
Compression the Fast (and
Cheap!) Way
Doug Hennig

Need a way to compress and decompress files in
your applications? VFP guru Craig Boyd has
created a free library to zip and unzip files quickly
and easily.

Compressing and decompressing files using the
ubiquitous ZIP format is useful for many
purposes in VFP applications. For example, if
your application creates and emails invoices as
PDF files to customers, you may wish to compress
the PDF files to minimize email size and time.
Your application may exchange information with
other applications and that information may be
sent or received inside ZIP files. A simplified
backup system can use compressed files.

There are several VFP compatible utilities
available to compress and decompress files. I’ve
used DynaZip for years, but sadly the vendor for
that software has gone out of business. Some of
these are commercial products (read, you have to
pay for them), but Craig Boyd has created one
that’s free, easy to use, and small (only 80 – 148K,
depending on which version you use).

There are two versions of Craig’s library.
VFPCompression.FLL (80K) requires the Visual
C++ 8.0 runtime (MSVCR80.DLL) while
VFPCompression71.FLL (148K) requires version
7.1 of that runtime (MSVCR71.DLL).
MSVCR71.DLL is one of the required files for VFP
applications, so you may wish to use
VFPCompression71.FLL so you don’t have to
install MSVCR80.DLL on the user’s system if they
don’t already have it.

Here’s a list of blog entries Craig has posted
about his VFPCompression library. You can read
them all if you wish or jump to the last one for the
most current download and documentation.

 http://tinyurl.com/3yh24tz

 http://tinyurl.com/3yhl9pu

 http://tinyurl.com/34fswf9

 http://tinyurl.com/3yljmlj

 http://tinyurl.com/2wcehtx

 http://tinyurl.com/39ujep6

 http://tinyurl.com/2vj4g6s

 http://tinyurl.com/2vzdpsl

 http://tinyurl.com/3akcnx6

VFPCompression functions have several
common parameters:

 cFileName: the name of a file to zip.

 cFolderName: the name of a folder to zip.

 cZipFileName: the name of a zip file to work
with.

 cPassword: an optional password to use for
zipping or unzipping.

 lIgnorePaths: .T. to not store or respect
relative paths in the zip file or .F. to store or
respect them.

 cOutputFolderName: the name of the folder
to extract files to.

All of the sample code shown in this article
assumes you’ve already used SET LIBRARY TO
VFPCompression.FLL to open the library.

To test out how VFPCompression works, run
TestVFPCompression.PRG. Select a test, click the
Show Code button code to see the code being
tested, and click Run to run the test. Most of the
tests display a message box asking you to open a
ZIP file to see what the test did. Do so before
closing the message box because the tests clean up
after themselves by deleting files they create.

Zipping a single file
To zip a single file, use ZipFileQuick(cFileName [,
cPassword]). ZipFileQuick returns .T. if it
succeeded or .F. if it failed. The name of the zip
file it creates is the same as cFileName but with a
ZIP extension. ZipFileQuick overwrites any
existing file so use ZipOpen, ZipFile, and
ZipClose (discussed below) to add files to an
existing zip file.

http://tinyurl.com/3yh24tz
http://tinyurl.com/3yhl9pu
http://tinyurl.com/34fswf9
http://tinyurl.com/3yljmlj
http://tinyurl.com/2wcehtx
http://tinyurl.com/39ujep6
http://tinyurl.com/2vj4g6s
http://tinyurl.com/2vzdpsl
http://tinyurl.com/3akcnx6

cFileName must include a fully qualified path
or ZipFileQuick does weird things: it returns .F.
and doesn’t create the zip file if the file is in the
current directory but does create it if the file’s in a
subdirectory (for example, “MySubDirectory\
SomeFile.TXT”).

Note that using FULLPATH() to fully qualify
the path name causes the filename to be upper-
cased, so you might want to use
GetProperFileCase.PRG, a utility included with
the sample files for this article that returns the
proper case for a filename, if case is important.

Example:

lcFile1 = fullpath('TestZip\File1.txt')

llResult = ZipFileQuick(lcFile1)

 && zip the file with no password

lcFile2 = fullpath('TestZip\File2.txt')

llResult = ZipFileQuick(lcFile2, 'MyPassword')

 && zip the file using a password

Zipping a single folder
To zip a single folder and its contents, use
ZipFolderQuick(cFolderName [, lIgnorePaths [,
cPassword]]). ZipFolderQuick returns .T. if it
succeeded or .F. if it failed. It creates a zip file in
the current directory with a name the same as
cFolderName and a ZIP extension.
ZipFolderQuick overwrites any existing file so
use ZipOpen, ZipFolder, and ZipClose (discussed
below) to add files to an existing zip file.

