
Encryption the Fast (and
Cheap!) Way
Doug Hennig

In the previous issue, Doug discussed a free
library generously provided by Craig Boyd to
compress and decompress files using the
ubiquitous ZIP format. This time, he examines
another free library from Craig, one that encrypts
and decrypts strings and files.

Many VFP applications need to encrypt and
decrypt data. Database connection strings,
passwords, and sensitive data such as credit card
or banking information should be encrypted
rather than stored in clear text so prying eyes
can’t use the information.

There are numerous encryption libraries
available. In fact, VFP even comes with one: the
Crypto API example in the Solution Samples.
However, many VFP developers have had
problems with that example, the biggest one
being that it gives different results on different
operating systems. Once again, Craig Boyd to the
rescue! He has created a library that’s free, easy to
use, and small (only 148K).

Here’s a list of blog entries Craig has posted
about his VFPEncryption library. You can read
them all if you wish or jump to the last one for the
most current download and documentation.

 http://tinyurl.com/357uah2

 http://tinyurl.com/338yhwa

 http://tinyurl.com/38plh6q

 http://tinyurl.com/383apg9

 http://tinyurl.com/36xqfae

 http://tinyurl.com/2wwooxo

 http://tinyurl.com/3xh6wtj

 http://tinyurl.com/36ref27

 http://tinyurl.com/3ypg8ba

 http://tinyurl.com/3645n9o

 http://tinyurl.com/365npby

 http://tinyurl.com/36amthj

 http://tinyurl.com/2vb9hlf

There are two versions of VFPEncryption.
VFPEncryption71.FLL requires the Visual C++ 7.1
runtime, the same one used by VFP 9
(MSVCR71.DLL). VFPEncryption.FLL (that is,
without the “71”) requires the Visual C++ 9.0
runtime (MSVCR90.DLL). The two FLLs have the
same functionality, so you’ll likely want to use
VFPEncryption71.FLL. If you use the wrong FLL
for the Visual C++ runtime you have, you’ll get a
“FLL is invalid” error.

If you check out the documentation at
http://tinyurl.com/2vb9hlf, you’ll find there are
five different types of encryption and four
different modes. In addition, there’s five different
ways to pad the string to encrypt. How do you
choose among all of these?

The easiest decision to make is if you have to
follow a certain standard, such as that imposed by
company policy or by a third-party (customer or
vendor). However, if you’re free to make your
own choice, then go with the defaults
VFPEncryption provides.

Cryptography is a complex subject, so I
recommend reading Craig’s blog posts and
articles he links to if you’re interested in
background or more details.

The download for this article includes sample
code showing how VFPEncryption works. DO
TestVFPEncryption.PRG to start the sample. It
displays the form shown in Figure 1. Select a
sample from the list, click Show Code to see the
code, then Run to run the example.

http://tinyurl.com/357uah2
http://tinyurl.com/338yhwa
http://tinyurl.com/38plh6q
http://tinyurl.com/383apg9
http://tinyurl.com/36xqfae
http://tinyurl.com/2wwooxo
http://tinyurl.com/3xh6wtj
http://tinyurl.com/36ref27
http://tinyurl.com/3ypg8ba
http://tinyurl.com/3645n9o
http://tinyurl.com/365npby
http://tinyurl.com/36amthj
http://tinyurl.com/2vb9hlf
http://tinyurl.com/2vb9hlf

Figure 1. The sample form for this article makes it easy to see
how VFPEncryption works.

