
A More Flexible Report
Designer
Doug Hennig

This month, Doug presents a way to make the
VFP Report Designer more flexible, such as
customizing the pages of the properties dialogs
without having to change ReportDesigner.APP.

The FoxPro reporting system was fairly stagnant
for many years. The Report Designer and the
reporting engine were black boxes built into the
VFP executable that provided only limited
internal access through things such as user-
defined functions called from various places.

However, that all changed in VFP 9. Thanks
to well-known VFP gurus Lisa Slater Nicholls and
Colin Nicholls, as well as VFP team member
Richard Stanton, both the reporting engine and
Report Designer became much more open and
accessible. The Report Designer raises design-time
events you can create event handlers for and the
ReportListener base class provides customization
points for almost every step in the report run
process.

One of things that really excited me about the
changes in the reporting system in VFP 9 is that
while the design surface is still built into
VFP9.EXE, most of the dialogs you can open are
pure VFP code. Even better, Microsoft includes
the source code for these dialogs: if you unzip
XSource.ZIP in the Tools\XSource subdirectory of
the VFP program folder, you’ll find a
Tools\XSource\VFPSource\ReportBuilder folder
that contains the source code for
ReportBuilder.APP, the add-on for the Report
Designer that provides the dialogs and an event
handling framework.

Because we have the source code for the
Report Designer dialogs, we can finally do one
thing I’ve always wanted to do: customize the
properties dialogs for the various report objects.
Because I expose the VFP Report Designer to my
users, I want to simplify the dialogs, which were
designed mostly for developers, and add custom
controls for special effects I implement using
ReportListener classes.

While working on a customized version of
ReportBuilder.APP, I came up with some ideas to
make customizing the ReportDesigner even easier

and more flexible. I eventually implemented these
ideas into a project I call FRXTabs, which is the
focus of this article.

Before we get into FRXTabs, first let’s cover
some background into how the Report Designer
works.

How ReportBuilder.APP displays a
dialog
When you do something in the Report Designer,
such as double-clicking a text box, an event is
fired. When an event occurs, the Report Designer
looks at the content of the system variable
_ReportBuilder for the name of an event handler
application, and then passes information about
the event to that application. By default,
_ReportBuilder contains the path for
ReportBuilder.APP, which provides the dialogs
displayed in the Report Designer and other event
handling behaviors as well.

Each event raised in the Report Designer is
handled by a class. ReportBuilder.APP looks in a
report “registry” table to see which class to
instantiate for that event. By default, the registry
table is FRXBuilder.DBF, built into
ReportBuilder.APP. Figure 1 shows part of this
table.

Figure 1. FRXBuilder.DBF is the report builder registry table.

When the user double-clicks a text box to
display its properties dialog, event type 1 occurs
for the object (see the “Understanding Report
Builder Events” topic in the VFP help for a list of
the event types). Text boxes have OBJTYPE = 8
and OBJCODE = 0 in the FRX (you can use
REPORT FORM HOME() + 'Tools\Filespec\
90FRX' to see a list of the values for these fields
for the various report objects). So,

ReportBuilder.APP looks in the registry table for a
record with REC_TYPE = “H” (for event handler),
EVENTTYPE = 1, OBJTYPE = 8, and OBJCODE =
0. Once it finds such a record, ReportBuilder.APP
instantiates the class specified in the
HNDL_CLASS and HNDL_LIB fields and calls its
Execute method. In the case of a text box, that’s
FieldExprHandler in FRXHandlers.VCX, as you
can see in Figure 1. If you open FieldExprHandler
in the Class Designer, you’ll see the familiar Field
Properties dialog.

Most of the dialogs displayed in the Report
Designer are subclasses of FRXHandlerForm,
defined in FRXBuilder.VCX. FRXHandlerForm
provides the basics for a properties dialog, and
each subclass implements the specifics for the
type of report object it maintains. Typically, these
subclasses have a pageframe with individual tabs
for sets of properties.