Specifying .T. for the second parameter does
something unusual: it doesn’t store relative paths
as you’d expect but it does include the folders in
the zip file as empty folders. Also, if you don’t
specify the folder name as a fully qualified path,
ZipFolderQuick unexpectedly returns .T. but the
zip file it creates consists of an empty folder.

Example:

lcFile = fullpath('TestZip')

llResult = ZipFolderQuick(lcFile)

 && zip the folder, preserve paths, no

 && password

llResult = ZipFolderQuick(lcFile, .T.)

 && zip the folder, don’t preserve paths

llResult = ZipFolderQuick(lcFile, .F., ;

 'MyPassword')

 && zip the folder, preserve paths, use

 && password

Zipping with more flexibility
When you want more flexibility, such as
performing several zipping operations on a zip
file or adding files to an existing zip file, use
ZipOpen, as many ZipFile, ZipFileRelative, or
ZipFolder calls as necessary, then ZipClose.
Here’s information about those functions.

ZipOpen(cZipFileName [, cFolderName [,
lAppend]]): opens the zip file for processing.
cFolderName is the name of the folder in which to

create the zip file and lAppend should be .T. to
add files to the zip file or .F. to overwrite the
contents. ZipOpen returns .T. if it succeeded or .F.
if it failed. I’m not quite sure why the second
parameter is needed, since you can easily specify
the folder to store the zip file into as part of the
first parameter. If you do pass the second
parameter, be sure to pass just the filename for the
first parameter and a trailing backslash in the
second parameter.

ZipFile(cFileName [, lIgnorePath [,
cPassword]]): adds the specified file to the zip file.
ZipFile returns .T. if it succeeded or .F. if it failed.

ZipFileRelative(cFileName [, cRelativePath [,
cPassword]]): adds the specified file to the zip file
but stores a relative path. cRelativePath is the
relative path to store for the file (which can be
different than the actual path for the file).
ZipFileRelative returns .T. if it succeeded or .F. if
it failed. The main use for this method is to create
a zip file that unzips into a different folder
structure than the original files were located in.
This is useful when the directory structure you
want to create on a user’s system is different than
it was on your development system and you don’t
want to go through the effort of creating a
deployment folder structure just to create the zip
file.

ZipFolder(cFolderName [,lIgnorePaths [,
cPassword]]): zips the contents of a folder.
ZipFolder returns .T. if it succeeded or .F. if it
failed.

ZipClose(): closes the zip file, returning .T. if it
succeeded or .F. if it failed.

Example: create a zip file and add some files
to it:

llResult = ZipOpen(fullpath('TestZip.zip'))

llResult = ZipFile('TestZip\File1.txt')

llResult = ZipFile('TestZip\File2.txt')

llResult = ZipClose()

Example: add a folder to the existing zip file:

llResult = ZipOpen(fullpath('TestZip.zip'), ;

 '', .T.)

llResult = ZipFolder('TestZip\AnotherFolder')

llResult = ZipClose()

Adding a comment to a zip file
ZipComment[cZipFileName, cComment] adds
the specified comment to the zip file and returns
.T. if it succeeded or .F. if it failed. If there’s
already a comment, it’s overwritten. Pass a blank
string to delete the comment.

Zipping and unzipping a string
To zip a string, use ZipString(cString [, nLevel]),
where cString is the string to zip and nLevel is a

compression level of 1 (fastest) to 9 (best
compression); the default is 6. ZipString returns
the compressed string.

As you may suspect, to unzip a string, use
UnzipString(cString), which returns the
decompressed string.

Example:

lcString = 'This is a string to zip'

lcCompressed = ZipString(lcString)

lcDecompressed = UnzipString(lcCompressed)

Unzipping a zip file
To unzip a zip file, use
UnzipQuick(cZipFileName [,
cOutputFolderName [, lIgnorePaths [,
cPassword]]]). UnzipQuick returns .T. if it
succeeded or .F. if it failed. If the specified output
folder doesn’t exist, UnzipQuick creates it.

Note that relative paths stored in the zip file
are relative to the current folder, not relative to
the location of the zip file. For example, if a zip
file in a subdirectory has no path information and
you use UnzipQuick('MySubdirectory\
MyFile.zip'), the files are extracted into the current
folder, not into MySubdirectory.