Encrypting and decrypting a string
To encrypt a string, call Encrypt. It accepts the
following parameters and returns the encrypted
string:

 cStringToEncrypt: the string to encrypt.

 cSecretKey: the key to use for encryption. It
has certain requirements for most types of
encryption; see the next parameter. If you
specify a key that’s too short (such as 24
characters when 32 are required),
VFPEncryption appends the key to itself to
the desired number of characters.

 nEncryptionType: the encryption type, which
is one of the following (optional; the default is
2):

0 = Rijndael\AES 128 (requires a 16 byte key)
1 = Rijndael\AES 192 (24 byte key)
2 = Rijndael\AES 256 (32 byte key)
4 = Blowfish (key between 1 and 56 bytes)
8 = TEA (16 byte key)
1024 = RC4 (key can be any length)

 nEncryptionMode: there are three different
modes available (optional; the default is 0):

0 = Electronic Code Book (ECB)
1 = Cipher Block Chaining (CBC)
2 = Cipher Feedback Block (CFB)
3 = Output Feedback Block (OFB)

This parameter does not apply to RC4
encryption (nEncryptionType = 1024).

 nPaddingMode: for block ciphers
(nEncryptionMode = 1, 2, or 3),
cStringToEncrypt is padded to a multiple of
the block size (see the nBlockSize parameter).

This parameter allows you to specify how this
padding is done (optional; the default is 0):

0 = Zeroes (NULLs)
1 = Spaces (blanks)
2 = PKCS7
3 = ANSI X.923
4 = ISO 10126

 nKeySize: the size of cSecretKey in bytes
(optional).

 nBlockSize: the block size to pad
cStringToEncrypt to (optional).

 cIV: the Initialization Vector (IV) used for
block ciphers (nEncryptionMode = 1, 2, or 3).
cIV is optional; if passed, it should match the
specified nBlockSize in length.

The last four parameters are provided for
compatibility with .Net and other encryption
systems so strings you encrypt in VFP can be
decrypted in those other systems and vice versa.

The key should be kept secret since it’s the
key (pun intended) to decrypting the string
correctly. If someone determines your key, it’s
very easy for them to decrypt the string to retrieve
the original information. You might not want to
hard-code the key in your applications because
someone decompiling it can easily discover the
value. You might instead want to use some
obfuscated code to return the key; the second
sample (“Obfuscating the key”) uses code written
by Christof Wollenhaupt to do it.

I like to use RC4 (nEncryptionType = 1024)
because you have more flexibility with the key.
Also, it returns a string that’s the same length as
the original text, which is handy if you want to
encrypt the contents of a field using a REPLACE
statement.

Example:

lcOriginal = 'Craig Boyd rocks!'

* Use RC4.

lcRC4Key = 'Th1s sh0u1d be hard t0 guess'

lcRC4Encrypted = Encrypt(lcOriginal, ;

 lcRC4Key, 1024)

* The default AES 256.

lcAES256Key = 'Th1s sh0u1d be hard ' + ;

 't0 guess9#$%'

lcAES256Encrypted = Encrypt(lcOriginal, ;

 lcAES256Key)

* Blowfish.

lcBlowfishEncrypted = Encrypt(lcOriginal, ;

 lcRC4Key, 4)

* AES 256 with OFB.

lcAES256OFBEncrypted = Encrypt(lcOriginal, ;

 lcAES256Key, 2, 3)

To decrypt an encrypted string, call Decrypt.
It accepts the same parameters as Encrypt and
returns the decrypted string (assuming the key is
the same as the one used to encrypt it).

Example:

lcDecrypted1 = Decrypt(lcRC4Encrypted, ;

 lcRC4Key, 1024)

lcDecrypted2 = Decrypt(lcAES256Encrypted, ;

 lcAES256Key)

lcDecrypted3 = Decrypt(lcBlowfishEncrypted, ;

 lcRC4Key, 4)

lcDecrypted4 = Decrypt(lcAES256OFBEncrypted, ;

 lcAES256Key, 2, 3)

Generating keys
If you need help coming up with a key to use for
encryption functions, you can call GenerateKey to
obtain a random key. It has the following
parameters (all but the first are optional):

 nKeySize: the size of the key to be returned in
bytes.

 lIncludeNumbers: .T. to include digits (0-9) in
the key or .F. to exclude them.

 lIncludeUpper: .T. to include uppercase
characters in the key or .F. to exclude them.

 lIncludeSpecial: .T. to include punctuation
characters ({}|\\]?[\":;'><,./~!@#$%^&*()_+`-
=) in the key or .F. to exclude them.

