

w w w . D e v T e a c h . c o m

P r a c t i c a l U s e s fo r N e w F e a t u r e s i n
V i s u a l F o x P r o 8 . 0

Doug Hennig

Stonefield Systems Group Inc.

1112 Winnipeg Street, Suite 200

Regina, SK Canada S4R 1J6

Voice: 306-586-3341

Fax: 306-586-5080

Email: dhennig@stonefield.com

Web: http://www.stonefield.com

Web: http://www.stonefieldquery.com

Overview

Going over a list of the new features in VFP 8 doesn’t really tell you how and where to
use them. This document takes a practical look at new features to create things like
picklist grids, page frames with delayed instantiation of contents, labeled option boxes,
objects that know how to resize themselves in a form, dynamic data objects, and many
more.

mailto:dhennig@stonefield.com
http://www.stonefield.com/
http://www.stonefieldquery.com/

w w w . D e v T e a c h . c o m

Introduction

VFP 8 is probably the most significant upgrade to FoxPro since VFP 3 was released.
Nearly every facet of the product has been improved in some way. That’s the good
news. The bad news is that it can take quite a while to figure out what’s new in VFP 8
and how it applies to you and your development challenges.

The purpose of this document is to examine some practical uses for some of the new
features in VFP 8. We’ll start by looking at changes I’ve made to my base classes to
accommodate new and improved features, such as page frames with my own Page
classes and controls that know how to resize themselves. Then we’ll look at some
specialized classes to do things like provide picklist grids, labeled option boxes, and
dynamic data objects.

Base Classes

Like many VFP developers, I created my own set of subclasses of the VFP base classes
years ago. Although my base classes, each called SFbaseclassname and defined in
SFCtrls.VCX, have served me well for a long time, I recently decided it was time to
revisit them. They were all created in the VFP 3 days, and VFP has changed a lot since
then. As I went through the SFCtrls classes, I found that a lot of code and custom
properties were no longer required to create certain behavior because that behavior was
now built into VFP.

Page and PageFrame

In earlier versions of VFP, increasing the PageCount property of a PageFrame added
Page objects to the PageFrame. As base class objects, you had to manually code any
behavior for these pages. One common behavior to add to pages is refreshing on
activation. For performance reasons, when you call the Refresh method of a form, VFP
only refreshes controls on the active page of a page frame. As a result, when the user
activates another page, the controls on that page show their former values rather than
current ones. To fix this, you could add This.Refresh() to the Activate method of each
page, but that’s tedious and doesn’t work in cases where pages are added dynamically
at runtime.

To prevent that, SFPageFrame had the following code in Init. This code added an
SFPageActivate object to every page.

local llAdd, ;

 loPage

llAdd = '\SFCTRLS.VCX' $ upper(set('CLASSLIB'))

for each loPage in This.Pages

 if llAdd

 loPage.AddObject('oActivate', 'SFPageActivate')

 else

 loPage.NewObject('oActivate', 'SFPageActivate', 'SFCtrls.vcx')

 endif llAdd

next loPage

w w w . D e v T e a c h . c o m

SFPageActivate is a simple class with the following code in
UIEnable:

lparameters tlEnable

with Thisform

 if tlEnable

 .LockScreen = .T.

 This.Parent.Refresh()

 if pemstatus(Thisform, 'SetFocusToFirstObject', 5)

 .SetFocusToFirstObject(This.Parent)

 endif pemstatus(Thisform, 'SetFocusToFirstObject', 5)

 .LockScreen = .F.

 endif tlEnable

endwith

This code does two things when a page is activated: it refreshes the controls on the
page and sets focus to the first one. (We won’t look at the SetFocusToFirstObject
method; feel free to examine that method yourself.)