Extending dialogs
VFP 9 SP2 provides a mechanism to add
additional pages to the pageframe of a particular
dialog without having to modify the class and
rebuild ReportBuilder.APP: records with
REC_TYPE = “T” in the registry table. When an
event occurs, FRXHandlerForm.LoadFromFRX,
which is called from Execute, looks for “T”
records for the current event and object type. For
example, when you double-click a text box, the
“H” record for that event causes
FieldExprHandler to be instantiated.
LoadFromFRX looks for “T” records with the
following criteria: EVENTTYPE = 1 (a properties
dialog event) or -1 (meaning any event); OBJTYPE
= 8, -1 (meaning any object), or 55 (a report layout
object); and OBJCODE = 0 or -1. If it finds any
such records, it adds the classes specified in
HNDL_CLASS and HNDL_LIB as pages of the
pageframe.

As you can see in Figure 2, the new pages
added to Report Designer dialogs in SP2, such as
the Dynamics page, are actually implemented as
“T” records rather than added to the dialog
classes. For example, one of the “T” records for a
text box specifies TabEvaluateContents in
FRXBuilder2.VCX, which represents the
Dynamics page.

Figure 2. "T" records in the report builder registry table add
additional tabs to dialogs.

There are only a couple of requirements for
the class specified in a “T” record. First, it must be
a subclass of Page since it’ll be a page in the
pageframe in the dialog. If you want, it can be a
subclass of Pge in FRXControls.VCX, itself a
subclass of Page, but that’s not a requirement.
Second, it must have LoadFromFRX (called when
the dialog is displayed) and SaveToFRX (called
when the user selects a different page or clicks
OK) methods. LoadFromFRX typically loads
information from the report object’s FRX record
and populates the values of the controls on the
page. SaveToFRX typically saves the values of the
controls in the page into the FRX record.

Adding your own handlers and pages
Now that you know how the native report builder
displays dialogs and adds additional pages to the
existing dialog classes, it should be obvious how
you can create your own dialogs and pages:
overriding the HNDL_CLASS and HNDL_LIB
values in the appropriate “H” record substitutes
your dialog class for the native one and adding
“T” records adds additional pages to the dialog.
There are a couple of ways you can do this:

 Alter the contents of the existing
FRXBuilder.DBF. Of course, since
FRXBuilder.DBF is built into
ReportBuilder.APP, that means rebuilding the
APP.

 Create a copy of FRXBuilder.DBF, alter the
contents of the copy, and then tell the native
ReportBuilder.APP to use the new table rather
than the built-in one.

To create a copy of FRXBuilder.DBF, open a
report in the Report Designer, bring up any
properties dialog (for example, double-click a text
box), right-click, and choose Options from the
shortcut menu. That displays the Report Builder
Options dialog shown in Figure 3. Click the
“Create copy“ button to create a copy of the
registry table. You only have to do this once.

Figure 3. The Report Builder Options dialog has a function to
create a copy of the report builder registry table.

To tell ReportBuilder.APP to use the new
table, use the following code:

do (_reportbuilder) with 3, "TablePath.DBF"

where TablePath is the name and path for the
registry table copy. Typically, you’ll add this code
to your startup program.

Note that there’s a bug in ReportBuilder.APP:
when called in this way, it sets DELETED off but
doesn’t restore it again afterward. So, if you have
DELETED set on, remember to SET DELETED
ON after using the line of code shown above.

FRXTabs
In the native report builder, each of the dialogs is
represented by its own, single-purpose form class.
For example, FieldExprHandler in
FRXHandlers.VCX is the properties dialog for text
boxes and PictureBoundHandler, also in
FRXHandlers.VCX, is the properties dialog for
images. As I mentioned earlier, each of these is a
subclass of FRXHandlerForm in FRXBuilder.VCX,
customized for the needs of the particular dialog.

Although you can add your own pages to the
dialogs using “T” records, there isn’t an easy way
to alter existing pages of the dialogs without
modifying the classes and rebuilding
ReportBuilder.APP. I wanted a more flexible
mechanism. So I created FRXTabs.

FRXTabs uses a single, generic class for all
properties dialogs. Pages and controls are added
to this class at runtime rather than design time,
which is the key to the flexibility FRXTabs
provides.

