
Windows Event Binding Made Easy
Doug Hennig

A feature available in other development environments but missing in VFP is the ability to capture

Windows events. VFP 9 extends the BINDEVENT() function to allow our own code to be called when

Windows passes certain messages to VFP windows. This has a wide range of uses, some of which

Doug examines in this month’s article.

Windows communicates events to applications by passing them messages. Although VFP exposes some of

these messages through events in VFP objects, such as MouseDown and Click, many messages are not

available to VFP developers. One common request is the ability to detect an application switch. For

example, I created an application that hooks into GoldMine, a popular contact management system,

displaying additional information about the current contact. If the user switches to GoldMine, moves to a

different contact, and then switches back to my application, it would be nice to refresh the display so it

shows information about the new contact. Unfortunately, there was no way to do this in earlier versions of

VFP; I had to rely on a timer that constantly checked which contact was currently displayed in GoldMine.

VFP 9 extends the BINDEVENT() function added in VFP 8 to support Windows messages. The syntax

for this use is:

bindevent(hWnd, nMessage, oEventHandler, cDelegate)

where hWnd is the Windows handle for the window that receives events, nMessage is the Windows

message number, and oEventHandler and cDelegate are the object and method that’s fired when the

message is received by the window. Unlike with VFP events, only one handler can bind to a particular

hWnd and nMessage combination. Specifying a second event handler object or delegate method causes the

first binding to be replaced with the second. VFP doesn’t check for valid hWnd or nMessage values; if

either is invalid, nothing happens because the specified window can’t receive the specified message.

For hWnd, you can specify _Screen.hWnd or _VFP.hWnd to trap messages sent to the application or a

form’s hWnd for those messages sent to the form. VFP controls don’t have a Windows handle, but ActiveX

controls do, so you also bind to them.

There are hundreds of Windows messages. Examples of such messages are:

WM_POWERBROADCAST (0x0218), sent when a power event occurs such as low battery or switching to

standby mode; WM_THEMECHANGED (0x031A), which indicates the Windows XP theme has changed;

and WM_ACTIVATE (0x0006), raised when switching to or from an application. (Windows messages are

usually referred to by a name starting with WM_.) Documentation for almost all Windows messages is

available at http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowui.asp. The

values for the WM_ constants are in the WinUser.H file that’s part of the Platform

SDK, which you can download from http://www.microsoft.com/msdownload/platformsdk/sdkupdate/.

The event handler method must accept four parameters: hWnd, the handle for the window that received

the message, nMessage, the Windows message number, and two Integer parameters, the contents of which

vary depending on the Windows message (the documentation for each message describes the values of these

parameters). The method must return an Integer, which contains a result value. One of the possible return

values is BROADCAST_QUERY_DENY (0x424D5144, which represents the string “BMQD”) that

prevents the event from occurring.

If you want the message to be processed in the normal manner, which is something most event handlers

should do, you have to call the VFP Windows message handler in your event handler method; this is sort of

like using DODEFAULT() in VFP method code. Your event handler method most likely returns the return

value of the VFP Windows message handler. Here’s an example of an event handler that does this (it does

nothing else):

lparameters hWnd, ;

 Msg, ;

 wParam, ;

 lParam

local lnOldProc, ;

http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowui.asp
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/

 lnResult

#define GWL_WNDPROC -4

declare integer GetWindowLong in Win32API ;

 integer hWnd, integer nIndex

declare integer CallWindowProc in Win32API ;

 integer lpPrevWndFunc, integer hWnd, integer Msg, ;

 integer wParam, integer lParam

lnOldProc = GetWindowLong(_screen.hWnd, GWL_WNDPROC)

lnResult = CallWindowProc(lnOldProc, hWnd, Msg, ;

 wParam, lParam)

return lnResult

Of course, the event handler doesn’t need to declare the Windows API functions or call

GetWindowLong each time; you could put that code in the Init method of the class, storing the return value

of GetWindowLong in a custom property, and then using that property in the call to CallWindowProc in the

event handler. The rest of the examples show this.

To determine which messages are bound, use AEVENTS(ArrayName, 1). It fills the specified array

with one row per binding and four columns, containing the values of the parameters passed to

BINDEVENT().

You can unbind events using UNBINDEVENT(hWnd [, nMessage]). Omitting the second parameter

unbinds all messages for the specified window. Pass only 0 to unbind all messages for all windows. Events

are also automatically unbound the next time the message occurs after the event handling object is

destroyed.

