
Mine Your Data With DynamiCube
Doug Hennig

Providing your users with the ability to analyze their data by breaking it down an unlimited number

of ways sounds like a “pie in the sky” goal. However, using the DynamiCube ActiveX control, you

can easily add this feature to any VFP application in less than an hour.

In the July 1997 issue of FoxTalk, I presented a technique and code for using a grid to drill down into data.

The idea was to allow the user to see different levels of data breakdown. For example, at the top level, they

could see sales by employee. They could then drill down into an employee to see sales for that employee

broken down by product, and drill down into a product to see sales for that employee and product broken

down by country, and so on. It took me quite a while to figure out how to do this, and I wasn’t completely

satisfied with the behavior (due to the way VFP handles grid partitions). This month, we’re going to look at

another way of doing this using a commercially available ActiveX control.

DynamiCube
Data Dynamics has created an ActiveX control called DynamiCube. This “dynamic data mining” control is

similar to Excel pivot tables but with a lot more flexibility and capabilities. It can be used in applications

created with languages supporting ActiveX controls, such as VFP, Visual Basic, or Delphi, and can be used

on Web sites to provide interactive data reporting.

 Data Dynamics calls DynamiCube “an open, interactive OLAP front-end, implemented as an Internet-

enabled lightweight ActiveX control”. DynamiCube provides extremely fast calculation, summarization,

and presentation of multi-dimensional data. It can be either bound directly to data or used unbound by

manually loading data. Because of its interactive nature, users can rearrange the fields in the control and

have DynamiCube instantly recalculate and display the results.

 Figure 1 shows a VFP form called SALECUBE that I created with the DynamiCube control. This form,

which we’ll look at in detail in a moment, displays sales information from the TESTDATA database that

comes with VFP.

Figure 1. VFP form showing the DynamiCube control in action.

 This form shows sales broken down by employee, product, country, and year. Totals for each of these

breakdowns are automatically calculated and displayed. For example, under the set of countries for a

particular employee and product is a “Total” entry showing the total sales for the specific employee and

product. The last “years” column shows the total sales for the specific employee, product, and country.

Scrolling to the bottom of the control shows column totals for each year.

 Run this form so you can play with the DynamiCube control to get an idea of its features (note: before

you run or modify the form, you’ll need to install the control on your system; see the next section in this

article for details). Here are some of the things a user can do with this control:

 Resize columns as desired.

 Expand or collapse breakdown fields. For example, click on the “-” in front of a product name

to collapse it and notice all country details disappear and the sales grid portion of the control

displays the rolled up sales value by year for the product. Similarly, collapse an employee

name and notice breakdowns by product disappear so only rolled up sales values by year are

shown for the employee.

 Filter on any field. Column headings are combo boxes; dropping the combo box down

displays all the values in the column as check boxes. Unchecking a value filters that value out

of the list, automatically adjusting totals appropriately.

 Print or preview the data. Click on either the Print or Preview buttons. DynamiCube has

several properties allowing you to control the look of the printed output, such as headers and

footers, margins, fonts, orientation, color, etc.

 Now the coolest feature: breakdown the sales values differently than originally presented by

simply dragging a column to a new location. For example, drag the employee column heading

until it appears after the country column. Sales values are instantly recalculated so they are

now broken down by product, then country, then employee. Drag country up beside year, and

year down beside employee. The form will now appear similar to that in Figure 2.

Figure 2. Sales broken down differently after rearranging the DynamiCube.

Using the DynamiCube Control

The DynamiCube control is used as any other ActiveX control. First, install it on your system. You can

either order it ($499 per developer license) or obtain a 30-day trial version from the Data Dynamics Web

site (www.datadynamics.com). Running the supplied EXE installs the OCX, help, and other support files in

a directory of your choosing (a refreshing change from ActiveX controls which insist on installing in

\WINDOWS\SYSTEM) and registers it in the Windows Registry. Next, make it available to VFP by

choosing the Controls page in the VFP Tools Options dialog, selecting ActiveX controls, and then checking

the checkbox for the DCube class in the list of installed controls. The DynamiCube control will then be

available in the ActiveX controls toolbar when you’re working in the Class or Form Designer.

 The help file (DCUBE.HLP) that accompanies the control is indispensable for working with the

control, providing details on properties, events, and methods (PEMs) of the objects contained within the

control. The DynamiCube control consists of three objects: the control itself, the Fields collection, and the

DataItems collection. Each has its own set of PEMs you’ll work with. For example, you’ll set up the fields

that appear in the control using the Add method of the Fields collection.

 Here are details on how the SALECUBE form was created. First, the form was created from the VFP

Form class, and the following properties set in the Property Sheet:

 AutoCenter: .T.

 Caption: Sales Analysis

 MinHeight: 200

 MinWidth: 540

 Name: frmSales

 Normally, I’d populate the DataEnvironment with the tables used as the source of data, but to prevent

pathing problems when you try out this form (for example, if you run the form on a different drive than

where the VFP TESTDATA database is located), I just manually opened them in the Load method of the

form. Here’s the code:

set talk off

set deleted on

* Open the tables we need.

open database (home() + 'SAMPLES\DATA\TESTDATA')

use CUSTOMER in 0

use EMPLOYEE in 0

use ORDERS in 0

use ORDITEMS in 0

use PRODUCTS in 0

 Next, I dragged the DynamiCube control from the ActiveX control toolbar to the form and sized it as

desired. Although I didn’t, you could set some properties of the control as desired by right-clicking on it

and choosing “DCube Class Properties” from the menu. Some obvious ones you may want to change are

fonts, color, and printer settings.

