
Scheduling Tasks from VFP
Doug Hennig

Automatically executing a task on a regular
schedule isn’t something every application needs
to do, but if you do need it, this month’s article
provides the code you need to do this from VFP.

Some applications need to execute certain tasks at
regular intervals. For example, accounting
systems often need to do day-end and month-end
processing. An application may need to download
and process a file every night. Rather than having
a user manually start these processes, it would be
handy to start them automatically. One way to do
that is to leave the application running and have a
timer fire at a regular interval. When it’s the
desired date and time, the timer starts the process.
There are at least a couple of problems with that
approach: if the application is always running, it
(and possibly its data files) can’t be backed up,
and the application is using system resources
even when it isn’t doing anything.

A better approach is to use the built-in
Windows Task Scheduler. Its job is to wait until a
designated start time and then do something,
such as running an application. Typically, an
application designed to be run from the Windows
Task Scheduler has a few characteristics:

 It accepts one or more command-line
parameters telling it to perform a certain
task. If no parameter is passed, such as
when the user runs the application
normally, it does the usual thing:
displaying its user interface and waiting
for user action. If the parameter is passed,
which is what the scheduled task is
configured to do, the application
performs that task and then shuts down.

 If it’s running in task mode (that is, the
parameter was passed), it doesn’t display
any user interface. That means no login
dialog (the application needs to log in
automatically), no main form or
_SCREEN visible, no error or warning
messages displayed (they should be
logged instead), and no prompts of any
kind. The reason for this is that there’s no
guarantee any user is present to respond
to any prompts or dialogs.

Although you can create scheduled tasks
using the Windows Task Scheduler’s command
line interface, that’s clumsy. A better approach is
to use a COM interface. There are a couple of
interfaces depending on which operating system
you’re using. I’ve created wrappers for these
interfaces, making them easy to work with in VFP
applications. The wrappers are contained in
TaskScheduler.PRG, included in the download for
this article.

TaskScheduler
TaskScheduler.PRG has three classes:
TaskScheduler, the parent class for the other two
classes and not intended to be used directly;
XPTaskScheduler, the class to be used with
Windows XP; and VistaTaskScheduler, the class
to be used with Windows Vista and later. The
reason for the operating system-specific classes is
that Windows XP and earlier uses Task Scheduler
1.0, which is difficult to use with VFP. In fact,
that’s why the download for this article includes a
DLL file, TaskScheduler.DLL, that’s only used by
XPTaskScheduler. This freeware DLL, written by
Mark Pryor, contains a COM class named
Scheduler.SchAgent that provides an interface to
Task Scheduler 1.0. If you’re using Windows XP,
register this DLL using REGSVR32. Starting with
Vista, Windows now uses Task Scheduler 2.0,
which has a completely different interface, one
that fortunately is easy to use from VFP. The
COM component for Task Scheduler 2.0 comes
with Windows so it doesn’t require anything extra
to be installed or registered; the class to instantiate
is named Schedule.Service.

So you don’t have to worry about the
differences between Task Scheduler 1.0 and 2.0,
the TaskScheduler parent class has a common
interface you’ll use to work with scheduled tasks.
Table 1 shows the properties of this class and its
subclasses. TaskScheduler only has one public
method, CreateTask, which creates a task using
the properties of the class.

One thing I’d like to support but haven’t
figured out a way is creating folders. If you’ve
used the Windows Task Scheduler, you know you
can create folders and organize scheduled tasks
into them. However, creating a folder requires

passing a security descriptor to a COM method
and I haven’t figured out how to do that. So, for
now, TaskScheduler requires that the folder
specified in FolderName property already exists.

Because the Task Scheduler 2.0 API is easier
to use from VFP, VistaTaskScheduler has four
additional methods which are basically just
wrappers for the API methods (in all of these
methods, if tcFolder isn’t specified, the root folder
is used):

 GetFolders(@taFolders [, tcFolder]): fills
the specified array with all subfolders of
the specified folder. The first column of
the array is the folder name and the
second is a TaskFolder COM object.