What would a new version of VFP be without some new SYS() functions? The VFP team added three

SYS() functions related to Windows events in VFP 9. SYS(2325, wHandle) returns the wHandle (an

internal VFP wrapper for hWnd) for the client window of the window whose wHandle is passed as a

parameter. (A client window is a window inside a window; for example, _Screen is a client window of

_VFP.) SYS(2326, nWnd) returns the wHandle for the window specified with hWnd. SYS(2327, wHandle)

returns the hWnd for the window specified with wHandle. The documentation for these functions indicates

they’re for BINDEVENT() scenarios using the VFP API Library Construction Kit. However, you can also

use them to get the hWnd for the client window of a VFP IDE window, as you’ll see in the next example.

Binding to VFP IDE window events
TestWinEventsForIDE.PRG, included in this month’s Subscriber Downloads, demonstrates event binding

to VFP IDE windows. Set lcCaption to the caption of the IDE window you want to bind events to (the code

shown below uses the Command window), then run the program. Activate and deactivate the window, move

it, resize it, and so forth; you should see Windows events echoed to the screen. When you finish, type

RESUME and press Enter in the Command window to clean up. To test this with the client window of an

IDE window, uncomment the indicated code. You can also bind to other events by adding BINDEVENT()

statements to this code; use the constants in WinEvents.H for the values for the desired events. Note that

TestWinEventsForIDE.PRG only works with non-dockable IDE windows, so before you run this program,

right-click in the title bar of the window you want to test and ensure Dockable is turned off.

Here’s the code for this PRG:

#include WinEvents.H

lcCaption = 'Command'

loEventHandler = createobject('IDEWindowsEvents')

lnhWnd = loEventHandler.FindIDEWindow(lcCaption)

* Uncomment this code to receive events for the window's

* client window instead

*lnhWnd = loEventHandler.FindIDEClientWindow(lcCaption)

if lnhWnd > 0

 bindevent(lnhWnd, WM_SETFOCUS, loEventHandler, ;

 'EventHandler')

 bindevent(lnhWnd, WM_KILLFOCUS, loEventHandler, ;

 'EventHandler')

 bindevent(lnhWnd, WM_MOVE, loEventHandler, ;

 'EventHandler')

 bindevent(lnhWnd, WM_SIZE, loEventHandler, ;

 'EventHandler')

 bindevent(lnhWnd, WM_MOUSEACTIVATE, loEventHandler, ;

 'EventHandler')

 bindevent(lnhWnd, WM_KEYDOWN, loEventHandler, ;

 'EventHandler')

 bindevent(lnhWnd, WM_KEYUP, loEventHandler, ;

 'EventHandler')

 bindevent(lnhWnd, WM_CHAR, loEventHandler, ;

 'EventHandler')

 bindevent(lnhWnd, WM_DEADCHAR, loEventHandler, ;

 'EventHandler')

 bindevent(lnhWnd, WM_KEYLAST, loEventHandler, ;

 'EventHandler')

 clear

 suspend

 unbindevents(0)

 clear

else

 messagebox('The ' + lcCaption + ;

 ' window was not found.')

endif lnhWnd > 0

define class IDEWindowsEvents as Custom

 cCaption = ''

 nOldProc = 0

 function Init

 declare integer GetWindowLong in Win32API ;

 integer hWnd, integer nIndex

 declare integer CallWindowProc in Win32API ;

 integer lpPrevWndFunc, integer hWnd, integer Msg, ;

 integer wParam, integer lParam

 declare integer FindWindowEx in Win32API;

 integer, integer, string, string

 declare integer GetWindowText in Win32API ;

 integer, string @, integer

 This.nOldProc = GetWindowLong(_screen.hWnd, ;

 GWL_WNDPROC)

 endfunc

 function FindIDEWindow(tcCaption)

 local lnhWnd, ;

 lnhChild, ;

 lcCaption

 This.cCaption = tcCaption

 lnhWnd = _screen.hWnd

 lnhChild = 0

 do while .T.

 lnhChild = FindWindowEx(lnhWnd, lnhChild, 0, 0)

 if lnhChild = 0

 exit

 endif lnhChild = 0

 lcCaption = space(80)

 GetWindowText(lnhChild, @lcCaption, len(lcCaption))

 lcCaption = upper(left(lcCaption, ;

 at(chr(0), lcCaption) - 1))

 if lcCaption = upper(tcCaption)

 exit

 endif lcCaption = upper(tcCaption)

 enddo while .T.

 return lnhChild

 endfunc

 function FindIDEClientWindow(tcCaption)

 local lnhWnd, ;

 lnwHandle, ;

 lnwChild

 lnhWnd = This.FindIDEWindow(tcCaption)

 if lnhWnd > 0

 lnwHandle = sys(2326, lnhWnd)

 lnwChild = sys(2325, lnwHandle)

 lnhWnd = sys(2327, lnwChild)

 endif lnhWnd > 0

 return lnhWnd

 endfunc

 function EventHandler(hWnd, Msg, wParam, lParam)

 ? 'The ' + This.cCaption + ;

 ' window received event #' + transform(Msg)

 return CallWindowProc(This.nOldProc, hWnd, Msg, ;

 wParam, lParam)

 endfunc

enddefine

The program starts by instantiating the IDEWindowsEvents class. It calls the FindIDEWindow method

to get a handle to the window whose caption is stored in the lcCaption variable. It then uses BINDEVENT()

to bind certain events from the desired window to the EventHandler method of the class. These events

include activating, deactivating, resizing, and moving the window, and keypresses within the window.

