
PEMs For Your Base Classes
Doug Hennig

This month’s column examines some ideas to put in your subclasses of Visual FoxPro base

classes. Some of these ideas are straightforward, but others may be less obvious. We’ll look at

some custom properties and methods you can add to provide more automatic functionality to your

applications.

You’ve probably heard a thousand times by now that using the Visual FoxPro base

classes in your applications is bad, and that you should create your own subclass of each

VFP base class. I won’t bore you with the reasons why in this article. Instead, we’ll take a

look at the subclasses I’ve created for my use. In this article, I refer to the subclasses I’ve

created as “my base classes” because I always use them in my applications as the starting

point for any subclasses. When I want to refer to a class built into VFP (such as a

ComboBox), I’ll refer to it as a “VFP base class”.

 While you could create a set of your own base classes by simply subclassing VFP

base classes without making any changes, I find that I usually end up changing or adding

something to any VFP base class, so why don’t we make our base classes have the

behavior we want directly? We’ll look at the changes I’ve made to the properties, events,

and methods (PEMs) of VFP’s classes. Some of these changes are straightforward, such

as setting the BackStyle property of a Label subclass to Transparent so the background of

the container shows through. Others may be less obvious, such as having the Error

method of an object look up its containership hierarchy to find the first parent with error

handling code.

Common PEMs
All classes in the CONTROLS.VCX class library (on the Developer disk) have some

common properties and methods added or filled in. In addition, some classes that have

common behavior (such as those that allow the user to change their value) have the same

methods added or filled in. These common PEM changes are described here.

About
This custom method is added to every class as a way to document the class. I’ve seen

other developers add “Copyright” or “Documentation” methods to provide the same

purpose. Whatever the name of the method, it generally just consists of comments that

describe the features of the class. Some folks enter the comment text between TEXT and

ENDTEXT statements (so you don’t have to comment out each line); I just used

comment lines. In the About method for each class, I put the following information:

 the name of the class

 the class this class is based on

 the purpose of the class

 the author, copyright, and last revision date

 the name of the INCLUDE file used by the class if any

 changes made to properties of the parent class

 changes made to methods of the parent class

 custom public properties added to this class

 custom protected properties added to this class

 custom public methods added to this class

 custom protected methods added to this class

Here’s the About method from the SFCheckBox class as an example:

*==

* Class: SFCheckBox

* Based On: CheckBox

* Purpose: Base class for all CheckBox objects

* Author: Doug Hennig

* Copyright: (c) 1996 Stonefield Systems Group Inc.

* Last revision: 11/02/96

* Include file: none

*

* Changes in "Based On" class properties:

* AutoSize: .T.

* BackStyle: 0 (Transparent)

* Value: .F. since checkboxes usually are

* used for logical values

*

* Changes in "Based On" class methods:

* Error: calls the parent Error method so

* error handling goes up the

* containership hierarchy

* InterActiveChange: call AnyChange()

* ProgrammaticChange: call AnyChange()

*

* Custom public properties added:

* Builder: holds the name of a custom builder

*

* Custom protected properties added:

* None

*

* Custom public methods added:

* About: for documentation purposes

* AnyChange: called by InteractiveChange() and

* ProgrammaticChange()

* Release: releases the object

*

* Custom protected methods added:

* None

*==

Error
In the June and July 1996 issues of FoxTalk, I discussed an error handling strategy in

which all objects handle any errors they can and pass any other errors to the Error method

of the form they reside in so common error handling services can be centralized in one

place. I’ve since refined this scheme; objects now call the Error method of their container

rather than jumping directly up to the form (actually, calls go up the class hierarchy first

before going up the containership hierarchy). This allows additional levels of localized

error handling to exist. However, this scheme has one problem: controls sitting on base

class Page, Column, or other containers with no Error method code essentially have no

error trapping because they call an empty method! The solution is to travel up the

containership hierarchy until we find a parent that has code in its Error method. If we

can’t find such a parent, then display a generic error message (this isn’t likely, since I

base all forms on the SFForm class, which does have Error method code). Here’s the code

used in all objects except SFForm and SFToolbar:

LPARAMETERS nError, cMethod, nLine

local oParent

oParent = iif(pemstatus(Thisform, ;

 'FindErrorHandler', 5), ;

 Thisform.FindErrorHandler(This), .NULL.)

if isnull(oParent)

 = messagebox('Error #' + ltrim(str(nError)) + ;

 ' occurred in line ' + ltrim(str(nLine)) + ;

 ' of ' + cMethod, 0, _VFP.Caption)

else

 oParent.Error(nError, This.Name + '.' + cMethod, ;

 nLine)

endif isnull(oParent)

 This code checks to see if the form the control is sitting on has a FindErrorHandler

method, and if so, calls it to locate the first parent of the control with code in its Error

method (we’ll see the code for this method in a moment). If such a parent is found, its

Error method is called with the same parameters that this Error method received, except

the name of the object is added to cMethod so our error handling services can know in

which object the error originated.