The generic dialog class is
FRXTabsHandlerForm in FRXTabs.VCX.
FRXTabsHandlerForm is a subclass of the same
FRXHanderForm the native builder dialogs use,
with just a few methods overridden. To tell
ReportBuilder.APP to use FRXTabsHandlerForm

for most of the events rather than the native
dialogs, change the “H” records in the registry
table to specify FRXTabsHandlerForm. I’ve
already done this in FRXTabBuilder.DBF that
comes with FRXTabs so you don’t have to.
Compare the records in Figure 4 with those in
Figure 1.

Figure 4. The "H" records in FRXTabHandler specify
FRXTabsHandlerForm for most dialogs.

FRXTabBuilder.DBF has two fields that don’t
appear in FRXBuilder.DBF: LOADFRX, which
contains code to be executed when the dialog is
displayed, and FILTER, a memo field which can
contain a filter expression that can suppress a
page in the dialog if you want that page to appear
conditionally, such as only for certain users. We’ll
see how these fields are used in the next section.

To specify what pages appear in a specific
dialog, add “T” records to the registry table for
each page for each dialog type. The FLTR_ORDR
column contains the order in which the pages
appear. For example, Figure 5 shows the “T”
records for the properties dialog for a text box.
Eight pages are specified for EVENTYPE = 1,
OBJTYPE = 8, and OBJCODE = 0: General,
represented by the TabFieldGeneral class, is the
first page (FLTR_ORDR is 1), followed by Style
(TabFieldStyle), Dynamics (TabFieldDynamics),
Format (TabFieldFormat), Print When
(TabPrintWhen), Calculate (TableFieldCalculate),
Protection (TabFieldProtection), and Other
(TabFieldOther). In addition, a “T” record for the
Advanced Page specifies TabObjectAdvanced as
the class to use, EVENTTYPE = -1 (any event),
and OBJTYPE = 55 and OBJCODE = -1 (any layout
object). Specifying a page this way means it’s
added to every dialog without having to create
one “T” record per dialog.

Figure 5. The "T" records for a particular event and report
object type specify the pages that appear.

FRXTabsHandlerForm
Let’s see how FRXTabsHandlerForm works.
LoadFromFRX, called when the form is displayed,

has two jobs to do: execute a modified version of
the parent class (FRXHandlerForm) code and
execute any custom code for the specific dialog
that’s specified in the LOADFRX memo in the
registry record.

If you look at the native builder dialogs, such
as FieldExprHandler, you see they use
DODEFAULT() plus some custom code specific to
that dialog. We need to do something similar, so I
copied the code in each of those dialogs, pasted it
into the LOADFRX memo of the appropriate “H”
record in FRXTabBuilder.DBF, and then modified
it so it’ll work when called by EXECSCRIPT()
rather than as the method of a form. For example,
I replaced “This” with “poForm” (poForm
contains a reference to This, as we’ll see when we
look at the code for LoadFromFRX) because
“This” can only be used in method code. I also
added #INCLUDE FRXBuilder.H since the code
contains constants defined in that or other include
files. See the comments at the start of each
LOADFRX memo for the exact changes made to
that dialog’s code.

FRXTabsHandlerForm.LoadFromFRX starts
by calling the new LocateHandlerClass method to
find the “H” record in the registry table that
caused the dialog to be launched. Next, it calls the
new ParentLoadFromFRX method. That method
contains a modified copy of the code from
FRXHandlerForm.LoadFromFRX; rather than
altering the code in FRXHandlerForm.
LoadFromFRX, it seemed to me a better approach
to copy its code, make the necessary changes, and
then call that modified code. That way, the native
ReportBuilder.APP can be used without any
changes. We’ll look at ParentLoadFromFRX in a
moment.

