
Custom UI Controls:
SFComboTree
Doug Hennig

Sometimes you need to display a list of items but
don’t have much room to do so. While a combo
box is usually used in this case, it doesn’t display
a hierarchical list or support checkboxes for items.
SFComboTree fits this need nicely.

Last issue, I started a series on custom UI controls
I frequently use, beginning with a splitter control.
This time, let’s look at the SFComboTree control.

SFComboTree
SFComboTree is so named because it combines a
VFP ComboBox control with a Microsoft
TreeView ActiveX control. Although it can be
used for a variety of needs, SFComboTree is most
useful for two specific tasks: a hierarchical list of
data and multiple checkboxes. In both cases, its
compact size makes it ideal for forms lacking
space for a large control like a list box or
TreeView.

In its “closed” state, SFComboTree looks like
a combo box, so it’s only 24 pixels high and only
as wide as you size it. When you “open” the
control, it’s as tall as you wish, temporarily
overlapping any other controls as necessary.
Figure 1 shows a sample form with two closed
SFComboTree controls. In Figure 2, the top
control is open so it displays a hierarchical list of
folders and temporarily covers the control below
it. Figure 3 shows an example of a list of multiple
checkboxes.

Figure 1. When it’s closed, SFComboTree takes up very little
space.

Figure 2. SFComboTree provides a combined combo box and
TreeView control so the user can easily view a hierarchical list.

Here are some of the characteristics of
SFComboTree:

 The combo box displays the text of the
selected node in the TreeView. However, as
you’ll see later, you can override that to, for
example, display a comma-delimited list of all
checked items.

 Programmatically, you can read from or write
to the Value property to find out which node
is selected or to automatically select a node
(such as displaying a value from an existing
record).

 Nodes in the TreeView control can have
images or not, checkboxes or not, and be
arranged hierarchically or not.

 The control automatically resizes when its
form or container does. Although the combo
box doesn’t get taller, it does get wider. The
TreeView resizes both vertically and
horizontally, regardless of whether the
control is opened or closed when the form is
resized.

 Clicking the combo box’s down arrow opens
the control. You can configure how the
control closes: clicking the down arrow again,
when the user clicks a node, when the user

double-clicks a node, or when the control
loses focus.

Using SFComboTree
To use SFComboTree, drop it on a form and set
the properties shown in Table 1 as desired. Fill in
the LoadTree and LoadImages methods with code
that loads the nodes in the TreeView and images
used by the TreeView, respectively. Leave
LoadImages empty if you don’t want images in
the TreeView (for example, if you’re using it with
checkboxes).

Table 1. Important properties of SFComboTree.

Property Description

FontName The font to use for the combo box
and TreeView (default Tahoma).

FontSize The font size (default 9).

ToolTipText The tool tip text for the container
and combo box.

lCloseOnClick .T. to close the control when the
user clicks an item in the TreeView
(default .F.).

lCloseOnDblClick .T. to close the control when the
user double-clicks an item in the
TreeView (default .F.).

lLoadImagesOnInit .T. to load images when the control
is initialized (default .F.).

lLoadTreeOnInit .T. to load the TreeView when the
control is initialized (default .F.).

lMoveToBack .T. to set the ZOrder of the control
to the back when it's closed (default
.T.)

lNoClose .T. to not have LostFocus close the
control (default .F.).

If you need to do some setup tasks before

loading images into the ImageList (for example,
you have to wait until the form the control is on
has initialized), set lLoadImagesOnInit to .F. and
call LoadImages manually once the setup is done.
Otherwise, set that property to .T. so LoadImages
is called from Init.

Init calls LoadTree to load the TreeView if
lLoadTreeOnInit is .T. That isn’t strictly necessary
because opening the control calls LoadTree if the
TreeView doesn’t have any nodes. However, if for
some reason you want the TreeView loaded
earlier, set lLoadTreeOnInit to .T.