 GetTasks(@taTasks [, tcFolder]): fills the
specified array with all tasks in the
specified folder. The first column of the
array is the task name and the second is a
RegisteredTask COM object.

 GetTask(tcName [, tcFolder]): returns a
RegisteredTask object for the specified
task name in the specified folder or NULL
if the task doesn’t exist.

 DeleteTask(tcName [, tcFolder]): deletes
the specified task in the specified folder.

RegisteredTask is one of the Task Scheduler
2.0 objects. (MSDN has detailed documentation
on Task Scheduler 2.0 COM objects, starting at
http://tinyurl.com/ncekpgg). You don’t have to
work with it directly to create a scheduled task,
but may wish to if you want to provide task
management features such as the ones we’ll
discuss later.

Table 1. The properties of the TaskScheduler class.

Property Description

ErrorMessage The text of any error message

ErrorReason The reason for the error

ErrorCode An error code; can be used to
localize error messages:

1 = scheduler class not found

2 = scheduler failed to instantiate

3 = a new task could not be
created

4 = the task properties could not
be set

5 = the scheduler settings could
not be saved

6 = the task could not be
registered

7 = tasks/folders could not be
enumerated

8 = the task could not be retrieved

9 = the task could not be deleted

TaskName The name of the task

Description The description of the task

ScheduleType The type of schedule:

1 = daily

2 = weekly

3 = monthly

4 = monthly day-of-week

StartTime The starting date and time for the
task

Interval The frequency for a daily or
weekly schedule: 1 = every day or
week, 2 = every second day or
week, and so on

EXEName The name and path of the
program to run

EXEParameters Parameters to pass to the
program

AuthorName The name of the task author

UserName The name of the user to log in as

Password The password for the user

StartWhenAvailable .T. to start the task as soon as
possible after a scheduled start is
missed; only supported in Vista
and above

FolderName The name of the folder the task
goes in; currently the folder must
exist

http://tinyurl.com/ncekpgg

RunOnLast .T. to run on the last week or last
day of the month; only supported
in Vista and above

DaysOfWeek[7] Set the appropriate element to .T.
to execute the task on that day for
a weekly task; Sunday is day 1
and Saturday is day 7

DaysOfMonth[31] Set the appropriate element to .T.
to execute the task on that day for
a monthly task

MonthsOfYear[12] Set the appropriate element to .T.
to execute the task in that month
for a monthly task

WeeksOfMonth[4] Set the appropriate element to .T.
to execute the task in that week
for a monthly day-of-week task

Scheduling a task
To create a scheduled task, instantiate the
appropriate class (either XPTaskScheduler or
VistaTaskScheduler), set its properties as desired,
and call CreateTask. If an error occurs, check the
ErrorMessage, ErrorReason, and ErrorCode
properties for an explanation.

Test.PRG, included in the download for this
article and shown in Listing 1, demonstrates how
to create tasks that execute daily, weekly, and
monthly. In this case, the task is very simple:
launch Notepad.EXE. In real-life, you’ll likely set
the EXEParameters property to pass parameters
to some application. As noted in the code, change
the values of the lcUserName and lcPassword
variables to valid values for your system.

Listing 1. Test.PRG shows how to create scheduled tasks.

* Ensure we use the correct class.

lcClass = iif(os(3) < '6', ;

 'XPTaskScheduler', 'VistaTaskScheduler')

* Change these to the user name and password

* for a Windows account.

lcUserName = 'YourUserName'

lcPassword = 'YourPassword'

* Create a task that runs at 3:00 AM every

* day.

loSchedule = newobject(lcClass, ;

 'TaskScheduler.prg')

with loSchedule

 .TaskName = 'Run Notepad'

 .UserName = lcUserName

 .Password = lcPassword

 .StartTime = {^2015-07-01 03:00:00}

 .EXEName = 'Notepad.exe'

 .ScheduleType = 1

 if not .CreateTask()

 messagebox(.ErrorMessage)

 endif not .CreateTask()

endwith

* Create a weekly task that runs at 3:00 AM

* Tues, Thurs, and Sat of every second week.

