
Natural Sorting
Doug Hennig

This is the second of several articles on
components of Doug’s in-house library. This issue
focuses on why the normal sorting done by
computers doesn’t always work and how natural
sorting solves the problem.

Computers typically sort in ASCII order. That is,
“abc” comes before “abd” because although the
first two characters of each string match, in the
third character, “c” has a lower ASCII value than
“d.” Most of the time, that is the correct way to
sort. However, there are some cases where a
different type of sorting works better. For
example, part numbers A-1, A-2, and A-10 ASCII
sort as A-1, A-10, and A-2 but most people would
expect to see A-1, A-2, and A-10 instead.

Wikipedia defines natural sort order as
“an ordering of strings in alphabetical order,
except that multi-digit numbers are ordered as a
single character. Natural sort order has been
promoted as being more human-friendly.” Jeff
Atwood wrote a blog article about this topic
(http://tinyurl.com/hndt65e) about ten years
ago, but it still isn’t a widely known topic.

Having run into this issue several times
myself, I decided to create a routine,
NaturalSort.prg (Listing 1), that sorts an array
using natural sort. NaturalSort accepts three
parameters: the array to sort (passed by
reference), the column to sort on (optional: if it
isn’t passed, the array is sorted on column 1), and
.T. to sort in descending order or .F. or not passed
for ascending order. This routine returns .F. if
there is a problem with the parameters or the
column in the array doesn’t contain a
homogeneous data type. If it returns .T., the array
is sorted in natural order. The code is well-
commented so it should be easy to follow.

Listing 1. NaturalSort.prg sorts an array in natural order.

lparameters taArray, ;

 tnColumn, ;

 tlDescending

local lnColumn, ;

 lnRows, ;

 lnCols, ;

 lnOrder, ;

 laArray[1], ;

 lnI, ;

 lcKey, ;

 lcString, ;

 laClone[1], ;

 lnIndex

* Ensure taArray is an array and tlDescending

* is logical if it's specified.

if type('taArray', 1) <> 'A' or ;

 (pcount() = 3 and ;

 vartype(tlDescending) <> 'L')

 return .F.

endif type('taArray', 1) <> 'A' ...

* If the column to sort on wasn't specified,

* assume 1.

lnColumn = iif(pcount() = 2, tnColumn, 1)

* Figure out the size of the source array.

lnRows = alen(taArray, 1)

lnCols = alen(taArray, 2)

* Ensure the column to sort on is valid.

if vartype(lnColumn) <> 'N' or ;

 not between(lnColumn, 1, max(lnCols, 1))

 return .F.

endif vartype(lnColumn) <> 'N' ...

* Figure out the order flag for ASORT().

lnOrder = iif(tlDescending, 1, 0)

* Get the data type of the first key value. If

* it isn't character, we don't have to do

* anything fancy; ASORT() will take care of it

* for us.

if vartype(taArray[1, lnColumn]) = 'C'

* Create an array we'll sort on.

 dimension laArray[lnRows, 2]

* Go through each element we're sorting on,

* get its natural sort key, and store the key

* and the original index in our sort array.

 for lnI = 1 to lnRows

 if lnCols = 0

 lcKey = taArray[lnI]

 else

 lcKey = taArray[lnI, lnColumn]

 endif lnCols = 0

 lcString = NaturalSortKey(lcKey)

 if not isnull(lcString)

 laArray[lnI, 1] = lcString

 laArray[lnI, 2] = lnI

 else

 return .F.

 endif not isnull(lcString)

 next lnI

* Now sort the array and reorder the values in

* the source array by cloning it and copying

* the values from the each row in the clone to

* the new row in the source array.

https://en.wikipedia.org/wiki/Alphabetical_order
http://tinyurl.com/hndt65e

 asort(laArray, 1, -1, lnOrder, 1)

 acopy(taArray, laClone)

 for lnI = 1 to lnRows

 lnIndex = laArray[lnI, 2]

 if lnCols > 0

 for lnJ = 1 to lnCols

 taArray[lnI, lnJ] = laClone[lnIndex, ;

 lnJ]

 next lnJ

 else

 taArray[lnI] = laClone[lnIndex]

 endif lnCols > 0

 next lnI

* Just use ASORT to do the job.

else

 asort(taArray, lnColumn, -1, lnOrder, 0)

endif vartype(taArray[1, lnColumn]) = 'C'

return .T.