TreeView controls are notoriously slow for
loading if you have a lot of nodes. To improve
performance when loading hierarchical nodes
into the TreeView, you can just load the top-level
nodes in LoadTree. SFComboTree can then load
the child nodes for a top-level node when it’s
expanded for the first time. Of course, you’ll need
to load at least one child node for every top-level

node or the “+” won’t appear for the node. To
make this work, create a child node under each
top-level node with “Loading…” as the text for
the node. When the user expands a node, the
TreeView’s Expand event fires, and code in that
event calls SFComboTree’s LoadExpandedNode
method if it finds a “Loading…” child node. Fill
in the code in LoadExpandedNode to load the
child nodes for the specified parent node. The net
result is that the child nodes are only loaded the
first time a parent node is expanded, which is
much less of a performance hit than loading all
nodes at one time, regardless of whether the user
will ever expand the parent nodes or not.

You can change any of the properties of oTree
or oImageList as necessary. For example, if you
want checkboxes, set oTree.CheckBoxes to .T.

If you have code you want to execute when
the user selects an item, put the code into the
ItemSelected method. Otherwise, you can check
the lChanged (.T. if the user changed the selected
node in the TreeView) and Value (the text of the
selected node) properties as necessary, such as
when the user saves a record or closes the form.

Try it out
The sample TestComboTree.SCX included with
the downloads for this article shows a couple of
typical uses for SFComboTree: a hierarchical list
and multiple checkboxes. The top instance, named
oFolder, displays a list of “folders” as stored in a
table named FOLDERS.DBF, some of which are
children of other folders. oFolder has
lCloseOnClick set to .T. so the control closes when
the user selects a node.

LoadTree has the following code:

local lcKey, ;

 lcName, ;

 lcParentKey

* Open the Folders table if necessary.

if used('FOLDERS')

 select FOLDERS

else

 select 0

 use FOLDERS again shared

endif used('FOLDERS')

* Go through each record and create a node in

* the TreeView under the appropriate parent

* node.

with This.oTree

 scan

 lcKey = 'F' + transform(ID)

 lcName = trim(NAME)

 lcParentKey = 'F' + transform(PARENT)

 if empty(PARENT)

 loNode = .Nodes.Add(, 1, lcKey, ;

 lcName, 'Folder')

 else

 loNode = .Nodes.Add(lcParentKey, 4, ;

 lcKey, lcName, 'Folder')

 endif empty(PARENT)

 endscan

endwith

LoadImages just loads a single image into the
ImageList control. Because lLoadImagesOnInit is
.T., oFolder loads the image from Init.

This.oImageList.ListImages.Add(1, 'Folder', ;

 loadpicture('Folder.bmp'))

ItemSelected simply displays the folder the
user selected by passing This.Value to
MESSAGEBOX().

Figure 2 shows the form when oFolder is
open. Because the TreeView is loaded from the
Folders table, it serves as an example for a
dynamically loaded hierarchical list.

The second SFComboTree on the form, named
oStatus, shows how to create a list of items with
checkboxes. Its LoadTree method loads a hard-
coded list of status values (which could easily be
loaded from a table in a real application) but also
turns on checkboxes for nodes. This allows you to
select multiple status values, such as “Sent” and
“Received”.

local loNode

with This.oTree

 .Checkboxes = .T.

 loNode = .Nodes.Add(, 1, 'S1', 'Sent')

 loNode = .Nodes.Add(, 1, 'S2', 'Filed')

 loNode = .Nodes.Add(, 1, 'S3', 'Received')

endwith

Because we want the combo box to show all
selected items, not just the last one clicked,
ItemSelected concatenates all checked items into a
comma-delimited list and sets Value to that list.

local lcStatus, ;

 lnI, ;

 loNode

with This.oTree

 lcStatus = ''

 for lnI = 1 to .Nodes.Count

 loNode = .Nodes(lnI)

 if loNode.Checked

 lcStatus = lcStatus + ;

 iif(empty(lcStatus), '', ',') + ;

 loNode.Text

 endif loNode.Checked

 next lnI

endwith

This.Value = lcStatus

Figure 3 shows the form when you open
oStatus.

Figure 3. The second SFComboTree in the sample form
demonstrates a list of items with checkboxes.

