
ComboBoxes are Looking Up 
Doug Hennig 

 
Most applications need a way for a user to select a lookup value for certain fields. In this, the first of 

a two-part article on reusable tools for managing lookups, Doug presents a combobox class for 

lookup selection and a form for maintaining lookup values. 

 

Almost every application I’ve ever written required lookup tables. By “lookup” tables, I mean one or more 

tables containing the range of values for one or more fields in the “main” tables. For example, you might 

have a customer table with a TITLE field for the title of the contact. Rather than having the user type the 

title, you decide to have a table of titles and store the ID for the title of a given contact in the TITLE field. 

The titles table is related one-to-many to the customer table, with TITLES.ID = CUSTOMER.TITLE. 

Another simple example is a states lookup table so the user can enter “TX” rather than typing “Texas”. 

A table of lookup values typically has a simple structure: ID and NAME (or DESCRIPTION or 

VALUE or something similar). The ID field can be either assigned by the user (for example, the state code 

in the case of a states table) or a surrogate key assigned by the system (almost always a better idea). Since 

an application can have dozens or even hundreds of fields that require lookup values, many developers 

choose to have a single lookup table for an entire application rather than having dozens or hundreds of 

small, identically structured lookup tables with just a few records each. The way you distinguish which 

records contain the values for a given field in a given table is with TABLE and FIELD fields. For example, 

Table 1 shows lookup values for CUSTOMER.TITLE, CUSTOMER.CATEGORY, and 

EMPLOYEE.TYPE. To present a list of lookups for a single field (such as in a combobox bound to that 

field), you simply set a filter or perform a SQL SELECT so you have a set of those records for the desired 

table and field. 

 

Table 1. Records in a single lookup table. 
 
TABLE FIELD NAME 
CUSTOMER TITLE Owner 
CUSTOMER TITLE President 
CUSTOMER TITLE Vice-President 
CUSTOMER CATEGORY Prospect 
CUSTOMER CATEGORY Dead-beat 
CUSTOMER CATEGORY Valued client 
EMPLOYEE TYPE Manager 
EMPLOYEE TYPE Clerk 

 

 I use a table called, strangely enough, LOOKUPS.DBF. It has the following structure: ID I, TABLE 

C(30), FIELD C(30), and NAME C(40). There’s a primary index on ID and a tag called LOOKUPS on 

upper(TABLE + FIELD). 

 So, the question comes up: how does the user select a specific lookup value for a given record? 

Although there may be a lot of approaches to this, I’ve typically used three of them: a textbox where the 

user enters a code representing the lookup value (usually used when the ID in the lookup table is assigned 

by the user or for heads-down data entry where a commonly understood code, such as “MGR” for manager 

and “CLK” for clerk, is used), a combobox displaying the lookup values (usually used when the ID is 

system-assigned), and an auto-fill combobox in which the user starts typing the lookup value and the 

combobox automatically fills with the first value matching what they’ve typed (discussed in my column in 

the March 1997 issue of FoxTalk). In this month’s column, we’ll use a combobox for selecting lookup 

values; next month, we’ll discuss a textbox and the subsequently required picklist. 

 

SFLookupComboBox Class 
Because I found myself frequently creating comboboxes bound to lookup values, I created a generic class 

that does this for me. SFLookupComboBox (defined in SFCCTRLS.VCX) is a subclass of SFComboBox, 

our combobox base class located in SFCTRLS.VCX. Just to refresh your memory, SFComboBox has a 

custom aItems array property that’s used as the RowSource for the items in the combobox (RowSourceType 



is set to 5-Array), so we’ll be populating that array with the values we want displayed. I added the new 

properties shown in Table 2. I also set the BoundColumn property to 2 because we want the first column of 

aItems to be the display value for each record and the second column to be the primary key of the record. 

 

Table 2. SFLookupComboBox properties. 
 
Property Purpose 
cIDField The name of the field in the lookup table containing the primary key (default = ID). 
cLookupAlias The alias of the lookup table. 
cLookupForm The name of the form used to maintain the lookup table; can be left blank if it’s the same name as 

the lookup table. 
cNameField The name of the field in the lookup table containing the name or description (default = NAME). 

 

 The Init() method calls This.Requery() to populate the combobox. Why not populate the combobox in 

Init() rather than calling Requery() (which we’ll see in a second)? We’ll see later that we’ll want to update 

the values in the combobox when the user edits them, so we’ll need to repopulate the aItems array, and we 

don’t want to have to write the same code twice. 