VFP 8 makes this much simpler because we can now subclass Page visually and tell
PageFrame to use our subclass by setting its MemberClass and MemberClassLibrary
properties to the appropriate class and library. My VFP 8 version of SFPageFrame has
no code in Init and has MemberClass and MemberClassLibrary set to SFPage, a new
class based on Page in SFCtrls.VCX. I also removed the SFPageActivate class from
SFCtrls.VCX since it isn’t needed anymore. SFPage has following code in Activate:

local llLockScreen

with This

* Lock the screen for snappier refreshes.

 llLockScreen = Thisform.LockScreen

 if not llLockScreen

 Thisform.LockScreen = .T.

 endif not llLockScreen

* If we're supposed to instantiate a member object and haven't yet done

* so, do that now.

 if not empty(.cMemberClass) and type('.oMember.Name') <> 'C'

 if '\' + upper(.cMemberLibrary) $ set('CLASSLIB')

 .AddObject('oMember', .cMemberClass)

 else

 .NewObject('oMember', .cMemberClass, .cMemberLibrary)

 endif '\' ...

 with .oMember

 .Top = 10

 .Left = 10

 .Visible = .T.

 .ZOrder(1)

 endwith

 endif not empty(.cMemberClass) ...

* Set focus to the first object.

w w w . D e v T e a c h . c o m

 if pemstatus(Thisform, ;

 'SetFocusToFirstObject', 5)

 Thisform.SetFocusToFirstObject(This)

 endif pemstatus(Thisform ...

* Refresh all controls and restore the LockScreen setting.

 .Refresh()

 if not llLockScreen

 Thisform.LockScreen = .F.

 endif not llLockScreen

endwith

In addition to the behavior of the former SFPageActivate, this code supports one other
feature: the ability to delay instantiation of the controls on the page until the page is
activated. Why would you want to do that? One reason is performance. If you have a
form containing a page frame with a lot of pages and a lot of controls on each page, it’ll
take a long time to instantiate. However, if only the controls on the first page are created
when the form is instantiated, the form loads very quickly. When the user selects another
page for the first time, the controls on that page will be instantiated. The user will take a
slight performance hit when this happens, but it’s minimal and doesn’t occur the second
and subsequent times. Another reason is flexibility. I’ve created wizard-based forms
where which controls appear on page 2 depend on choices the user makes in page 1.
Delaying the instantiation of the page 2 controls until page 2 is activated allows me to
decide what controls to instantiate dynamically.

To support this feature, SFPage has two new properties: cMemberClass and
cMemberLibrary, which contain the class and library for a container of controls. To use
delayed instantiation, create a subclass of Container, add the controls that should
appear in the page to the container, and set the cMemberClass and cMemberLibrary
properties of a page in a page frame to the container’s class and library names.

SFPage has other behavior as well, including support for shortcut menus and
automatically disabling all the controls on the page when the page itself is disabled. The
reason for the latter feature is that normally when you disable a page, the controls on the
page don’t appear to be disabled, even though they can’t receive focus, so it’s confusing
to the user.

To see an example of these classes, run DemoPageClass.SCX. This form has two page
frames: one PageFrame with regular Page objects and the other SFPageFrame with
SFPage objects. Select page 2 of both page frames, note the customer information
shown, then select page 1 of both and click on the Next button a few times. Select page
2 of both again and notice that the PageFrame doesn’t show the correct information (that
is, until you click in a textbox) but SFPageFrame does. Also, check and uncheck the
Enabled check box and notice that while the controls in the PageFrame don’t appear
disabled (although you can’t set focus to them), those in SFPageFrame do.

w w w . D e v T e a c h . c o m

OptionGroup

Similar to PageFrame, increasing the ButtonCount property of an OptionGroup adds
more base class OptionButton objects to the control. Because the default property
values for OptionButton aren’t correct, in my opinion, you always have to manually set
the AutoSize property to .T. and the BackStyle property to 0-Transparent for every
button.

Because VFP 8 visually supports OptionButton subclasses and OptionGroup has
MemberClass and MemberLibrary properties, I created an SFOptionButton class and set
MemberClass and MemberClassLibrary in SFOptionGroup to point to the new class. To
see these buttons in effect, run DemoOptionButton.SCX. With both option groups, I
simply changed the caption of the two buttons. Notice that the top one, which uses
OptionGroup, isn’t sized properly and the buttons don’t have the proper background
color. The bottom one, which is an instance of SFOptionGroup, looks correct.