 Because they are the “top-level” containers (I never use form sets), the Error method

for the SFForm and SFToolbar classes are different than other objects. This method

checks to see if an oError object has been added to the form, and if so, calls its

ErrorHandler method to provide global error handling services. If not, an error message is

displayed. It’s beyond the scope of this article to discuss an error handling object; see my

column in the July 1996 issue for a simple example of such a class.

LPARAMETERS nError, cMethod, nLine

local laError[1]

aerror(laError)

if type('This.oError') = 'O' and ;

 not isnull(This.oError)

 This.oError.ErrorHandler(nError, ;

 This.Name + '.' + cMethod, nLine)

else

 if messagebox('Error #' + ltrim(str(nError)) + ;

 ' (' + laError[2] + ')' + chr(13) + ;

 'occurred in line ' + ltrim(str(nLine)) + ;

 ' of ' + cMethod, 17, _VFP.Caption) = 2

 cancel

 endif messagebox ...

endif type('This.oError') = 'O' ...

 As I mentioned above, the Error method of all objects call the FindErrorHandler

method of the form. This method accepts as a parameter a reference to the object that

called it. It starts with the parent of that object and travels up the containership hierarchy

until it finds a parent with code in its Error method. This prevents the problem of error

handling stopping on base class Page, Column, or other containers because they have no

code in the Error method. Here’s the code for that method:

lparameters oObject

local oParent

oParent = oObject.Parent

do while type('oParent') = 'O' and ;

 not isnull(oParent)

 do case

 case pemstatus(oParent, 'Error', 0)

 exit

 case type('oParent.Parent') = 'O'

 oParent = oParent.Parent

 otherwise

 oParent = .NULL.

 endcase

enddo while type('oParent') = 'O' ...

return oParent

Builder
Ken Levy created a tool for VFP 3 called BuilderX that was included with the Visual

FoxPro 3 Codebook by Yair Alan Griver. This tool acts a wrapper for VFP’s native

builder application (BUILDER.APP). Its main purpose is to allow you to define a specific

builder for each class, stored in a custom Builder property of the class. When you invoke

the builder for an object created from the class, BuilderX first checks if the object has a

Builder property and if it contains anything. If so, it instantiates an object of the class

specified in that property (you can also specify the class library your builder class is

located in by entering the VCX name and class name separated by a comma). If not, it

calls BUILDER.APP to carry on as it normally would. This allows you to create

customized builders for any class (perhaps using Ken’s BuilderB tool, which is the source

of another article) and specify that builder in the Builder property of the class itself. This

idea is so cool that Microsoft added this behavior to the native BUILDER.APP in VFP 5

so you don’t need BuilderX.

 I’ve added a custom Builder property to all my base classes so I can take advantage of

this capability. This property contains a blank value for all classes, so it’s really there as

an “abstract” property. I use it for specialized subclasses of my base classes, although you

could also use it for simple builders for even base classes.

Release
I added a custom Release method to any class which doesn’t already have one. It contains

just one line of code:

release This

 This permits you to use a common way to release any object: <object>.Release().

AnyChange, InteractiveChange, ProgrammaticChange
Classes that allow the user to change their values (such as TextBox, CheckBox, EditBox,

etc.) have InteractiveChange and ProgrammaticChange methods. Usually, if you put any

code into one of these methods, you end up having the other method call it so the same

behavior takes place regardless of how the object’s value was changed. To make this

work automatically, I added a custom AnyChange method to those classes and added the

following to their InteractiveChange and ProgrammaticChange methods:

This.AnyChange()

 Thus, any code needed when any change is made to the value of the control should be

entered into the control’s AnyChange method.

SelectOnEntry
Microsoft added this new property to several controls in VFP 5. If you set it to .T., the

text in the control will automatically be selected when the control receives focus. Since

this is the default behavior I want, I set it to .T. in all classes with this property.

Valid, Validation
The Valid method of controls that have it (such as ComboBox and TextBox) has two

things that annoy me:

 It’s fired even when the user clicks on a “cancel changes” button (unless this

button is in a toolbar), causing the goofy behavior that the user has to enter a valid

value into a control before they can cancel the changes made to a record.

 If I put code into the Valid method of a class (for example, to overcome the first

problem), when I need custom Valid code in a subclass or an object instantiated

from the class, I usually have to do something like:

dodefault() && execute the normal behavior

* custom validation code here

nodefault && don’t re-execute the normal behavior

 To overcome the first problem, I added a custom lCancel property to my

CommandButton base class, which allows me to indicate that a button is a “cancel

changes” button (the Cancel property of a button indicates that the button is selected by

pressing Escape, but I may not want that behavior for my “cancel changes” button). The

Valid method of all classes that have one then checks to see if a “cancel changes” button

was pressed before performing any validation code. It does this by using the SYS(1270)

function to get an object reference to the control the user just clicked on and checking to

see if that object has an lCancel property and if so, whether it’s .T. or not.