 The Requery() method is where the interesting stuff is located. It does a SQL SELECT from the alias 

defined in cLookupAlias into the aItems array, grabbing the field specified in cNameField for the first 

column and the field specified in cIDField for the second column. Notice what it puts into the third column: 

an upper-case version of the first column. This isn’t displayed or used for anything other than for the 

ORDER BY clause, which makes the combobox display values in a case-insensitive order. Also notice that 

this class can be used with lookup tables that don’t have TABLE and FIELD columns; it selects only the 

values for the table and field bound to the combobox if a common lookup table is used, or all records if 

multiple lookup tables are used. 

 
local lnPos, ; 

  lcTable, ; 

  lcField, ; 

  lcName, ; 

  lcID 

with This 

  lnPos = at('.', .ControlSource) 

  if lnPos = 0 or type(.cLookupAlias + '.TABLE') = 'U' 

    store '' to lcTable, lcField 

  else 

    lcTable = upper(padr(left(.ControlSource, ; 

      lnPos - 1), fsize('TABLE', .cLookupAlias))) 

    lcField = upper(padr(substr(.ControlSource, ; 

      lnPos + 1), fsize('FIELD', .cLookupAlias))) 

  endif lnPos = 0 ... 

  lcName = .cNameField 

  lcID   = .cIDField 

  if empty(lcTable) 

    select &lcName, ; 

        &lcID, ; 

        upper(&lcName) ; 

      from (.cLookupAlias) ; 

      order by 3 ; 

      into array .aItems 

  else 

    select &lcName, ; 

        &lcID, ; 

        upper(&lcName) ; 

      from (.cLookupAlias) ; 

      where upper(TABLE + FIELD) = lcTable + lcField ; 

      order by 3 ; 

      into array .aItems 

  endif empty(lcTable) 

endwith 

 

 Since BoundColumn is 2, the combobox will display the description of the lookup values but will be 

bound to the primary key of each lookup record. 



 The ShortcutMenu() method is called from the ShowMenu() method, which is itself called from the 

RightClick() method (this scheme is used in all base classes in SFCTRLS.VCX). When the user right-clicks 

on the combobox, the ShowMenu() method defines a shortcut menu and passes its name to the 

ShortcutMenu() method, which populates the menu, after which ShowMenu() then displays the menu and 

handles the user’s selection. The reason I do it this way rather than calling an MPR (shortcut menu 

program) is because I want the ability to add additional items to the menu in subclasses (the base 

ShortcutMenu() behavior puts items for Cut, Copy, Paste, Clear, and Select All into the menu). 

SFLookupComboBox’s ShortcutMenu() method adds a bar so the user can edit the list of items in the 

combobox. Here’s the code: 

 
lparameters tcMenuName 

dodefault(tcMenuName) 

lnBars = cntbar(tcMenuName) 

define bar lnBars + 1 of (tcMenuName) ; 

  prompt '\-' 

define bar lnBars + 2 of (tcMenuName) ; 

  prompt '\<Edit List' 

on selection bar lnBars + 2 of (tcMenuName) ; 

  loObject.EditList() 

 

 In case you’re wondering, loObject is defined in ShowMenu() as an object reference to the combobox 

itself. We can’t use code like This.EditList() in menus, so I define loObject as a private variable that 

contains a reference to the combobox, so menu selections can call methods of the combobox. 

 The EditList() method is called when the user chooses “Edit List” from the shortcut menu for the 

combobox. This method calls the lookup maintenance form whose name is defined in the cLookupForm 

property; if cLookupForm is empty, this method assumes a form of the same name as the lookup table 

exists. My application class (SFApplication) has an OpenForm method for forms management, so it’s called 

if oApp exists; if not, the form is run directly with DO FORM. In either case, the field this instance of the 

combobox is bound to is passed to the form as separate field and alias names, along with an object reference 

to the combobox. 

 
local lcTable, ; 

  lcField, ; 

  lcForm 

with This 

  lnPos = at('.', .ControlSource) 

  if lnPos = 0 

    store '' to lcTable, lcField 

  else 

    lcTable = left(.ControlSource, lnPos - 1) 

    lcField = substr(.ControlSource, lnPos + 1) 

  endif lnPos = 0 

  lcForm = iif(empty(.cLookupForm), .cLookupAlias, ; 

    .cLookupForm) 

  if type('oApp') = 'O' and not isnull(oApp) 

    oApp.OpenForm(lcForm, lcTable, lcField, This) 

  else 

    do form (lcForm) with lcTable, lcField, This 

  endif type('oApp') = 'O' ... 

endwith 

 

 SFLookupComboBox can be used by simply dropping it on a form, binding it to a field in a table, and 

setting a few properties (mainly cLookupAlias, but possibly others if the structure of the lookup table is 

different than the LOOKUPS.DBF I discussed earlier). However, it might be wise to create subclasses of 

SFLookupComboBox with these properties filled in, especially if you use separate lookup tables rather than 

one combined one. 