Example:

lcFile = 'TestZip\File1.zip'

llResult = UnzipQuick(fullpath(lcFile))

 && unzip the specified file

llResult = UnzipQuick(fullpath(lcFile), ;

 curdir() + 'NewUnzipFolder')

 && unzip the specified file into a new

 && folder

Unzipping with more flexibility
Like zipping, you have more flexibility if you use
UnzipOpen, calls to Unzip or other functions,
then UnzipClose.

In one respect, you can think of a zip file like
a table: each file has an index number associated
with it (like the record number of a record in a
table) and one file is the “current” one. Some
functions, such as UnzipFile and UnzipAFileInfo,
operate on the current file. Other functions, such
as UnzipByIndex and UnzipAFileInfoByIndex,
allow you to specify the index number of the file
to process. Like a table, there are functions
allowing you to move the current file “pointer” to
the first and next files, to a file by index, and to a
file by name. Indexes are zero-based, so use 0 for
the first file, 1 for the second, etc.

UnzipOpen(cZipFileName): opens the zip file
for unzipping. UnzipOpen returns .T. if it
succeeded or .F. if it failed.

UnzipClose(): closes the zip file, returning .T.
if it succeeded or .F. if it failed.

Unzip([lIgnorePaths [, cPassword]]): unzips
the entire zip file into a folder with the same name

as the zip file unless you previously called
UnzipSetFolder. For example, for a zip file named
TestZip.ZIP, the zip file is extracted into a folder
named TestZip, which is created if it doesn’t exist.
Unzip returns .T. if it succeeded or .F. if it failed.

Example:

llResult = UnzipOpen(fullpath('TestZip.zip'))

llResult = Unzip()

 && Unzips the files into a folder named

 && TestZip

llResult = UnzipClose()

UnzipTo(cOutputFolderName [, lIgnorePaths
[, cPassword]]): unzips the entire zip file into the
specified folder. UnzipTo creates the folder if it
isn’t specified, and returns .T. if it succeeded or .F.
if it failed.

Example:

llResult = UnzipOpen(fullpath('TestZip.zip'))

llResult = UnzipTo(fullpath(''))

 && unzip the files into the current folder

llResult = UnzipClose()

UnzipFile(cOutputFolderName [,
lIgnorePaths [, cPassword]]): unzips the current
file into the specified folder and returns .T. if it
succeeded or .F. if it failed. Use one of the
functions below to move the “record pointer” in
the zip file to make a specific file the current one.

Example:

llResult = UnzipOpen(fullpath('TestZip.zip'))

llResult = UnzipFile(fullpath('TestZip'))

 && unzip the first file, since that’s the

 && current one

llResult = UnzipClose()

UnzipByIndex(nIndex [, cOutputFolderName
[, lIgnorePaths [, cPassword]]]): unzips the file
with the specified index and returns .T. if it
succeeded or .F. if it failed.

Example:

llResult = UnzipOpen(fullpath('TestZip.zip'))

llResult = UnzipByIndex(4, ;

 fullpath('TestZip'))

 && unzip the fifth file (indexes are

 && 0-based, so “4” means the fifth one)

llResult = UnzipClose()

UnzipFileCount(): returns the number of files
in the zip file.

UnzipGotoTopFile([cExtension]): moves the
zip file pointer to the first file, returning .T. if it
succeeded and .F. if not. If cExtension is specified,
it acts like a filter on filenames, so
UnzipGotoTopFile goes to the first file with that
extension.

UnzipGotoNextFile([cExtension]): moves the
zip file pointer to the next file, returning .T. if it
succeeded and .F. if not. If cExtension is specified,

UnzipGotoNextFile goes to the next file with that
extension.

UnzipGotoFileByName(cFileName [,
lIgnorePath]): moves the zip file pointer to the file
with the specified name, returning .T. if it
succeeded and .F. if not. You can specify a relative
path if desired. Pass .T. for lIgnorePath to ignore
relative file paths.

UnzipGotoFileByIndex(nIndex): moves the
zip file pointer to the file with the specified index,
returning .T. if it succeeded and .F. if not.

UnzipAFileInfo(cArrayName): fills the
specified array with information about the current
file; see Table 1 for the contents of the array. If the
array already exists, it’s destroyed and recreated.

Table 1. The contents of the array filled by UnzipAFileInfo.