Grid

Until VFP 8, one feature that distinguished VFP grids from grid controls in other
languages or ActiveX grids was that there wasn’t an easy way to highlight an entire row
in VFP. This is a useful feature for a couple of reasons: it makes it easier to tell which
row you’re on when a grid doesn’t have focus, and it makes a grid act like a list box but
with much better performance when there are a lot of rows.

To allow highlighting of an entire row, I added a bunch of properties and methods to
SFGrid: lAutoSetup to determine if SetupColumns should be called from Init,
lHighlightRow to determine if we want that behavior, cSelectedBackColor and
cSelectedForeColor to determine the colors for the selected row, nBackColor to save the
former background color for a row so it can be restored when another row is selected,
nRecno to keep track of the current row being highlighted, lGridHasFocus and

w w w . D e v T e a c h . c o m

lJustGotFocus so we can track when the grid is selected,
code in Init to call SetupColumns if lAutoSetup is .T.,
SetupColumns to set DynamicBackColor and
DynamicForeColor to expressions that highlight the current row, and code in When,
Valid, BeforeRowColChange, and AfterRowColChange to support it. Whew!

In the VFP 8 version of SFGrid, I removed most of these custom properties and methods
because VFP 8 has a much simpler way to do this: set the new HighlightStyle property
to 2-Current row highlighting enable with visual persistence, and HighlightBackColor and
HighlightForeColor to the desired colors.

I also added an lAutoFit property. If this property is .T., the SetupColumns method calls
the AutoFit method so all the columns are sized appropriately for their data. While the
user can do this manually by double-clicking in the grid, I prefer to do it for the user
automatically.

DemoGrid.SCX shows some of the features of SFGrid, including automatic auto-fitting,
automatic header captions, and resizing when the form resizes, which we’ll discuss next.

Handling Container Resizing

Until VFP 8, there were two ways to deal with what happens when a container, such as
a form, is resized. One was to put code into the Resize method of the container that
resized all the controls. That usually resulted in a ton of manually written code setting the
Top, Left, Height, and Width properties of each control by control name, always a
dangerous proposition (what if you rename a control?). The other way was to use a
resizer object responsible for iterating through the controls in the form, resizing each
appropriately. The FoxPro Foundation Classes (FFC) that come with VFP provided a
class, _Resizable, to handle this for you. I created a subclass of _Resizable called
SFResizable that had better behavior, including allowing you to define how each control
is resized. However, it again meant specifying controls by name and having to
remember to update the SFResizable object when new controls were added to the form.

Although earlier versions of VFP had the ability to bind to events in COM objects, VFP 8
provides event binding to native controls. Event binding means that an object can be
informed when some event is triggered. In the case of resizing, that means each control
is informed when its container is resized and is itself responsible for what should
happen.

To implement this, I added an lHandleContainerResize property, .F. by default, to most
of the visual classes in SFCtrls.VCX: SFCheckBox, SFComboBox, SFCommandButton,
SFContainer, SFEditBox, SFGrid, SFImage, SFLabel, SFLine, SFListBox,
SFOptionGroup, SFPageFrame, SFShape, SFSpinner, and SFTextBox. They also have
a HandleContainerResize method and cAnchor, nContainerHeight, nContainerWidth,
nHeight, nLeft, nTop, and nWidth properties. The Init method binds the Resize event of
the object’s container (the page frame in the case of the parent being a page) to the
HandleContainerResize method and saves the current size and position of the container
and the object if lHandleContainerResize is .T.:

with This

w w w . D e v T e a c h . c o m

* If we're supposed to bind to the Resize event

* of our container, and there is

* one, do so. If we're in a page of a pageframe,

* bind to the pageframe. Save the current size and position of the

* container and us.

 if .lHandleContainerResize and type('.Parent.Name') = 'C'

 if upper(.Parent.BaseClass) = 'PAGE'

 bindevent(.Parent.Parent, 'Resize', This, ;

 'HandleContainerResize')

 else

 bindevent(.Parent, 'Resize', This, 'HandleContainerResize')

 endif upper(.Parent.BaseClass) = 'PAGE'