SFComboTree details
SFComboTree, defined in SFComboTree.VCX, is
subclass of Container with four controls: a
ComboBox named cboCombo, a TreeView control
named oTree, an ImageList control named
oImageList, and a shape named shpTreeView that
provides a border for the TreeView control. The
container has BorderWidth set to 0 so it doesn’t
appear as a container and Height set to 24, the
same height as cboCombo.

cboCombo has RowSourceType set to 1-Value
and RowSource set to nothing because we don’t
need the combo box to contain a list of choices; it
simply provides the visual appearance of a text
box and a drop down arrow. Style is 2-Dropdown
List so the user can’t type a value.

The custom changes to oTree’s properties
control its appearance and behavior. Appearance
is 0-Flat, HideSelection is .F., HotTracking is .T.,
Indentation is 10, LabelEdit is 1-Manual (so the
user can’t edit the nodes), and LineStyle is 1-
RootLines.

The Init method of SFComboTree sets up the
controls

with This

* Set up the combobox.

 .cboCombo.Anchor = 0

 .cboCombo.Width = .Width

 .cboCombo.Anchor = .Anchor

 .cboCombo.ToolTipText = .ToolTipText

* Save the current height of the control and

* the form and our Anchor value.

 dimension .aParentHeights[1, 2]

 .aParentHeights[1, 1] = .Height

 .aParentHeights[1, 2] = .Height

 .nInitialFormHeight = Thisform.Height

 .nSavedAnchor = .Anchor

* Set our font name and size to their own

* values so Assign takes care of setting the

* other controls.

 .FontName = .FontName

 .FontSize = .FontSize

* Call CloseControl so everything is sized

* properly for a closed appearance.

 .CloseControl()

* If we're supposed to, load the images now.

 if .lLoadImagesOnInit

 .LoadImages()

 endif .lLoadImagesOnInit

* If we have any images, use the ImageList

* control with the TreeView.

 if .oImageList.ListImages.Count > 0

 .oTree.Object.ImageList = .oImageList

 endif .oImageList.ListImages.Count > 0

* If we're supposed to, load the TreeView now.

 if .lLoadTreeOnInit

 .LoadTree()

 endif .lLoadTreeOnInit

endwith

The DropDown event of cboCombo, fired
when the user clicks the down arrow, opens or
closes the control by calling SFComboTree’s
OpenControl or CloseControl methods. There’s
also some code in that event to handle what may
be a bug in VFP; see the comments for details.

OpenControl is a fairly complex but well-
documented method. It’s responsible for
adjusting the control so the TreeView is visible
and sized appropriately, and ensuring the
selected node in the TreeView matches the value
displayed in the combo box.

local lnAnchor, ;

 loParent, ;

 lnParent, ;

 lnI, ;

 loNode

with This

* If we haven't already done so, load the

* TreeView the first time we're opened.

 if .oTree.Nodes.Count = 0

 .LoadTree()

 endif .oTree.Nodes.Count = 0

* If we loaded images later than from Init,

* use the ImageList control with the

* TreeView.

 if not .lLoadImagesOnInit and ;

 .oImageList.ListImages.Count > 0

 .oTree.Object.ImageList = .oImageList

 endif not .lLoadImagesOnInit ...

* Turn off anchoring since we'll be resizing

* and moving controls.

 lnAnchor = .Anchor

 store 0 to .Anchor, .cboCombo.Anchor, ;

 .oTree.Anchor, .shpTreeView.Anchor

* Save our height, then set it to the desired

* height, accounting for any resize of the

* form.