NaturalSort.prg calls NaturalSortKey.prg.
Originally, the code in NaturalSortKey.prg was
included in NaturalSort.prg but Mike Potjer
pointed out that splitting the code into a separate
routine would allow natural sorting in other
places such as a SQL statement. NaturalSortKey
(Listing 2) does the hard part: assigning a natural
key to a string by left-padding numeric sections to
a consistent length with zeros so they sort
properly. It accepts two parameters: the string
and the length to use for numeric sections
(optional: if it isn’t passed, a length of 20 is used).
Again, the code should be easy to understand.

Listing 2. NaturalSortKey.prg assigns a natural key to a string.

lparameters tcKey, ;

 tnLength

local lnLength, ;

 llInNumeric, ;

 lcString, ;

 lnI, ;

 lcChar, ;

 llNumeric, ;

 lcNumeric

* Define the constants.

#define cnLENGTH 20

 && the length to pad numeric sections to

 && by default

* Bug out if the data type is wrong.

if vartype(tcKey) <> 'C'

 return .NULL.

endif vartype(tcKey) <> 'C'

* Use a default length if not specified.

do case

 case pcount() = 1

 lnLength = cnLENGTH

 case vartype(tnLength) = 'N' and ;

 between(tnLength, 1, 60)

 lnLength = tnLength

 otherwise

 return .NULL.

endcase

* Create a key that will sort properly by

* looking for numeric sections and left-

* padding them with zeros.

llInNumeric = .F.

lcString = ''

for lnI = 1 to len(tcKey)

 lcChar = substr(tcKey, lnI, 1)

 llNumeric = isdigit(lcChar) or ;

 (lcChar = '.' and ;

 isdigit(substr(tcKey, lnI + 1, 1)))

 do case

 case llNumeric and llInNumeric

 && if we have a digit and we're already

 && in a numeric

 && section, add to the numeric part

 lcNumeric = lcNumeric + lcChar

 case llNumeric

 && if we have a digit and we're not in a

 && numeric section, flag that we are in

 && such a section and add to the numeric

 && part

 llInNumeric = .T.

 lcNumeric = lcChar

 case llInNumeric

 && we don't have a digit and we were in

 && a numeric section so pad the section

 && and add it to our string

 llInNumeric = .F.

 lcString = lcString + ;

 padl(lcNumeric, lnLength, '0') + ;

 lcChar

 otherwise

 lcString = lcString + lcChar

 endcase

next lnI

* Finish the string if we were still

* processing a numeric section.

if llInNumeric

 lcString = lcString + ;

 padl(lcNumeric, lnLength, '0')

endif llInNumeric

return lcString

TestNaturalSortFiles.prg (Listing 3) tests
NaturalSort.prg with filenames. It first lists the
filenames in the order created by ASORT, then the
results created by NaturalSort.prg.

Listing 3. TestNaturalSortFiles.prg tests sorting filenames.

* Create an array of filenames.

dimension laFiles[7]

laFiles[1] = 'a1.txt'

laFiles[2] = 'a2.txt'

laFiles[3] = 'a3.txt'

laFiles[4] = 'a10.txt'

laFiles[5] = 'a11.txt'

laFiles[6] = 'a100.txt'

laFiles[7] = 'a101.txt'

* Display the ASCII sort.

asort(laFiles)

clear

? 'ASCII sort'

for lnI = 1 to 7

 ? laFiles[lnI]

next lnI

* Display the natural sort.

