

some great ideas from their design).

I’d like to refresh your memory about what a role is. Andy and Marcia had a very clear definition: a

role is an identifier for a specific access pattern that could be used by one or more users of an application. It

isn’t necessarily related to a specific job description or user. So, with that in mind, let’s look at my

implementation.

Data model

As you can see in Figure 1, there are five tables involved in my implementation of role-based security:

 USERS: contains information about each user in the system, such as user name and password

(which is encrypted, of course).

 ROLES: contains information about the roles defined in the system.

 USERROLES: provides a join table between the users and roles tables to resolve their many-to-

many relationship.

 ELEMENTS: contains information about secured objects. I called secured objects “elements”

because there could be lots of different secured objects: forms, fields, reports, menu functions, and

so forth. This table could be used in an administrator dialog where rights to certain elements are

assigned to particular roles.

 SECURITY: defines what rights each role has to a particular element.

Figure 1. Data model for role-based security.

User and role collections
Although we could access users and roles through their records in the tables, it makes sense to expose them

as members of collections instead, especially if we want to use this in a COM object. The SFUserCollection

class is a collection of user objects, each of which contains properties about a specific user. Similarly,

SFRoleCollection is a collection of role objects, which contain properties about the roles. Both of these

classes are contained in SFSecurity.VCX.

Before we look at these classes, let’s examine their common base class, SFCollectionTable.

SFCollectionTable, defined in SFCtrls.VCX, is a subclass of SFCollectionOneClass, which is a subclass of

SFCollection, which is a subclass of Collection. SFCollectionTable is specially designed to act as an

interface for records in a table. The members of the collection are objects, one per record in the table, with

properties that map to the columns in the table.

The FillCollection method is used to load the collection from the table it’s associated with.

FillCollection calls OpenTable (which we won’t look at) to open the table specified in the cTable property

and put its alias into cAlias. FillCollection then spins through the table, calling the CreateEntityObject

method for each record to create an object with properties mapping to the fields in the record.

CreateEntityObject is abstract in this class, but could be as simple as RETURN SCATTER loObject or as

complicated as instantiating an object and setting its properties to the values of the fields in the current

record. FillCollection then calls GetEntityName, which is also abstract in this class, to get the name we want

to use when we add the object to the collection, and then finally calls Add to store the object.

local lnSelect, ;

 loEntity, ;

 lcName, ;

 llReturn

if This.OpenTable()

 lnSelect = select()

 select (This.cAlias)

 scan

 loEntity = This.CreateEntityObject()

 lcName = This.GetEntityName(loEntity)

 This.Add(loEntity, lcName)

 endscan

 select (lnSelect)

 llReturn = .T.

endif This.OpenTable()

return llReturn

The Add method is overridden in SFCollectionTable. Add can be called a couple of ways: by passing

an object to be stored and the name to use as its key, which is how it’s called from FillCollection, and by

passing just the name, which is how it’s typically called from client code. In the latter case, we don’t just

add an object to the collection, but also add a new record to the table.

lparameters tuItem, ;

 tcKey

local loEntity

do case

* If we were passed a name, add a record to the table

* and use the default behavior to add it to the

* collection. Note that we re-read loEntity from the

* collection in case we were specified a duplicate

* name and it isn't added to the collection.

 case vartype(tuItem) = 'C'

 loEntity = This.AddRecord(tuItem)

 loEntity = dodefault(loEntity, tuItem)

* We were passed an object, so add it to the

* collection. As above, we re-read the object from

* the collection in case it's a duplicate.

 case vartype(tuItem) = 'O'

 loEntity = tuItem

 loEntity = dodefault(loEntity, tcKey)

* Invalid parameters.

 otherwise

 loEntity = .NULL.

 throw 'Function argument value, type, or ' + ;

 'count is invalid.'

 endcase

nodefault

return loEntity

Other methods are also overridden or added in SFCollectionTable, including Remove and

RemoveRecord, but that’s all we’ll look at.

SFUserCollection is a subclass of SFCollectionTable. Its cTable property is set to USER.DBF by

default, but of course it could be changed to point to a different users table.