Encrypting and decrypting a file
To encrypt a file, call EncryptFile(cFileToEncrypt,
cDestinationFile, cSecretKey [, nEncryptionType [,
nEncryptionMode [, nPaddingMode [, nKeySize [,
nBlockSize [, cIV]]]]]]). The first parameter is the
name and path of the file to encrypt, the second is
the name and path of the file to write the
encrypted contents to (which cannot be the same
as the original file), and the rest of the parameters
are the same as those for Encrypt.

Similarly, to decrypt a file, call DecryptFile,
which accepts the same parameters as
EncryptFile. One interesting thing I found with
DecryptFile is that unlike other functions, it gives
an error if the key isn’t the proper length rather
than simply adjusting the key as necessary.

Note that unlike some commercial products
such as Cryptor, VFPEncryption doesn’t decrypt
tables in memory and leave the copy on disk
encrypted. That means if you want to use
VFPEncryption as a cheap alternative to Cryptor,
you have to decrypt the table to a temporary
copy, open that table, then delete it once you’re
done with it.

Example:

strtofile('Craig Boyd rocks!', 'original.txt')

lcKey = 'Th1s sh0u1d be hard t0 guess9#$%'

EncryptFile('original.txt', 'encrypt.txt', ;

 lcKey)

DecryptFile('encrypt.txt', 'decrypt.txt', ;

 lcKey)

Hashing
Hashing is a specialized form of encryption: it
uses a one-way algorithm to generate the
encrypted value. “One-way” means you can’t
regenerate the original value from the hash value.
Why would you want to do that? The typical case
is handling passwords for user login.

One common design is to store user name and
password combinations in a table. When the user
logs in, find the record for the specified user name
in the table and compare the stored password to
the entered one. As Christof discusses in an article
(http://tinyurl.com/2a5yju3), there are a few
problems with this approach, basically coming
down to preventing an unauthorized user from
decrypting the password and therefore being able
to log in. The solution is to not store the password
at all but instead store the hash of the password.

Here’s how it works:

 When the administrator assigns a password to
a user, determine the hash value and store
that instead of the password.

 When the user logs in, determine the hash
value for the entered password.

 Compare the two hash values: if they don’t
match, the user entered the wrong password.

Because it’s not possible to retrieve the
original password from the stored value, there’s
no possibility of an unauthorized user obtaining
the password from the table.

Craig discusses another use for hashing in his
blog post at http://tinyurl.com/383apg9. He
provides a utility (Figure 2) for generating license
keys you can use in your applications to ensure
the user has a valid license to use the application.
One way to use this is to use something specific
about the user’s system, such as the hard drive
serial number, as the key. If the user installs the
application on a different system, the hash of the
key won’t be the same so the license won’t be
valid.

http://tinyurl.com/2a5yju3
http://tinyurl.com/383apg9

Figure 2. Craig's license generator can generate license keys
for your applications.

VFPEncryption provides Hash and HashFile
functions. Both accept the text to hash (a string in
the case of Hash and the name and path of a file
for HashFile) and an optional hash type value (4 is
the default):

1 = SHA1 (a.k.a SHA160)
2 = SHA256
3 = SHA384
4 = SHA512
5 = MD5
6 = RIPEMD128
7 = RIPEMD160

To hash the contents of the fields in the

current record in a table, call HashRecord(cAlias,
[nHashType [, lIncludeMemos]]). Pass .T. for the
last parameter to include the contents of memo
fields.