Next, if there’s any custom code in the
LOADFRX memo in the registry record for the
dialog, poForm is set to a reference to This so it
can be used in the LOADFRX code as discussed
earlier, and the LOADFRX code is retrieved,
including the #DEFINES in any #INCLUDE files,
using the new GetHandlerLoadFromFRXScript.
That code is executed using EXECSCRIPT() after a
complication is dealt with: the native report
builder #INCLUDE files have a duplicate
#DEFINE statement, so that line must be
removed.

local loEvent, ;

 llCode, ;

 lnRecno, ;

 llReturn, ;

 lcCode, ;

 loException as Exception

private poForm

loEvent = This.FRXEvent

llCode = ;

 This.LocateHandlerClass(;

 loEvent.eventType, ;

 loEvent.ObjType, loEvent.ObjCode) and ;

 not empty(FRXRegistry.LoadFRX)

lnRecno = recno('FRXRegistry')

llReturn = This.ParentLoadFromFRX()

if llReturn and llCode

 go lnRecno in FRXRegistry

 poForm = This

 lcCode = ;

 This.GetHandlerLoadFromFRXScript(;

 FRXRegistry.LoadFRX)

 lcCode = strtran(lcCode, ;

 '#define DEFAULT_MBOX_TITLE_LOC ' + ;

 "Report Builder"')

 && remove a duplicate #DEFINE

 try

 llReturn = execscript(lcCode)

 catch to loException

 messagebox(loException.Message + ;

 c_CR + 'LoadFRX script for ' + ;

 trim(FRXRegistry.Notes), ;

 MB_ICONSTOP, ;

 DEFAULT_MBOX_TITLE_LOC)

 endtry

endif llReturn ...

return llReturn

As I mentioned earlier, ParentLoadFromFRX
contains a modified copy of the code in
FRXHandlerForm.LoadFromFRX. The reason we
have to use a modified copy rather than issuing
DODEFAULT() from our LoadFromFRX method
is that we want to deal with “T” records a little
differently: we want pages added in the order
specified in FLTR_ORDR rather than the order
specified in the registry table, and we want to
remove records with a duplicate FLTR_ORDR.
The latter allows us to have records that are both
specific for a certain OBJTYPE and general for an
OBJCODE, such as records for all bands and
specific for group header bands.

The modification to the
FRXHandlerForm.LoadFromFRX code is
relatively simple and well-documented.
Essentially, we are going to create a cursor of the
desired “T” records rather than using records
from the registry table directly. Here’s the specific
code that replaces the SELECT FRXRegistry
statement just prior to a SCAN loop processing
the “T” records for the current dialog:

*** DH 11/30/2009: create a cursor of "T"

*** records so they can be processed in

*** FLTR_ORDR order

*** select frxRegistry

*** curRec = recno()

local lcTabs, lcClass, lcLibrary, lnOrder

lcTabs = '__FRXRegistry'

select * from FRXRegistry ;

 where REC_TYPE = HANDLREG_EXTRATAB and ;

 inlist(EVENTTYPE, ;

 This.frxEvent.EventType, -1) and ;

 (inlist(OBJTYPE, ;

 This.frxEvent.ObjType, -1) or ;

(OBJTYPE = FRX_OBJTYPE_LAYOUTCONTROLS and ;

 This.frxcursor.IsLayoutControl(;

 This.frxEvent.ObjType))) and ;

 inlist(OBJCODE, This.frxEvent.ObjCode, ;

 -1) and ;

 (empty(FILTER) or evaluate(FILTER)) and ;

 not deleted() ;

 order by FLTR_ORDR ;

 into cursor (lcTabs) readwrite

delete from (lcTabs) where FLTR_ORDR in ;

 (select FLTR_ORDR from (lcTabs) ;

 group by FLTR_ORDR ;

 having count(FLTR_ORDR) > 1) and ;

 (inlist(OBJTYPE, -1, ;

 FRX_OBJTYPE_LAYOUTCONTROLS) or ;

 OBJCODE = -1)

*** DH 11/30/2009: end of new code

There are a few other changes to the
LoadFromFRX code in ParentLoadFromFRX but
they aren’t important to this discussion.

In summary, FRXTabsHandlerForm provides
a generic dialog class that’s used for the
properties dialog for every report object because
the “H” records for every object specify
FRXTabsHandlerForm rather than the native
class. Any custom LoadFromFRX code that a
specific native dialog has is reproduced in the
dialog’s LOADFRX memo in the registry table
and executed when the dialog starts. The various
pages of each dialog are loaded at runtime
because the “T” records specify them. Thus, we
have a data-driven, generic dialog that’s both
more flexible than the native dialogs and much
easier to maintain.