Since I didn’t need the user object to have any behavior, the CreateEntityRecord method in this class

uses SCATTER NAME to create an object with properties matching the fields. Notice I’m not decrypting

the password, which is encrypted in the table, here. The problem with doing that is the password is then

available in clear text in memory, which could make it possible for a hacker to find out the passwords.

We’ll discuss password encryption next month.

local lnSelect, ;

 loUser

lnSelect = select()

select (This.cAlias)

scatter name loUser

with loUser

 .UserName = trim(.UserName)

 .Password = trim(.Password)

 .FirstName = trim(.FirstName)

 .LastName = trim(.LastName)

endwith

select (lnSelect)

return loUser

The AddRecord method, called from the parent class’ Add method to add a new record to the table,

checks whether the specified name already exists, and if not, adds it. It then calls CreateEntityObject to

create a user object from the record.

lparameters tcName

local loUser

if not seek(upper(padr(tcName, ;

 len(__USERS.USERNAME))), '__USERS', 'USERNAME')

 insert into __USERS (USERNAME) values (tcName)

endif not seek(upper(padr(tcName ...

loUser = This.CreateEntityObject()

return loUser

SFUserCollection has a new method, GetUserByID. Since the key for a user object in the collection is

the user name, finding a user by ID is more difficult. To make it easier, GetUserByID simply SEEKs the ID

in the table and if it’s found, calls CreateEntityObject to create the user object for the user record.

lparameters tiUserID

local loUser

if seek(tiUserID, '__USERS', 'ID')

 loUser = This.CreateEntityObject()

else

 loUser = .NULL.

endif seek(tiUserID, '__USERS', 'ID')

return loUser

We’ve seen how new records are added to the users table, but how are changes made to properties of

the user objects saved, such as when a user’s password is changed? SFCollection has a SaveCollection

method that’s called when the collection is destroyed; it can, of course, also be called manually to save the

collection on demand. It spins through the collection and calls SaveItem for each member. SaveItem is

abstract in SFCollection, but SFUserCollection implements it using GATHER NAME to update the

appropriate record in the users table with the values of the properties of the current object.

We won’t look at SFRoleCollection because it’s very similar to SFUserCollection. Like

SFUserCollection, it has a GetRoleByID method to return a role object for the specified ID.

Security manager
It’s time to look at the security manager class. We don’t have space to cover the entire class in the article;

I’ll continue the discussion next month.

SFSecurity, in SFSecurity.VCX, is a subclass of SFCustom, my Custom base class defined in

SFCtrls.VCX. Its Init method instantiates user and role collection objects into the oUsers and oRoles

properties. Notice that rather than directly specifying SFUserCollection and SFRoleCollection, this code

gets the name of the classes and their libraries from properties. This is a more flexible design, since I can

subclass SFSecurity and specify different classes if I need that. Init also opens VFPEncryption.FLL, an

encryption library generously provided to the VFP community by new MVP Craig Boyd, and available for

download from his Web site (http://www.sweetpotatosoftware.com/SPSBlog). I’ll discuss

VFPEncryption.FLL in more detail next month.

with This

* Instantiate user and role collection objects.

 .oUsers = newobject(.cUserCollectionClass, ;

 .cUserCollectionLibrary)

 .oRoles = newobject(.cRoleCollectionClass, ;

 .cRoleCollectionLibrary)

* Open the VFP encryption library.

 set library to VFPEncryption.FLL additive

endwith

The Setup method opens the security-related tables, instructs the user and role collections to fill

themselves with objects from the appropriate tables, and sets the lSetup property to indicate that set up has

been performed. It also instantiates a localizer object. I won’t go into details on this object in this article; I’ll

save that for a future article. However, this object is used for localization purposes; its main method,

http://www.sweetpotatosoftware.com/SPSBlog

GetLocalizedString, looks up a string in a resource table and returns the equivalent of that string in the

specified language. This allows you to avoid using language-specific strings in your code so you can easily

localize it for other languages. Note that Setup can be called manually after instantiating the object, but it’s

also called automatically from many other methods.

with This

 llReturn = .OpenTables()

 llReturn = llReturn and .oUsers.FillCollection()

 llReturn = llReturn and .oRoles.FillCollection()

 if llReturn and vartype(.oLocalizer) <> 'O'

 .oLocalizer = newobject('SFLocalize', ;

 'SFLocalize.VCX')

 endif llReturn ...