 .aParentHeights[1, 1] = .Height

 .Height = ;

 min(.nOriginalHeight + Thisform.Height - ;

 .nInitialFormHeight, Thisform.Height - ;

 This.Top - 5)

 .aParentHeights[1, 2] = .Height

* Save the height of all parent containers and

* adjust them if necessary. Also, save the

* current anchor values and add 5 if necessary

* so they resize vertically.

 loParent = This.Parent

 lnParent = 1

 do while vartype(loParent) = 'O' and ;

 lower(loParent.BaseClass) = 'container'

 lnParent = lnParent + 1

 dimension .aParentHeights[lnParent, 3]

 if loParent.Height < .Top + .Height

 .aParentHeights[lnParent, 3] = ;

 loParent.Anchor

 loParent.Anchor = 0

 .aParentHeights[lnParent, 1] = ;

 loParent.Height

 loParent.Height = .Top + .Height

 .aParentHeights[lnParent, 2] = ;

 loParent.Height

 loParent.Anchor = ;

 .aParentHeights[lnParent, 3]

 if not bittest(loParent.Anchor, 0) and ;

 not bittest(loParent.Anchor, 2)

 loParent.Anchor = loParent.Anchor + 5

 endif not bittest(loParent.Anchor ...

 endif loParent.Height < .Top + .Height

 loParent = loParent.Parent

 enddo while vartype(loParent) = 'O' ...

* Adjust the size of the TreeView and shape in

* case the container was resized while we were

* closed.

 .oTree.Width = .Width - 2

 .oTree.Height = .Height - ;

 .cboCombo.Height - 4

 .oTree.Left = .shpTreeView.Left + 1

 .oTree.Top = .shpTreeView.Top + 1

 .shpTreeView.Width = .Width

 .shpTreeView.Height = .Height - ;

 .cboCombo.Height - 2

* If the current value doesn't match the

* selected item in the TreeView, find and

* select the appropriate item.

 if vartype(.oTree.SelectedItem) <> 'O' or ;

 (not empty(.cboCombo.DisplayValue) and ;

 not .cboCombo.DisplayValue == ;

 .oTree.SelectedItem.Text)

 for lnI = 1 to .oTree.Nodes.Count

 loNode = .oTree.Nodes.Item(lnI)

 if .cboCombo.DisplayValue == loNode.Text

 loNode.Selected = .T.

 exit

 endif .cboCombo.DisplayValue ...

 next lnI

 endif vartype(.oTree.SelectedItem) ...

* Enable the controls appropriately, then set

* focus to the TreeView.

 .oTree.Visible = .T.

 .shpTreeView.Visible = .T.

 .ZOrder(0)

 .shpTreeView.ZOrder(0)

 .oTree.ZOrder(0)

 .lComboTreeOpen = .T.

 .oTree.SetFocus()

* Restore anchoring and add 5 to it so we

* resize vertically.

 .cboCombo.Anchor = lnAnchor

 store lnAnchor + 5 to .Anchor, ;

 .oTree.Anchor, .shpTreeView.Anchor

endwith

I won’t show the code for CloseControl for
space reasons; it too is well-documented and
should be easy enough to understand. It has to do
the opposite of OpenControl: reset the height of
the control so the TreeView is no longer visible.
CloseControl also calls the abstract ItemSelected
method so you can add some code in a subclass or
instance to do something when the user closes the
control.

The custom FontName and FontSize controls
have Assign methods so changing the font for the
control changes it for the combo box and
TreeView. Enabled also has an Assign method for
similar reasons. The custom Value property has
Access and Assign methods that read from and
write to cboCombo.DisplayValue so you can
simply reference Control.Value rather than
Control.cboCombo.DisplayValue.

Summary
I use SFComboTree in lots of places in my
applications. It’s even used to display the
hierarchy of controls for a form or class in PEM
Editor, a very cool replacement for the VFP New
Property, New Method, and Edit
Property/Method dialogs, available from VFPX
(http://vfpx.codeplex.com). All of those uses
have one thing in common: the need to display a
list of items (hierarchical or not) while taking up
very little space in a form.

Doug Hennig is a partner with Stonefield Systems
Group Inc. and Stonefield Software Inc. He is the
author of the award-winning Stonefield Database
Toolkit (SDT); the award-winning Stonefield Query;
the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest

Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He has
been a Microsoft Most Valuable Professional (MVP)
since 1996. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://fox.wikis.com/wc.dll?Wiki~FoxProCommunity
LifetimeAchievementAward~VFP).