The Init method of the IDEWindowsEvents class declares the Windows API functions used by the

class. It also determines the value used to call the VFP Windows message handler and stores it in the

nOldProc property; this value is used by the EventHandler method to ensure normal event handling occurs.

The FindIDEWindow method uses a couple of Windows API functions to find the specified VFP IDE

window. It does this by looking at each child window of _VFP to see if its caption matches the caption

passed as a parameter. FindIDEClientWindow does something similar, but uses the new SYS() functions to

get the handle for the client window of the specified window.

When you run TestWinEventsForIDE.PRG, you will find not all events occur for all IDE or client

windows. For example, you won’t see keypress events for the Properties window. This is likely due to the

way VFP implements windows, which is somewhat different from other Windows applications.

Note that you won’t use code like this in a typical application; it’s intended for developers who want to

add behavior to the VFP IDE. The next example is something you might use in an end-user application.

Binding to application window and disk events

WindowsMessagesDemo.SCX (see Figure 1) demonstrates hooking into activate and deactivate events as

well as certain Windows shell events, such as inserting or removing a CD or USB drive. The latter shows an

interesting use of Windows events: the code registers _VFP to receive a subset of Windows shell events as a

custom Windows event.

The Init method of this form handles the necessary setup. As with TestWinEventsForIDE.PRG, it

declares several Windows API functions and stores the value for the VFP Windows event handler in the

nOldProc property. The call to SHChangeNotifyRegister tells Windows to register _VFP to receive disk

events, media insertion and removal events, and drive addition and removal events using the custom

message WM_USER_SHNOTIFY. (Items in upper-case in this example are constants defined in

WinEvents.H or ShellFileEvents.H.) This code then binds activate events for the form and device change

events and the custom message it just defined for _VFP to the HandleEvents method of the form. Note: The

call to SHChangeNotifyRegister requires Windows XP or later. If you’re using an earlier operating system,

comment out the assignment statement for This.nSHNotify.

local lcSEntry

* Declare the Windows API functions we'll use.

declare integer GetWindowLong in Win32API ;

 integer hWnd, integer nIndex

declare integer CallWindowProc in Win32API ;

 integer lpPrevWndFunc, integer hWnd, integer Msg, ;

 integer wParam, integer lParam

declare integer SHGetPathFromIDList in shell32 ;

 integer nItemList, string @szPath

declare integer SHChangeNotifyRegister in shell32 ;

 integer hWnd, integer fSources, integer fEvents, ;

 integer wMsg, integer cEntries, string @SEntry

declare integer SHChangeNotifyDeregister in shell32 ;

 integer

* Get a handle for the VFP Windows event handler.

This.nOldProc = GetWindowLong(_screen.hWnd, GWL_WNDPROC)

* Register us to receive certain shell events as a custom

* Windows event.

lcSEntry = replicate(chr(0), 8)

This.nShNotify = SHChangeNotifyRegister(_vfp.hWnd, ;

 SHCNE_DISKEVENTS, SHCNE_MEDIAINSERTED + ;

 SHCNE_MEDIAREMOVED + SHCNE_DRIVEADD + ;

 SHCNE_DRIVEREMOVED, WM_USER_SHNOTIFY, 1, @lcSEntry)

* Bind to the Windows events we're interested in.

bindevent(This.hWnd, WM_ACTIVATE, This, ;

 'HandleEvents')

bindevent(_vfp.hWnd, WM_DEVICECHANGE, This, ;

 'HandleEvents')

bindevent(_vfp.hWnd, WM_USER_SHNOTIFY, This, ;

 'HandleEvents')

* Hide the VFP main window so it's easier to see what's

* going on.

_screen.Visible = .F.

The HandleEvents method handles the registered events. It uses a CASE statement to determine which

event occurred and updates the Caption of the status label on the form appropriately. Certain event types

have “subevents” as indicated by the wParam parameter; this is used to determine the exact event that

occurred. For example, when a WM_ACTIVATE event occurs, wParam specifies whether the window was

activated or deactivated, and whether activation occurred by task switching (such as Alt-Tab) or by clicking

on the window.