 .nContainerHeight = .Parent.Height

 .nContainerWidth = .Parent.Width

 .nWidth = .Width

 .nHeight = .Height

 .nLeft = .Left

 .nTop = .Top

 endif .lHandleContainerResize ...

endwith

The HandleContainerResize method, called when the container is resized, adjusts the
Height, Left, Top, and Width properties according to the setting of the cAnchor property.
cAnchor should contain some combination of the following values:

Value Anchor control to
L Left edge of container

R Right edge of container

V Vertical center of container

T Top edge of container

B Bottom edge of container

H Horizontal center of container

“Anchoring” means that the various edges of the control are virtually (not actually) bound
to part of the container. For example, if a control is anchored to the right edge of the
form (cAnchor contains “R”), as the form is widened, the control will move to the right. If
cAnchor is set to “LR”, the control won’t move since its left edge is bound to the left edge
of the container but will instead become wider since its right edge is bound to the right
edge of the container. You can use various combinations of anchor settings to achieve
the desired result. For example, “LRTB” means the object will grow horizontally and
vertically as the container is resized. Use “V” and “H” when you want an object to be
centered (for example, “BV” will keep OK and Cancel buttons centered at the bottom of a
form) or for objects that need to be resized that sit beside other objects that are resized.

Here’s the code in HandleContainerResize that does all the heavy lifting (AEVENTS()
gives us a reference to the object whose event we’re bound to):

local laEvents[1], ;

 lnHeight, ;

 lnWidth, ;

 lnHeightAdjust, ;

 lnWidthAdjust, ;

 lcAnchor

w w w . D e v T e a c h . c o m

with This

* Get the new height and width of the container

* and how much it changed by.

 aevents(laEvents, 0)

 lnHeight = laEvents[1].Height

 lnWidth = laEvents[1].Width

 lnHeightAdjust = lnHeight - .nContainerHeight

 lnWidthAdjust = lnWidth - .nContainerWidth

* Adjust the width and left as appropriate.

 lcAnchor = upper(.cAnchor)

 do case

 case 'L' $ lcAnchor and 'R' $ lcAnchor

 .Width = max(.nWidth + lnWidthAdjust, 0)

 case 'L' $ lcAnchor and 'V' $ lcAnchor

 .Width = max(.nWidth + lnWidthAdjust/2, 0)

 case 'R' $ lcAnchor and 'V' $ lcAnchor

 .Width = max(.nWidth + lnWidthAdjust/2, 0)

 .Left = .nLeft + lnWidthAdjust/2

 case 'V' $ lcAnchor

 .Left = .nLeft + lnWidthAdjust/2

 case 'R' $ lcAnchor

 .Left = .nLeft + lnWidthAdjust

 endcase

* Adjust the height and top as appropriate.

 do case

 case 'T' $ lcAnchor and 'B' $ lcAnchor

 .Height = max(.nHeight + lnHeightAdjust, 0)

 case 'T' $ lcAnchor and 'H' $ lcAnchor

 .Height = max(.nHeight + lnHeightAdjust/2, 0)

 case 'B' $ lcAnchor and 'H' $ lcAnchor

 .Height = max(.nHeight + lnHeightAdjust/2, 0)

 .Top = .nTop + lnHeightAdjust/2

 case 'H' $ lcAnchor

 .Top = .nTop + lnHeightAdjust/2

 case 'B' $ lcAnchor

 .Top = .nTop + lnHeightAdjust

 endcase

endwith

SFForm has This.Resize() in Init so all controls resize properly at startup.

To see how this feature works, run DemoResizeBinding.SCX and resize the form. Notice
that the page frame, the grid in page 1, and the edit boxes in page 2 automatically resize
themselves, and the OK and Cancel buttons stay centered. No code was required to do
this, just setting lHandleContainerResize to .T. and cAnchor as appropriate.