 

Lookup Maintenance Form 
The lookup maintenance form is LOOKUPS.SCX. It’s based on SFMaintForm, the table maintenance form 

class defined in SFFORMS.VCX. There are three controls on the form (not counting labels): a combobox of 

tables that use lookup values, a second combobox of fields that use lookup values from the table selected in 



the first combobox, and a grid showing the list of lookup values for the selected table and field. The form is 

shown in Figure 1. 

 

Figure 1. LOOKUPS.SCX, the lookup maintenance form. 

 
 

 The aItems array of the tables combobox is populated with unique table names from the LOOKUPS 

table using the following code in its Init() method: 

 
select TABLE ; 

  from LOOKUPS ; 

  group by 1 ; 

  into array This.aItems 

 

Its AnyChange() method, which is called whenever an interactive or programmatic change is made to the 

value of the combobox, calls Thisform.SelectTable() to handle the table selection. That method populates 

the aItems array of the fields combobox with unique field names for the specified table from LOOKUPS. 

Thus, when a table is selected, the field combobox shows only fields from that table. If there’s only one 

field from that table, the combobox is disabled. 

 
local lnIndex, ; 

 lcTable 

with This.cboField 

  lnIndex = This.cboTable.ListIndex 

  if lnIndex > 0 

    lcTable = This.cboTable.aItems[lnIndex] 

    select FIELD ; 

      from LOOKUPS ; 

      where TABLE = lcTable ; 

      group by 1 ; 

      into array .aItems 

    .Enabled = _tally > 1 

    .Requery() 

    .ListIndex = 1 

  endif lnIndex > 0 

endwith 

 

 The AnyChange() method of the fields combobox needs to display the list of values for the selected 

field in the selected table in the grid. It does this by calling a custom GetLookups() method of the form, and 

then refreshes the form. 

 
with Thisform 

  .GetLookups() 

  .RefreshForm() 

endwith 



 

 The grid has a parameterized view, LV_LOOKUPS_FOR_TABLE_FIELD, as its RecordSource. This 

simple view contains only those records from the LOOKUPS tables that match a specific table and field; its 

definition is as follows (see MAKEVIEW.PRG for which properties of the view are set to make the view 

updatable): 

 
select *; 

  from TESTDATA!LOOKUPS; 

  where LOOKUPS.TABLE = ?vpTable and ; 

    LOOKUPS.FIELD = ?vpField ; 

  order by LOOKUPS.NAME 

 

The vpTable and vpField parameters contain the desired table and field names, respectively. The 

GetLookups() method simply sets these parameters to the selected table and field and then requeries the 

view. 

 
local lnTable, ; 

  lnField, ; 

  vpTable, ; 

  vpField, ; 

  lcAlias 

with This 

  lnTable = .cboTable.ListIndex 

  lnField = .cboField.ListIndex 

  if lnTable > 0 and lnField > 0 

    vpTable = .cboTable.aItems[lnTable] 

    vpField = .cboField.aItems[lnField] 

    lcAlias = .grdLookups.RecordSource 

    if cursorgetprop('SourceType', lcAlias) <> 3 

      requery(lcAlias) 

    endif cursorgetprop('SourceType', lcAlias) <> 3 

  endif lnTable > 0 ... 

endwith 

 

 If the lookup maintenance form is called from a menu item, we want the user to be able to select a table 

and field and then enter lookup values for that field. However, if the form is called from the EditList() 

method of an SFLookupComboBox, we don’t want the user to see the tables and fields comboboxes and we 

want the grid to automatically show the lookup values for the field the SFLookupComboBox was bound to 

(Figure 2 shows what the form looks like under these conditions). That’s handled by passing the table and 

field name to the Init() method of the form, along with an object reference to the SFLookupComboBox. The 