Row Content Data Type

1 File Name Character

2 Comment Character

3 Version Numeric

4 Version Needed Numeric

5 Flags Numeric

6 Compression Method Numeric

7 DOS Date Datetime

8 CRC Numeric

9 Compressed Size Numeric

10 Uncompressed Size Numeric

11 Internal Attribute Numeric

12 External Attribute Numeric

13 Folder Logical

Example:

llResult = UnzipOpen(fullpath('TestZip.zip'))

lnFiles = UnzipFileCount()

messagebox('The zip file contains ' + ;

 transform(lnFiles) + ' files.')

UnzipGotoTopFile()

for lnI = 1 to lnFiles

 UnzipAFileInfo('laInfo')

 messagebox(laInfo[1] + ;

 iif(laInfo[13], ' (folder)', '') + ;

 chr(13) + 'Compressed size: ' + ;

 transform(laInfo[9]) + chr(13) + ;

 'Uncompressed size: ' + ;

 transform(laInfo[10]))

 UnzipGotoNextFile()

next lnI

llResult = UnzipClose()

UnzipAFileInfoByIndex(cArrayName,
nIndex): like UnzipAFileInfo, but instead of the
current file, references the file whose index is
specified in nIndex.

Callback functions
You can provide the user with feedback about the
zipping or unzipping process using the
ZipCallback function. Pass ZipCallback the name
of a VFP function, procedure, or method you
want called whenever a VFPCompression event
occurs. Before calling the callback code,
VFPCompression creates three private variables
with information about the event:

 cZipObjectName: the name of the zip file (in
the case of the zip file being opened or closed)
or the file being zipped or unzipped.

 nZipEvent: the event number; see Table 2 for
a list of values.

 nZipBytes: the number of bytes read or
written during a zip/unzip operation. This
value is cumulative for a given file.

Table 2. Events raised by VFPCompression.

Event nZipEvent

Zip opened 0

Zip/unzip file start 1

Zip read or unzip write 2

Zip/unzip file end 3

Zip/unzip folder opened 4

Zip closed 5

The Callbacks sample shows two callbacks.

The first is a simple log file that records the
progress of the compression and decompression.
The second is fancier: it uses a form with a
Ctl32_ProgressBar control (written by Carlos
Alloatti and available at
http://www.ctl32.com.ar) to display an attractive
progress bar as a large file is zipped.

* Set up the callback.

ZipCallback('GiveFeedback()')

* Zip a folder.

llResult = ZipFolderQuick(fullpath('TestZip'))

* Unzip the zip file.

lcFile = fullpath('TestZip.zip')

llResult = UnzipQuick(lcFile, curdir() + ;

 'NewUnzipFolder')

* Display the progress log.

modify file log.txt

* Fancier callback.

loForm = newobject('ProgressForm', ;

 'Samples.vcx')

loForm.Show()

ZipCallback('loForm.Update()')

llResult = ZipOpen(fullpath('TestZip.zip'))

http://www.ctl32.com.ar/

llResult = ZipFile(home() + 'dv_foxhelp.chm')

llResult = ZipClose()

messagebox('Done processing')

* Clean up.

erase NewUnzipFolder*.*

erase NewUnzipFolder\AnotherFolder*.*

rd NewUnzipFolder\AnotherFolder

rd NewUnzipFolder

erase Log.txt

function GiveFeedback

do case

 case nZipEvent = 0

 lcEvent = 'Zip file ' + ;

 cZipObjectName + ' opened'

 case nZipEvent = 1

 lcEvent = 'Started processing ' + ;

 'file cZipObjectName

 case nZipEvent = 2

 lcEvent = 'Reading/writing file ' + ;

 cZipObjectName + ': bytes ' + ;

 transform(nZipBytes)

 case nZipEvent = 3

 lcEvent = 'Done processing file ' + ;

 cZipObjectName

 case nZipEvent = 4

 lcEvent = 'Opened folder ' + ;

 cZipObjectName

 case nZipEvent = 5

 lcEvent = 'Zip file ' + ;

 cZipObjectName + ' closed'

endcase

strtofile(lcEvent + chr(13) + chr(10), ;

 'Log.txt', .T.)

Summary
Craig Boyd has created a very easy-to-use and
inexpensive (free!) library we can add to our VFP
applications to compress and decompress files.
I’ve been using it for a couple of years with great
success in my applications and am sure you’ll
love it too.

Doug Hennig is a partner with Stonefield Systems
Group Inc. and Stonefield Software Inc. He is the
author of the award-winning Stonefield Database
Toolkit (SDT); the award-winning Stonefield Query;
the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He has
been a Microsoft Most Valuable Professional (MVP)
since 1996. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