NaturalSort(@laFiles)

?

? 'Natural sort'

for lnI = 1 to 7

 ? laFiles[lnI]

next lnI

Running the program shows that
NaturalSort.prg sorts as expected:

ASCII sort
a1.txt
a10.txt
a100.txt
a101.txt
a11.txt
a2.txt
a3.txt

Natural sort
a1.txt
a2.txt
a3.txt
a10.txt
a11.txt
a100.txt
a101.txt

TestNaturalSortIDs.prg (Listing 4) is similar,

but it sorts a set of product codes.

Listing 4. TestNaturalSortIDs.prg tests sorting product codes.

* Create an array of product IDs.

dimension laItems[10]

laItems[1] = 'A-1'

laItems[2] = 'A-2'

laItems[3] = 'A-3'

laItems[4] = 'A-10'

laItems[5] = 'A-11'

laItems[6] = 'A-100'

laItems[7] = 'A-101'

laItems[8] = 'A-1-1'

laItems[9] = 'A-1-10'

laItems[10] = 'A-1-2'

* Display the ASCII sort.

asort(laItems)

clear

? 'ASCII sort'

for lnI = 1 to alen(laItems)

 ? laItems[lnI]

next lnI

* Display the natural sort.

NaturalSort(@laItems)

?

? 'Natural sort'

for lnI = 1 to alen(laItems)

 ? laItems[lnI]

next lnI

Here are the results of running this program.
Notice it properly handles multiple numeric
sections.

ASCII sort
A-1
A-1-1
A-1-10
A-1-2

A-10
A-100
A-101
A-11
A-2
A-3

Natural sort
A-1
A-1-1
A-1-2
A-1-10
A-2
A-3
A-10
A-11
A-100
A-101

TestNaturalSortSQL.prg (Listing 5) tests

sorting a cursor created by a SQL statement using
NaturalSortKey. It uses the same product codes
TestNaturalSortIDs.prg uses.

Listing 5. TestNaturalSortSQL.prg shows how to use

NaturalSortKey in a SQL statement.

* Create a cursor of product IDs.

create cursor PRODUCTS (ID C(10))

insert into PRODUCTS values ('A-1')

insert into PRODUCTS values ('A-2')

insert into PRODUCTS values ('A-3')

insert into PRODUCTS values ('A-10')

insert into PRODUCTS values ('A-11')

insert into PRODUCTS values ('A-100')

insert into PRODUCTS values ('A-101')

insert into PRODUCTS values ('A-1-1')

insert into PRODUCTS values ('A-1-10')

insert into PRODUCTS values ('A-1-2')

* Display the ASCII sort.

select * ;

 from PRODUCTS ;

 into cursor ASCIISort ;

 order by 1

browse

* Display the natural sort. Unfortunately, the

* first statement gives a "SQL: ORDER BY

* clause is invalid" error, so we have to

* include the sort value in the cursor.

*select ID ;

* from PRODUCTS ;

* into cursor NaturalSort ;

* order by NaturalSortKey(ID)

select ID, ;

 NaturalSortKey(ID) as SORT ;

 from PRODUCTS ;

 into cursor NaturalSort ;

 order by SORT

browse

Summary
NaturalSort.prg and NaturalSortKey.prg can sort
things your application displays in the order users
expect to see them rather than the ASCII order

used by commands and functions such as ASORT,
INDEX ON, and the ORDER BY clause of a SQL
SELECT statement. It’s just one more step to
creating a polished application that works how
users want.

Doug Hennig is a partner with Stonefield Software
Inc. He is the author of the award-winning Stonefield
Database Toolkit (SDT); the award-winning Stonefield
Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “VFPX: Open Source Treasure
for the VFP Developer,” “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was
a Microsoft Most Valuable Professional (MVP) from
1996 to 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

	Natural Sorting
	Summary