Example:

* Hash a string.

lcOriginal = 'Craig Boyd rocks!'

lcHashSHA512 = Hash(lcOriginal)

lcHashMD5 = Hash(lcOriginal, 5)

* Hash a file.

strtofile(lcOriginal, 'hashme.txt')

lcHashFile = HashFile('hashme.txt')

* Hash a record.

create cursor Test (Field1 C(10), Field2 I, ;

 Field3 C(60))

insert into Test values ('Record A', 1, ;

 'This is the first record')

lcHashRecord = HashRecord(alias())

Hash values are often displayed as
HexBinary, so you can use
STRCONV(HashValue, 15) to convert to that
format.

A variant of a hash is a Hash-based Message
Authentication Code or HMAC. This is a hash of a
string in combination with a secret key. This can

be used to simultaneously verify both data
integrity (was the string altered?) and authenticity
(did the string come from who we thought it came
from?). VFPEncryption has a function to generate
HMAC values: HMAC(cString, cKey [,
nHashType]).

Example:

lcOriginal = 'Craig Boyd rocks!'

lcKey = 'Th1s sh0u1d be hard t0 guess'

lcHMAC = HMAC(lcOriginal, lcKey)

Checksums
Checksums are useful for determining if data was
changed. Store the data and the checksum for the
data. Later, calculate the checksum for the data
and compare it to the stored checksum; if they
aren’t the same, the data was changed. You can
also use a checksum as a short, simple hash of a
value.

VFPEncryption includes three functions that
calculate checksums: CRC(cString [, nCRCType]),
CRCFile(cFile [, nCRCType]), and
CRCRecord(cAlias [, nCRCType [,
lIncludeMemos]]). In all three cases, specify 1 for
nCRCType for a 16-bit checksum and 2 for a 32-
bit value. Pass .T. for the last parameter of
CRCRecord to include the contents of memo
fields. Unlike the related VFP functions
(SYS(2007) and SYS(2017)), which return strings,
these functions return numeric values. Note that
the VFP and VFPEncryption functions return
different values for the same strings, so obviously
they’re using different algorithms.

Example:

* Calculate the checksum for a string.

lcOriginal = 'Craig Boyd rocks!'

lnCRC16 = CRC(lcOriginal, 1)

lnCRC32 = CRC(lcOriginal, 2)

lcCRC16VFP = sys(2007, lcOriginal)

lcCRC32VFP = sys(2007, lcOriginal, 0, 1)

* Calculate the checksum for a file.

strtofile(lcOriginal, 'crcme.txt')

lnCRCFile = CRCFile('crcme.txt')

* Calculate the checksum for a record.

lnSelect = select()

select 0

create cursor Test (Field1 C(10), Field2 I, ;

 Field3 C(60))

insert into Test values ('Record A', 1, ;

 'This is the first record')

lnCRCRecord = CRCRecord(alias())

Summary
Craig Boyd has created a very easy-to-use and
inexpensive (free!) library we can add to our VFP
applications to encrypt and decrypt strings and
files. I’ve been using it for a couple of years with

great success in my applications and am sure
you’ll love it too.

Doug Hennig is a partner with Stonefield Systems
Group Inc. and Stonefield Software Inc. He is the
author of the award-winning Stonefield Database
Toolkit (SDT); the award-winning Stonefield Query;
the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna.

Doug is co-author of “Making Sense of Sedna and
SP2,” the “What’s New in Visual FoxPro” series (the
latest being “What’s New in Nine”), “Visual FoxPro
Best Practices For The Next Ten Years,” and “The
Hacker’s Guide to Visual FoxPro 7.0.” He was the
technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these
books are from Hentzenwerke Publishing
(http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written
numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers
Conference (DevCon) starting in 1997 and at user
groups and developer conferences all over the world.
He is one of the organizers of the annual Southwest
Fox conference (http://www.swfox.net). He is one of
the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He has
been a Microsoft Most Valuable Professional (MVP)
since 1996. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award
(http://tinyurl.com/ygnk73h).