There are a couple of issues with this mechanism I haven’t worked out as of this writing.
One is that when you programmatically change the Height and Width of a container, the
HandleContainerResize of all member controls is called for each change, so this method

w w w . D e v T e a c h . c o m

gets called twice. It’d be nice to defer firing
HandleContainerResize until both Height and Width are
changed. The other issue is what happens when you click
on the Minimize and Maximize buttons of the form. It appears that the Height of the page
frame doesn’t change until after the HandleContainerResize method of the grid and edit
box are fired, so while the width of these controls is adjusted properly, the height is not
(although sometimes in my testing, it was Width that didn’t change).

Error Handling

One of the most important enhancements in VFP 8 is the addition of structured error
handling. The TRY structure is part of a three-level error handling mechanism in VFP:
true local error handling (using TRY), object error handling (using the Error method), and
global error handling (via ON ERROR).

However, one complication is that the new THROW command, which raises an error in
the next highest error handler, doesn’t play well with either Error methods or ON ERROR
routines. That’s because THROW passes an Exception object (one of the new base
classes in VFP 8) to the error handler, but only the CATCH clause of a TRY structure is
prepared to receive such an object. As a result, information about the error, such as the
error number, line number, and so forth, pertains to the THROW statement, not to any
original error that occurred.

One way to handle this is to store the exception object, which contains information about
the original error, to a persistent location (such as a global variable or property) before
using THROW. That way, if the next highest error handler is an Error method or ON
ERROR routine, that error handler can get the correct information about the original
error by examining the stored exception object.

To support this, I added an oException property to all base classes. Any code in an
object that uses a THROW should first store an exception object in oException. The
Error method checks to see if oException contains an object, and if so, gets information
about the error from it. (Not all of the code in Error is shown here, only the code
applicable to oException.)

lparameters tnError, ;

 tcMethod, ;

 tnLine

* LOCAL statement omitted

* Use AERROR() to get information about the error. If we have an

* Exception object in oException, get information about the error from

* it.

lnError = tnError

lcMethod = tcMethod

lnLine = tnLine

lcSource = message(1)

aerror(laError)

with This

 if vartype(.oException) = 'O'

 lnError = .oException.ErrorNo

 lcMethod = .oException.Procedure

w w w . D e v T e a c h . c o m

 lnLine = .oException.LineNo

 lcSource = .oException.LineContents

 laError[cnAERR_NUMBER] = ;

 .oException.ErrorNo

 laError[cnAERR_MESSAGE] = .oException.Message

 laError[cnAERR_OBJECT] = .oException.Details

 .oException = .NULL.

 endif vartype(.oException) = 'O'

endwith

* Remainder of code omitted

To see how this works, run DemoErrorHandling.SCX. The two buttons have identical
code which causes an error and throws an Exception object, but the second one sets
oException to the Exception object before using THROW. Notice the difference in the
error message displayed when you click on each button; the first one indicates that the
error is an unhandled structured exception, which is caused by the THROW command,
while the second displays the correct message for the error that occurred.

Collection

Collections are a common way to store multiple instances of things. For example, a
TreeView control has a Nodes collection and Microsoft Word has a Documents
collection. Until recently, Visual FoxPro developers wanting to use collections often
created their own classes that were nothing more than fancy wrappers for arrays.
However, in addition to being a lot of code to write, home-built collections don’t support
the FOR EACH syntax, which is especially awkward when they’re exposed in COM
servers. VFP 8 solves this problem by providing a true Collection base class.

I created a subclass of Collection called SFCollection. This subclass has the same
About (used for documentation), Error (implementing the same error handling
mechanism all SF classes use), and Release (so all classes can be released by calling
this method) methods my other base classes have. It also has a GetArray method that
provides a means of filling an array with information about items in the collection; this is
handy when you want to base a combo box or list box on a collection of items, since
these controls don’t support collections but they do support arrays. GetArray calls the
abstract FillArrayRow method, which must be coded in a subclass to put the desired
elements of a collection item into the current row of the array. SFCollection also has
FillCollection and SaveCollection methods that allow you to fill a collection from and
save a collection to persistent storage. FillCollection is called from Init if the custom
lFillOnInit property is .T.; it’s abstract in SFCollection and must be coded in a subclass.
SaveCollection spins through the collection and calls the abstract SaveItem method,
which a subclass will implement to save the current item.