 .lSetup = llReturn

endwith

return llReturn

The IsUserInRole method returns .T. if the specified user is in the specified role. Notice that both the

user and role are specified by ID rather than name; that will be true for most methods in this class. Also

notice that if the user ID isn’t specified, the ID of the currently logged-in user is used if there is one. We’ll

look at how a user logs in next month, but for now, know that once a user has logged in, a reference to that

user’s user object is stored in the oCurrentUser property.

lparameters tiUser, ;

 tiRole

local liUser, ;

 llReturn, ;

 lcMessage

with This

* If the user ID wasn't specified, use the one for

* the logged-in user.

 if (vartype(tiUser) <> 'N' or tiUser = 0) and ;

 vartype(.oCurrentUser) = 'O'

 liUser = .oCurrentUser.ID

 else

 liUser = tiUser

 endif (vartype(tiUser) <> 'N' ...

 do case

* Ensure we've been set up properly.

 case not .lSetup and not .Setup()

 llReturn = .F.

 lcMessage = .GetLocalizedString(.cErrorMessage)

* Ensure the parameters are valid.

 case not .CheckUser(liUser)

 llReturn = .F.

 lcMessage = ;

 .GetLocalizedString('ERR_INVALID_USER_ID')

 case not .CheckRole(tiRole)

 llReturn = .F.

 lcMessage = ;

 .GetLocalizedString('ERR_INVALID_ROLE_ID')

* See if the specified user is in the specified role.

 otherwise

 llReturn = seek(str(tiRole) + str(liUser), ;

 '__USERROLES', 'ROLEUSER')

 endcase

endwith

* Raise an error if we had a problem (do this outside

* the WITH structure to avoid problems with unclosed

* WITHs).

if not empty(lcMessage)

 throw lcMessage

endif not empty(lcMessage)

return llReturn

AddUserToRole and RemoveUserFromRole are very simple: they call IsUserInRole to determine if the

specified user is in the specified role, and update the USERROLES table accordingly. Here’s the code for

AddUserToRole.

lparameters tiUser, ;

 tiRole

if not This.IsUserInRole(tiUser, tiRole)

 insert into __USERROLES (ROLE, USER) ;

 values (tiRole, tiUser)

endif not This.IsUserInRole(tiUser, tiRole)

GetRolesForUser returns a collection of role objects the specified user belongs to. Note that you can

indicate whether the ID of the role is used as the key for the items in the collection (normally the name of

the role is used) by passing .T. for the second parameter.

lparameters tiUser, ;

 tlIDAsKey

local loRoles, ;

 liUser, ;

 lcMessage, ;

 lnSelect, ;

 loRole

with This

* Create a collection for the roles.

 loRoles = newobject('SFCollection', 'SFCtrls.VCX')

* If the user ID wasn't specified, use the one for

* the logged-in user.

 if (vartype(tiUser) <> 'N' or tiUser = 0) and ;

 vartype(.oCurrentUser) = 'O'

 liUser = .oCurrentUser.ID

 else

 liUser = tiUser

 endif (vartype(tiUser) <> 'N' ...

 do case

* Ensure we've been set up properly.

 case not .lSetup and not .Setup()

 lcMessage = .GetLocalizedString(.cErrorMessage)

* Ensure the parameters are valid.

 case not .CheckUser(liUser)

 lcMessage = ;

 .GetLocalizedString('ERR_INVALID_USER_ID')

* Get all records from the user roles table that have

* the specified user, get the appropriate role

* objects from the roles collection, and add them to

* the collection we'll return.

 otherwise

 lnSelect = select()

 select __USERROLES

 scan for USER = liUser

 loRole = .oRoles.Item(ROLE)

 do case

 case vartype(loRole) <> 'O'

 case tlIDAsKey

 loRoles.Add(loRole, transform(ROLE))

 otherwise

 loRoles.Add(loRole, loRole.Name)

 endcase

 endscan for USER = liUser

 select (lnSelect)

 endcase

endwith

* Raise an error if we had a problem (do this outside the WITH structure to

* avoid problems with unclosed WITHs).