Init() method hides the tables and fields combobox and moves the grid up and resizes it to cover the empty 

space. It also sets the ListIndex of hidden comboboxes to the desired table and field, which causes the 

AnyChange() method of each to fire, which does the tasks outlined above to ensure the grid displays the 

proper records (isn’t it fun how all this stuff ties together when you do things right? <g>). Here’s the code 

for the Init() method: 

 
lparameters tcTable, ; 

  tcField, ; 

  toCaller 

local lnTop, ; 

  lnIndex 

dodefault() 

with This 

  if empty(tcTable) 

    .cboTable.ListIndex = 1 

  else 

    store .F. to .cboTable.Visible, ; 

      .lblTable.Visible, .cboField.Visible, ; 

      .lblField.Visible 

    lnTop = .grdLookups.Top 

    .grdLookups.Top    = .cboTable.Top 

    .grdLookups.Height = .grdLookups.Height + ; 

      lnTop - .grdLookups.Top 

    lnIndex = ascan(.cboTable.aItems, tcTable) 



    .cboTable.ListIndex = lnIndex 

    lnIndex = ascan(.cboField.aItems, tcField) 

    .cboField.ListIndex = lnIndex 

    .Caption = 'Edit ' + ; 

      proper(alltrim(.cboField.aItems[lnIndex])) + ; 

      ' List' 

    .oCaller = toCaller 

  endif empty(tcTable) 

endwith 

 

Figure 2. The lookup maintenance form when called with a table and field name. 

 
 

 Since the lookup maintenance form is modeless, there’s no return value to send back to the 

SFLookupComboBox telling it that the user added, edited, or deleted lookup values. That’s why we passed 

an object reference to the SFLookupComboBox to the form, which is stored in the oCaller property; the 

Destroy() method of the form tells the SFLookupComboBox to requery itself. Here’s the code: 

 
with This 

  if type('.oCaller') = 'O' and ; 

    not isnull(.oCaller) and ; 

    pemstatus(.oCaller, 'Requery', 5) 

    .oCaller.Requery() 

  endif type('.oCaller') = 'O' ... 

endwith 

 

 The only other custom code in LOOKUPS.SCX is the AddRecord method, which is called when a new 

record is added. We need to override the normal behavior of adding a blank record because we want the ID, 

TABLE, and FIELD fields filled in with the next available ID value (NEXTID.PRG will do that for us) and 

the values of the table and field comboboxes. 

 
with Thisform 

  lcAlias = .grdLookups.RecordSource 

  insert into (lcAlias) ; 

      (ID, ; 

      Table, ; 

      Field) ; 

    values ; 

      (NextID('LOOKUPS'), ; 

      .cboTable.aItems[.cboTable.ListIndex], ; 

      .cboField.aItems[.cboField.ListIndex]) 

  .RefreshForm() 

endwith 

 

Putting it All Together 



As an example of how SFLookupComboBox is used, look at the CUSTOMER.SCX sample form available 

from the Subscriber Downloads site. This form, which is based on SFMaintForm, has no custom code in it. 

It simply has the CUSTOMER and LOOKUPS tables included in its DataEnvironment, has textboxes 

bound to the COMPANY and CONTACT fields, and an SFLookupComboBox bound to TITLE. The only 

properties set for the combobox are Width and cLookupAlias, which is set to LOOKUPS. Run this form 

and notice that the title for each contact shows correctly as you move through the records using the simple 

toolbar that appears. You can choose another title from the combobox, or right-click on the combobox and 

bring up the lookup maintenance form by choosing Edit List. Add a few new titles, then close the 

maintenance form and notice the new titles are available in the combobox. 

 

Conclusion 
This month, we looked at a generic combobox class for choosing lookup values and a form for maintaining 

the lookup values in an application. Next month, we’ll examine a container class consisting of a textbox into 

which a lookup code is entered and a button to display a picklist of values. As usual, both the container and 

picklist classes will be reusable generic classes. 

 
Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author of 

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit and Stonefield Query. He is 

also the author of “The Visual FoxPro Data Dictionary” in Pinnacle Publishing’s “The Pros Talk Visual FoxPro” 

series. Doug has spoken at the 1997 and 1998 Microsoft FoxPro Developers Conferences (DevCon) as well as user 

groups and regional conferences all over North America. He is a Microsoft Most Valuable Professional (MVP). 

CompuServe 75156,2326 or dhennig@stonefield.com. 

mailto:dhennig@stonefield.com