Replacing native pages
As you can likely guess, the biggest job in
implementing FRXTabs was creating classes that
replace each of the pages in the native dialog
classes. Actually, it wasn’t as big a job as you’d
think. It turns out that each page in the native
dialog doesn’t consist of individual controls but
rather an instance of a container class of controls.
So, it was basically a matter of creating page
classes and dropping on them the same container
classes used in the pages of the native dialogs.

I started by creating TabBase, the parent class
for all of the page classes in FRXTabs. TabBase is a
subclass of Pge in FRXControls.VCX, with the
addition of an About method for documentation
purposes.

I then created subclasses of TabBase for each
page in each dialog. Let’s look at a specific
example: the General page of the properties
dialog for text boxes.

I created a subclass of TabBase called
TabFieldGeneral. I considered dropping on it
instances of PanelFieldExpr,
PanelFieldPositioning, and
PanelAbsolutePositioning, the three container
classes that appear in the General page of the text
box properties dialog. However, the instances of
those classes in the native properties dialog,
FieldExprHandler, have a few visual changes,
such as Height and Width, so instead I copied the
instances from FieldExprHandler and pasted
them into TabFieldGeneral. You can see the result

in Figure 6. I then set the include file for the class
to FRXBuilder.H and put the following code into
Init:

This.Caption = UI_TAB_GENERAL_LOC

This.Name = 'pageGeneral'

This.HelpContextID = ;

 UI_CONTROL_PROPS_GENERAL_HELP_ID

Figure 6. TabFieldGeneral contains instances of three existing
container classes.

That’s all that’s required to create a class
that’s the same as the corresponding page in a
properties dialog. However, while I was at it, I
decided to fix a few issues.

For example, if you look very closely at the
Format page of the text box properties dialog after
selecting Numeric, you may notice that the “CR if
positive” checkbox doesn’t quite align with the
other checkboxes in its column; it’s one pixel too
far to the right as you can see in the enlarged
image in Figure 7.

Figure 7. The "CR if positive" checkbox doesn't align with the
others.

Figure 8 shows that in Windows Vista and
higher, in which case Segoe UI is used as the font
for controls, the “SET DATE format” option is cut
off.

Figure 8. The "SET DATE format" option is cut off.

While the logical thing to do is to fix the
issues with these and other controls in the native
container classes (PanelFieldFormat in
FRXPanels.VCX in the case of these two issues),
one of my goals was to not make any changes in
those classes so FRXTabs can be used without
rebuilding ReportBuilder.APP. So, I made the
necessary changes to the instances in the FRXTabs
classes instead. For example, in TabFieldFormat,
used for the Format page of the text box
properties dialog, I moved chkCRIfPositive one
pixel to the left and set chkSetDate.AutoSize to .T.
to resolve the two issues I mentioned here. To see
which changes I made, check the comments in the
About method in each class.

One other issue to note is that while in
general ReportBuilder.APP is localizable
(translate the strings defined in
FRXBuilder_LOC.H to the desired language and
rebuild ReportBuilder.APP), the controls
associated with rotation have hard-coded
captions. So, I created FRXTabs.H, which contains
constants for the captions of those controls, used it
as the include file for the appropriate classes, and
in the Init method of those controls set Caption to
the appropriate constant. Thus, to localize
FRXTabs, translate the strings in FRXTabs.H to
the desired language and recompile
FRXTabs.VCX.

Using FRXTabs
To use FRXTabs, download it from the Subscriber
downloads page for this article and unzip it into
any folder. FRXTabs consists of
FRXTabs.VCX/VCT, which contains all of the
replacement dialog and tab classes;
FRXTabBuilder.DBF/FPT, which is a modified

report registry table that specifies
FRXTabHandlerForm as the handler for most
events and has the “T” records that define the
pages for every dialog; FRXTabs.H, the
#INCLUDE file mentioned in the previous
section; and FixPaths.PRG, discussed next.