if not empty(lcMessage)

 throw lcMessage

endif not empty(lcMessage)

return loRoles

Check it out
Let’s check out what we’ve covered so far. The following code, taken from TestSecurity.PRG, creates a

couple of roles, a couple of users, and adds those users to the appropriate roles.

loSecurity = newobject('SFSecurity', 'SFSecurity.vcx')

if not loSecurity.Setup()

 messagebox(loSecurity.cErrorMessage)

 return

endif not loSecurity.Setup()

with loSecurity

* Create the roles we'll need.

 .oRoles.Add('Administrators')

 .oRoles.Add('Everyone')

* Create the ADMIN user.

 loUser = .oUsers.Add('ADMIN')

 loUser.Password = 'Testing123'

 loUser.FirstName = 'Administrative'

 loUser.LastName = 'User'

* Create the DHENNIG user.

 loUser = .oUsers.Add('DHENNIG')

 loUser.Password = 'DumbPassword'

 loUser.FirstName = 'Doug'

 loUser.LastName = 'Hennig'

* Add the ADMIN user to the various roles.

 loUser = .oUsers.Item('ADMIN')

 loRole = .oRoles.Item('Administrators')

 .AddUserToRole(loUser.ID, loRole.ID)

 loRole = .oRoles.Item('Everyone')

 .AddUserToRole(loUser.ID, loRole.ID)

* Add the DHENNIG user to the appropriate roles.

 loUser = .oUsers.Item('DHENNIG')

 loRole = .oRoles.Item('Everyone')

 .AddUserToRole(loUser.ID, loRole.ID)

* See which roles are available for DHENNIG, then add

* and remove the Administrators role.

 loUser = .oUsers.Item('DHENNIG')

 loAdminRole = .oRoles.Item('Administrators')

 messagebox('DHENNIG is ' + ;

 iif(.IsUserInRole(loUser.ID, loAdminRole.ID), ;

 '', 'not ') + 'in the Administrators role.')

 .AddUserToRole(loUser.ID, loAdminRole.ID)

 messagebox('DHENNIG is ' + ;

 iif(.IsUserInRole(loUser.ID, loAdminRole.ID), ;

 '', 'not ') + 'in the Administrators role.')

 loRoles = .GetRolesForUser(loUser.ID)

 lcRoles = ''

 for each loRole in loRoles

 lcRoles = lcRoles + ;

 iif(empty(lcRoles), '', ', ') + loRole.Name

 next loRole

 messagebox('DHENNIG is in the following roles:' + ;

 chr(13) + chr(13) + lcRoles)

 .RemoveUserFromRole(loUser.ID, loAdminRole.ID)

 messagebox('DHENNIG is ' + ;

 iif(.IsUserInRole(loUser.ID, loAdminRole.ID), ;

 '', 'not ') + 'in the Administrators role.')

endwith

Summary
In the first part of this multi-part series on role-based security, we looked at collections of user and role

objects and the parts of a security manager class that deals with user and role management. Next month,

we’ll continue our discussion of SFSecurity, looking at methods that manage the rights a role has to various

elements, logging in and logging out users, and encryption and decryption of passwords.

Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the award-winning Stonefield

Database Toolkit (SDT) and Stonefield Query, and the MemberData Editor, Anchor Editor, New Property/Method

Dialog, and CursorAdapter and DataEnvironment builders that come with VFP. He is co-author of the “What’s New

in Visual FoxPro” series and “The Hacker’s Guide to Visual FoxPro 7.0,” all from Hentzenwerke Publishing. Doug

has spoken at every Microsoft FoxPro Developers Conference (DevCon) since 1997 and at user groups and developer

conferences all over North America. He is a long-time Microsoft Most Valuable Professional (MVP), having first been

honored with this award in 1996. Web: www.stonefield.com and www.stonefieldquery.com Email:

dhennig@stonefield.com