 The Init method of the form sets some properties and creates some data fields for the DynamiCube

control. The DCConnectType property indicates how the control is connected to the data source.

DynamiCube can use Remote Data Object (RDO), Data Access Object (DAO), or ODBC to directly

connect to the data source. For simplicity and performance, I chose to not have the control bound directly to

data but to instead manually load the data, so I set DCConnectType to 99. The HeaderCaption property is

the text that will be printed on the top of each page. The Add method of the Fields collection adds a field to

the control. The first parameter of this method is the name of the field and the second is the caption for the

column heading. The third parameter is the “orientation” of the field; a field can be a row (2), a column (1),

a data field (3), a page, or hidden. In this case, we’re using Employee, Product, and Country as rows, Year

as a column, and Sales as the data values in the grid. Because loading the data can take a while and we don’t

want the user to watch the control flash as it’s built, we’ll temporarily move it off-screen.

with This.oCube

 .DCConnectType = 99

 .HeaderCaption = This.Caption

http://www.datadynamics.com)/

 .Fields.Add('Employee', 'Employee', 2)

 .Fields.Add('Product', 'Product', 2)

 .Fields.Add('Country', 'Country', 2)

 .Fields.Add('Year', 'Year', 1)

 .Fields.Add('Sales', 'Sales', 3)

endwith

* Move the form off-screen so the user doesn't see it

* until the DynamiCube has loaded all its data.

This.Left = -(This.Width + 10)

 The FetchData event of the control fires automatically when the DCConnectType property is set to 99

and the control needs data to display. In this event, we’ll use a SQL SELECT statement to create a cursor of

individual sales, including the employee name, product name, country, and year. We’ll then process this

cursor, using the AddRow method of the DynamiCube control to add a set of data for all fields at once.

Notice we haven’t summarized or grouped the data; the control will do that for us automatically, so we just

provide it with the raw values.

local lnLength, ;

 laData[7]

* Create a cursor containing the data we want to display.

lnLength = len(EMPLOYEE.LAST_NAME + ;

 EMPLOYEE.FIRST_NAME) + 2

select PRODUCTS.ENG_NAME as PRODUCT, ;

 year(ORDERS.ORDER_DATE) as YEAR, ;

 ORDITEMS.UNIT_PRICE * ORDITEMS.QUANTITY as PRICE, ;

 CUSTOMER.COUNTRY, ;

 padr(trim(EMPLOYEE.LAST_NAME) + ', ' + ;

 EMPLOYEE.FIRST_NAME, lnLength) as EMPLOYEE ;

 from PRODUCTS, ;

 ORDERS, ;

 ORDITEMS, ;

 CUSTOMER, ;

 EMPLOYEE ;

 where PRODUCTS.PRODUCT_ID = ORDITEMS.PRODUCT_ID and ;

 ORDITEMS.ORDER_ID = ORDERS.ORDER_ID and ;

 ORDERS.CUST_ID = CUSTOMER.CUST_ID and ;

 ORDERS.EMP_ID = EMPLOYEE.EMP_ID ;

 into cursor SALES

* Populate the DynamiCube with this data.

scan

 laData[1] = trim(EMPLOYEE)

 laData[2] = trim(PRODUCT)

 laData[3] = trim(COUNTRY)

 laData[4] = YEAR

 laData[5] = PRICE

 This.AddRow(@laData)

endscan

* Close the cursor.

use

 The QueryComplete event fires when the control has finished summarizing all its data. All we’ll do

here is re-center the form to move it back on-screen.

Thisform.AutoCenter = .T.

 All that’s left is a few bells and whistles. The Click events of the Print and Preview buttons call the

Print and PrintPreview methods of the control. The Resize event of the form resizes the DynamiCube

control and repositions the buttons.

local lnWidth, ;

 lnGap, ;

 lnLeft

with This

 .LockScreen = .T.

 .oCube.Width = .Width

 .oCube.Height = .Height - 50

 .cmdPrint.Top = .Height - 40

 .cmdPreview.Top = .Height - 40

 lnWidth = .cmdPreview.Left + ;

 .cmdPreview.Width - .cmdPrint.Left

 lnGap = .cmdPreview.Left - ;

 .cmdPrint.Left - .cmdPrint.Width

 lnLeft = int((.Width - lnWidth)/2)

 .cmdPrint.Left = lnLeft

 .cmdPreview.Left = lnLeft + .cmdPrint.Width + lnGap

 .LockScreen = .F.

endwith

Summary
The DynamiCube ActiveX control can provide data mining features that would take you days, weeks, or

even months to write in native VFP code. Providing your users with the ability to analyze their data in

different ways without constantly asking you to create new reports is something both you and they will get

used to very quickly.

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit for Visual FoxPro and

Stonefield Data Dictionary for FoxPro 2.x. He is also the author of “The Visual FoxPro Data Dictionary” in Pinnacle

Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at user groups and regional conferences all

over North America, and spoke at the 1997 Microsoft FoxPro Developers Conference. He is a Microsoft Most

Valuable Professional (MVP). CompuServe 75156,2326 or dhennig@stonefield.com.

mailto:dhennig@stonefield.com