loSchedule = newobject(lcClass, ;

 'TaskScheduler.prg')

with loSchedule

 .TaskName = 'Run Notepad'

 .UserName = lcUserName

 .Password = lcPassword

 .StartTime = {^2015-07-01 03:00:00}

 .EXEName = 'Notepad.exe'

 .ScheduleType = 2

 .Interval = 2

 store .T. to .DaysOfWeek[3], ;

 .DaysOfWeek[5], .DaysOfWeek[7]

 if not .CreateTask()

 messagebox(.ErrorMessage)

 endif not .CreateTask()

endwith

* Create a monthly task that runs at 3:00 AM

* on the 1st and 15th of every month.

loSchedule = newobject(lcClass, ;

 'TaskScheduler.prg')

with loSchedule

 .TaskName = 'Run Notepad'

 .UserName = lcUserName

 .Password = lcPassword

 .StartTime = {^2015-07-01 03:00:00}

 .EXEName = 'Notepad.exe'

 .ScheduleType = 3

 store .T. to .DaysOfMonth[1], ;

 .DaysOfMonth[15]

 .MonthsOfYear = .T.

 && initialize all 12 elements of array

 && to .T.

 if not .CreateTask()

 messagebox(.ErrorMessage)

 endif not .CreateTask()

endwith

Note that if you run this program, you’ll only
find a single scheduled task when you look in the
Windows Task Scheduler. The reason is that all
three tasks have the same value for the TaskName
property. In that case, the second and third calls
to CreateTask overwrite the task created by the
first call. The lesson here is that you should give
your scheduled tasks unique names. Try changing
the assignment statements for TaskName in the
second and third examples and running the
program again; this time, you’ll see all three tasks.

If you want your user to specify the settings
for a scheduled task, you can create a wizard or
other type of dialog to do so. The form shown in
Figure 1 was taken from Stonefield Query, my
company’s main product, which uses a wizard so
the user can schedule report runs.

Figure 1. You can create a wizard or other dialog to allow the
user to schedule a task.

Managing scheduled tasks
If you want to manage tasks you’ve scheduled
using the TaskScheduler class, you have to use the
Windows Task Scheduler, shown in Figure 2.
While that may be something you can do, it might
be a lot to ask of your users, who may not be
comfortable working with this dialog.

Figure 2. The Windows Task Scheduler allows you to manage
scheduled tasks.

Fortunately, you can duplicate much of the
functionality of the Windows Task Scheduler
using the VistaTaskScheduler class (the XP
version doesn’t support this), including running
or deleting a task or seeing the last time it was run
and what the result was. Figure 3 shows a form
class, Schedules in Schedule.VCX, that provides
these features:

 It only lists those tasks that execute a
certain application, specified in the
cEXEName property of the class.

 It displays the status, last run date and
time, and last run result for the selected
task.

 It allows the user to delete or run the
selected task.

 It refreshes the list and information about
the selected task when you click Refresh.

Figure 3. You can use the Schedules class to manage
scheduled tasks.

Here’s an example of using this class to
manage the scheduled tasks created by Test.PRG:

loForm = newobject('schedules', ;

 'schedule.vcx')

loForm.cEXEName = 'notepad.exe'

loForm.Show()

The GetTasks method, called from Show, uses
the GetTasks method of VistaTaskScheduler to fill
an array with all tasks, then removes those from
the array that don’t use the application specified
in cEXEName. The array is then used as the
RowSource for the listbox. The information about
the selected task is retrieved from the State,
LastRunTime, and LastTaskResult properties of
the RegisteredTask object GetTasks put into the
array.

Summary
The TaskScheduler class and subclasses discussed
in this article make it easy to create and manage
scheduled tasks from a VFP application. Now, if
your user asks if it’s possible to automate certain
tasks at regular intervals, you can say Yes!

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.

He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was
a Microsoft Most Valuable Professional (MVP) from
1996 to 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

	Scheduling Tasks from VFP
	TaskScheduler
	Scheduling a task
	Managing scheduled tasks
	Summary