 To solve the second problem, I added a new Validation method to these same classes

and made the Valid method call it. This way, I leave the Valid method of an object alone

and instead put my specific validation code into the Validation method.

 Here’s the code for the Valid method:

local oObject

oObject = sys(1270)

if lastkey() = 27 or (type('oObject') = 'O' and ;

 type('oObject.lCancel') = 'L' and oObject.lCancel)

 return .T.

endif lastkey() = 27 ...

return This.Validation()

My Base Classes
Here’s the description of the PEM changes in each of my base classes. These classes can

be found in the CONTROLS.VCX file on the Developer disk. All classes are named

according to the VFP base class they’re based on plus an SF (for Stonefield) prefix. For

example, SFCheckBox is based on the CheckBox base class.

SFCheckBox
AutoSize: set to .T. so I don’t have to manually size the control to fit the caption.

BackStyle: set to 0-Transparent so the background color of the container shows through.

Value: set to .F. because I normally use a CheckBox for logical values.

About, AnyChange, Builder, Error, InteractiveChange, ProgrammaticChange, and

Release: described earlier.

SFComboBox
aItems[1]: I added this custom property so if desired, the ComboBox could be self-

contained; its source of display items is a property of itself.

BoundTo: I set this new VFP 5 property to .T. so the ComboBox will properly work with

numeric data sources (see the VFP 5 documentation for more information on this

property).

GetActiveProperties, Init, and lActive: see SFSpinner for information on these changes.

Init also initializes the This.aItems array to an empty string.

ItemTips: set to .T. so this new VFP 5 feature is turned on.

RowSource and RowSourceType: set to This.aItems and 5-Array, respectively, since I

most frequently have ComboBoxes tied to arrays. You can, of course, easily override

these properties as needed.

About, AnyChange, Builder, Error, InteractiveChange, ProgrammaticChange, Release,

SelectOnEntry, Valid, and Validation: described earlier.

SFCommandButton
lCancel: .T. if this button is used as a “cancel” button (this allows the Valid method of a

control to not bother doing validation if the user clicked a “cancel changes” button as

described earlier).

About, Builder, Error, and Release: described earlier.

SFCommandGroup
BackStyle: set to 0-Transparent so the background color of the container shows through.

ButtonCount: 0 so buttons can be added from the SFCommandButton class if desired.

About, Builder, Error, and Release: described earlier.

SFContainer
BackStyle and BorderWidth: set to 0-Transparent and 0, respectively, so the container

itself has no visible appearance.

SetEnabled: while disabling a container causes the member objects of the container to be

disabled, they don’t appear to be disabled. I added this custom method to set the Enabled

property of the object and all member objects to the specified value so all objects appear

to be enabled or disabled appropriately:

lparameters tlEnabled

This.SetAll('Enabled', tlEnabled)

This.Enabled = tlEnabled

About, Builder, Error, and Release: described earlier.

SFControl
BackStyle and BorderWidth: set to 0-Transparent and 0, respectively, so the control itself

has no visible appearance.

SetEnabled: see SFContainer.

About, Builder, Error, and Release: described earlier.

SFCustom
About, Builder, Error, and Release: described earlier.

SFEditBox
IntegralHeight: set to .T. so the box is always displays the last line of text properly.

About, AnyChange, Builder, Error, InteractiveChange, ProgrammaticChange, Release,

SelectOnEntry, Valid, and Validation: described earlier.

SFForm
Destroy: hides the form so it appears to go away faster:

This.Hide()

Init: because the AutoCenter and BorderStyle properties are used at design time as well as

run time, and they can be a hassle when used at design time, I added new lAutoCenter

and nBorderStyle properties to contain the desired run time AutoCenter and BorderStyle

values, and made the Init form do the following:

with This

 .AutoCenter = .lAutoCenter

 .BorderStyle = .nBorderStyle

endwith

lAutoCenter and nBorderStyle: new custom properties as described above. They default

to .T. and 2 (double border), respectively.

Load: set some environmental things the way we want:

set talk off

set safety off

set deleted on

set fullpath on

set exact off

set unique off

oError: a reference to an ErrorMgr object.

ShowTips: set to .T. so tool tips appear.

About, Builder, FindErrorHandler, and Error: described earlier.

SFGrid
AllowHeaderSizing, AllowRowSizing, and SplitBar: all set to .F. since I don’t want that

behavior by default.

About, Builder, Error, and Release: described earlier.

SFImage
BackStyle: set to 0-Transparent so the background color of the container shows through.