Handling the custom shell event is a little more complicated than the other events. In this case, lParam

specifies the specific event and wParam contains the address where the path for the drive that was inserted

or removed is stored. So, SYS(2600) is used to copy the value from the address, the custom BinToInt

method (not shown here) converts the value to an integer, and the SHGetPathFromIDList Windows API

function provides the actual path from the integer. Finally, this method calls the HandleWindowsMessage

method, which simply calls CallWindowProc to get the normal event handling behavior. Here’s the code for

HandleEvents:

lparameters hWnd, ;

 Msg, ;

 wParam, ;

 lParam

local lcCaption, ;

 lnParm, ;

 lcPath

do case

* Handle an activate or deactivate event.

 case Msg = WM_ACTIVATE

 do case

* Handle a deactivate event.

 case wParam = WA_INACTIVE

 This.lblStatus.Caption = 'Window deactivated'

* Handle an activate event (task switch or clicking on

* the title bar).

 case wParam = WA_ACTIVE

 This.lblStatus.Caption = 'Window activated ' + ;

 '(task switch)'

* Handle an activate event (clicking in the client area

* of the window).

 case wParam = WA_CLICKACTIVE

 This.lblStatus.Caption = 'Window activated ' + ;

 '(click)'

 endcase

* Handle a device change event.

 case Msg = WM_DEVICECHANGE

 do case

 case wParam = DBT_DEVNODES_CHANGED

 This.lblStatus.Caption = 'DevNodes changed'

 case wParam = DBT_DEVICEARRIVAL

 This.lblStatus.Caption = 'Device arrival'

 case wParam = DBT_DEVICEREMOVECOMPLETE

 This.lblStatus.Caption = 'Device removal ' + ;

 'complete'

 endcase

* Handle a custom shell notify event.

 case Msg = WM_USER_SHNOTIFY

 do case

 case lParam = SHCNE_DRIVEADD

 lcCaption = 'Drive added'

 case lParam = SHCNE_DRIVEREMOVED

 lcCaption = 'Drive removed'

 case lParam = SHCNE_MEDIAINSERTED

 lcCaption = 'Media inserted'

 case lParam = SHCNE_MEDIAREMOVED

 lcCaption = 'Media removed'

 endcase

 lnParm = This.BinToInt(sys(2600, wParam, 4))

 lcPath = space(270)

 SHGetPathFromIDList(lnParm, @lcPath)

 lcPath = left(lcPath, at(chr(0), lcPath) - 1)

 This.lblStatus.Caption = lcCaption + ': ' + lcPath

endcase

return This.HandleWindowsMessage(hWnd, Msg, wParam, ;

 lParam)

Run the form and, as indicated in the instructions, click on other windows or the desktop and back on

the form to show activate and deactivate events. Insert and remove a removable device of some type, such

as USB drive or a digital camera, to see the events that occur.

There are several practical uses for the type of code shown in this form. For example, the GoldMine

add-on I mentioned at the beginning of the article can now refresh itself when it receives an activate event.

When I attach my digital camera to my computer with a USB cable, the software that comes with the

camera pops up and prompts me to download the pictures. A VFP real estate or medical imaging

application could do something similar with pictures of houses or injuries.

Figure 1. WindowsMessagesDemo.SCX demonstrates several Windows events that your
applications may be interested in.

Other uses
There are a lot of other uses for Windows events. For example, you may wish to prevent Windows from

shutting down under certain conditions, such as an import process not being complete. In that case, you’d

bind to the WM_POWERBROADCAST message and return BROADCAST_QUERY_DENY if the

shutdown should be halted.

I use Microsoft Money for doing my home finances and have always liked the fact that when I

download a statement from my bank, Money immediately knows about it and displays the appropriate

dialog. That type of behavior is now possible in VFP applications; rather than constantly polling a directory

to see if a file has been added (or removed or renamed or whatever), your application can now be notified

as soon as that occurs and take the appropriate action.

Summary
Support for Windows event binding is an incredible addition to VFP; it allows you to hook into just about

anything that goes on in Windows. I expect to see many cool uses of this as the VFP community starts to

learn about its capabilities.

Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the award-winning Stonefield

Database Toolkit (SDT) and Stonefield Query, and the MemberData Editor, Anchor Editor, New Property/Method

Dialog, and CursorAdapter and DataEnvironment builders that come with VFP. He is co-author of the “What’s New

in Visual FoxPro” series and “The Hacker’s Guide to Visual FoxPro 7.0,” all from Hentzenwerke Publishing. Doug

has spoken at every Microsoft FoxPro Developers Conference (DevCon) since 1997 and at user groups and developer

conferences all over North America. He is a long-time Microsoft Most Valuable Professional (MVP), having first been

honored with this award in 1996. Web: www.stonefield.com and www.stonefieldquery.com Email:

dhennig@stonefield.com