Before using FRXTabs, you need to ensure
that the paths it uses internally (specifically, the
location of the ReportBuilder source code files)
are correct for your system. I provided a program
to handle that for you; simply DO
FIXPATHS.PRG.

You can use FRXTabs as is without doing any
customization. The benefit you’ll get is that I fixed
all of the visual issues in ReportBuilder.APP. To
do so, simply use this from the Command
window or in your applications:

do (_reportbuilder) with 3, ;

 "FRXTabBuilder.DBF"

However, the real advantage of FRXTabs is
the ability to customize the dialogs as you see fit.
For example, I never use the “SET DATE format”
and “British date” options in the Format page of
the text box properties dialog, so their presence
simply clutters the dialog. Wouldn’t it be nice to
get rid of them and any other options you never
use? With FRXTabs, it’s really easy:

 Subclass TabFieldFormat, the class used for
the Format page. Let’s call the subclass
MyFieldFormat in MyFRXTabs.VCX.

 In MyFieldFormat, set chkSetDate.Visible and
chkBritishDate.Visible to .F. Note that there
are several copies of those two checkboxes but
you can’t see them because the containers in
the class are sized quite narrow. You’ll have
to find the controls in the Properties window.
You may also want to move some other
controls to account for the empty space of
these two invisible controls.

 Edit the “T” record that has HNDL_CLASS =
“TabFieldFormat”, setting HNDL_CLASS to
“MyFieldFormat” and HNDL_LIB to
“MyFRXTabs.VCX”.

Figure 9 shows what the Format page looks
like when you use MyFieldFormat. Not only are
“SET DATE format” and “British date” gone, “CR
if positive” is aligned with the other checkboxes
because MyFieldFormat is a subclass of
TabFieldFormat, which fixes that visual issue.

Of course, you can add custom pages to any
dialog by adding “T” records to
FRXTabBuilder.DBF just as you would with the
native FRXBuilder.DBF.

Figure 9. You can easily customize existing pages using
FRXTabs.

Fixes in ReportBuilder.APP
Although one of the goals of FRXTabs is to extend
ReportBuilder.APP without making any changes
to it, there are a couple of places you might want
to change in the report builder source code.

 As I mentioned earlier, passing 3 to
ReportBuilder.APP to specify a registry table
causes DELETED to be set off. Here’s the fix
for that: just before the SET DELETED OFF
statement in FRXBuilder.PRG, add this code:

*** DH 11/26/2009: this sets DELETED off when

*** called with "register table" (3) so we'll

*** save and restore the current value

local lSetDeleted

lSetDeleted = set('DELETED') = 'ON'

*** DH 11/26/2009: end of new code

Add this just after the SET ESCAPE ON
statement later in the code:

*** DH 11/26/2009: restore DELETED

if m.lSetDeleted

 set deleted on

endif m.lSetDeleted

*** DH 11/26/2009: end of new code

 In my blog (http://tinyurl.com/ykukhhe), I
discussed the fix for a bug that causes Print
Environment to be set on accidentally. You
might as well fix that one too.

Note that if you’re using Windows Vista or
later versions, you may wish to copy the source
code from Tools\XSource\VFPSource\
ReportBuilder to another folder and make the
changes there, since everything under the VFP

program folder is read-only due to Windows
security.

After making these changes, rebuild
ReportBuilder.APP and copy it to the VFP home
directory.

Summary
FRXTabs is an add-on for the VFP Report
Designer that allows you to easily customize the
various properties dialogs. You can alter or
remove controls, add new controls, remove or
rearrange the order of pages, and so forth.
FRXTabs gives you both the power of subclasses
and the advantages of data-driven design to
provide you with almost complete control over
the appearance and behavior of the report
designer dialogs.

Doug Hennig is a partner with Stonefield Systems
Group Inc. and Stonefield Software Inc. He is the
author of the award-winning Stonefield Database
Toolkit (SDT); the award-winning Stonefield Query;
the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He has
been a Microsoft Most Valuable Professional (MVP)
since 1996. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

http://tinyurl.com/ykukhhe