About, Builder, Error, and Release: described earlier.

SFLabel
AutoSize: set to .T. so I don’t have to manually size the control to fit the caption.

BackStyle: set to 0-Transparent so the background color of the container shows through

About, Builder, Error, and Release: described earlier.

SFLine
About, Builder, Error, and Release: described earlier.

SFListBox
aItems[1]: I added this custom property so if desired, the ListBox could be self-

contained; its source of display items is a property of itself.

IntegralHeight: set to .T. so the box is always displays the last line of text properly.

ItemTips: set to .T. so this new VFP 5 feature is turned on.

RowSource and RowSourceType: set to This.aItems and 5-Array, respectively, since I

most frequently have ListBoxes tied to arrays. You can, of course, easily override these

properties as needed.

About, AnyChange, Builder, Error, InteractiveChange, ProgrammaticChange, and

Release: described earlier.

SFOLEBoundControl
About, Builder, Error, and Release: described earlier

SFOptionButton
AutoSize: set to .T. so I don’t have to manually size the control to fit the caption.

BackStyle: set to 0-Transparent so the background color of the container shows through.

About, Builder, Error, and Release: described earlier.

SFOptionGroup
BackStyle: set to 0-Transparent so the background color of the container shows through.

ButtonCount: 0 so buttons can be added from the SFOptionButton class if desired.

About, AnyChange, Builder, Error, InteractiveChange, ProgrammaticChange, and

Release: described earlier.

SFPageFrame
PageCount: 0 so pages can be added or removed more easily.

TabStyle: I set this new VFP 5 property to 1-Nonjustified because I want this appearance

by default.

About, Builder, Error, and Release: described earlier.

SFSeparator
About and Release: described earlier.

SFShape
BackStyle: set to 0-Transparent so the background color of the container shows through.

SpecialEffect: set to 0-3D.

About, Builder, Error, and Release: described earlier.

SFSpinner
GetActiveProperties: if the custom property lActive is .T., this method sets the InputMask

and Format properties of the control to the values stored in the database for the control’s

ControlSource. This allows these properties to be updated dynamically whenever the

database properties change. Here’s the code for this method:

local lcControl, ;

 lnDot, ;

 lcAlias, ;

 lcFormat, ;

 lcInput

with This

 lcControl = .ControlSource

 lnDot = at('.', lcControl)

 if .lActive and lnDot > 0 and not empty(dbc())

 lcAlias = left(lcControl, lnDot - 1)

 if indbc(lcAlias, 'Table') or ;

 indbc(lcAlias, 'View')

 lcFormat = dbgetprop(lcControl, 'Field', ;

 'Format')

 lcInput = dbgetprop(lcControl, 'Field', ;

 'InputMask')

 .Format = iif(empty(lcFormat), .Format, ;

 lcFormat)

 .InputMask = iif(empty(lcInput), .InputMask, ;

 lcInput)

 endif indbc(lcAlias, 'Table') ...

 endif .lActive ...

endwith

Init: if the custom property lActive is .T., get the active properties for this control by

calling the GetActiveProperties method.

with This

 if .lActive

 .GetActiveProperties()

 endif .lActive

endwith

lActive: this custom property, which is initially set to .F., indicates whether the Init

method calls the custom GetActiveProperties method.

About, AnyChange, Builder, Error, InteractiveChange, ProgrammaticChange, Release,

SelectOnEntry, Valid, and Validation: described earlier.

SFTextBox
GetActiveProperties, Init, and lActive: see SFSpinner.

About, AnyChange, Builder, Error, InteractiveChange, ProgrammaticChange, Release,

SelectOnEntry, Valid, and Validation: described earlier.

SFTimer
About, Builder, Error, and Release: described earlier.

SFToolbar
Destroy: hides the toolbar so it appears to go away faster:

This.Hide()

oError: a reference to an ErrorMgr object.

About, Builder, FindErrorHandler, Error, and Release: described earlier.

Conclusion
Some of the ideas for the PEM changes I discussed in this article came from other folks,

especially the FoxGang on CompuServe, who every day unselfishly share a wealth of

great ideas. I don’t recall (or even know) who originated some of these ideas, but if you

recognize your idea in this column, thank you!

 Next month, we’ll take a look at some special subclasses of these base classes,

including an EditBox that automatically expands keywords to complete text (similar to

the AutoCorrect function in WinWord) and a ComboBox that supports a feature similar

to Quicken’s “quick fill” function.

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Sask., Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit for Visual FoxPro and

Stonefield Data Dictionary for FoxPro 2.x. He is also the author of “The Visual FoxPro Data Dictionary” in Pinnacle

Publishing’s “The Pros Talk Visual FoxPro” series. Doug has spoken at user groups and regional conferences all

over North America. CompuServe 75156,2326.