MetaData.PRG shows an interesting use of collections: so meta data about tables,
fields, and indexes appear as collections of collections. First, a generic
MetaDataCollection class is defined as follows:

define class MetaDataCollection as SFCollection of SFCtrls.vcx

 protected function FillArrayRow(taArray, tnItem, toItem)

 dimension taArray[tnItem, 2]

 taArray[tnItem, 1] = toItem.Caption

 taArray[tnItem, 2] = This.GetKey(tnItem)

w w w . D e v T e a c h . c o m

 endfunc

enddefine

The FillArrayRow method is overridden here so when the
GetArray method is called, the specified array is filled with the caption and key name of
each item in the collection.

Classes are defined to simply hold properties about fields and indexes:

define class Field as Custom

 DataType = ''

 Length = 0

 Decimals = 0

 Binary = .F.

 AllowNulls = .F.

 Caption = ''

enddefine

define class Index as Custom

 Expression = ''

 Filter = ''

 Type = ''

 Ascending = .F.

 Collate = ''

 Caption = ''

enddefine

The table class is slightly more complicated: in addition to properties about a table, it
also adds fields and indexes collections:

define class Table as Custom

 CodePage = 0

 BlockSize = 0

 Caption = ''

 add object Fields as MetaDataCollection

 add object Indexes as MetaDataCollection

enddefine

Finally, a class to manage a collection of tables is defined. Since lFillOnInit is set to .T.,
the FillCollection method is called when the class instantiates. The code in that method
fills the collections of tables, fields, and indexes from the CoreMeta table of a DBCX-
based set of meta data. (If you’re not familiar with DBCX, it’s a public domain data
dictionary available for download from the Technical Paper page of
http://www.stonefield.com.)

define class Tables as MetaDataCollection

 lFillOnInit = .T.

 procedure FillCollection

 local lcTable, ;

 loTable, ;

 lcField, ;

 loField, ;

 lcIndex, ;

http://www.stonefield.com/

w w w . D e v T e a c h . c o m

 loIndex

 use CoreMeta

 scan

 do case

* If this is a table or view, add it to the collection.

 case cRecType $ 'TV'

 lcTable = trim(cObjectNam)

 loTable = createobject('Table')

 with loTable

 .CodePage = nCodePage

 .BlockSize = nBlockSize

 .Caption = trim(cCaption)

 endwith

 This.Add(loTable, lcTable)

* If this is a field, add it to the appropriate table.

 case cRecType = 'F'

 lcTable = juststem(cObjectNam)

 lcField = trim(justext(cObjectNam))

 loField = createobject('Field')

 with loField

 .DataType = cType

 .Length = nSize

 .Decimals = nDecimals

 .Binary = lBinary

 .AllowNulls = lNull

 .Caption = trim(cCaption)

 endwith

 This.Item(lcTable).Fields.Add(loField, lcField)

* If this is an index, add it to the appropriate table.

 case cRecType = 'I'

 lcTable = juststem(cObjectNam)

 lcIndex = trim(justext(cObjectNam))

 loIndex = createobject('Index')

 with loIndex

 .Expression = mTagExpr

 .Filter = mTagFilter

 .Type = cTagType

 .Ascending = lAscending

 .Collate = trim(cCollate)

 .Caption = trim(cCaption)

 endwith

 This.Item(lcTable).Indexes.Add(loIndex, lcIndex)

 endcase

 endscan

 use

 endproc

enddefine

DemoMetaData.SCX shows how these classes can be used. The table combo box gets
its rows from an array of tables in the collection, retrieved by calling the GetArray

w w w . D e v T e a c h . c o m

method of the tables collection. The field combo box is
based on an array of fields filled by calling the GetArray
method of the fields collection of the table object for the
table selected by the table combo box.

Specialized Classes

Now that we’ve looked at new base classes and changes to existing ones, let’s take a
look at some specialized classes that provide specific functionality, such as picklist grids
and labeled option boxes, using new features in VFP 8.

Picklist Grids

As I mentioned earlier when I discussed grids, creating a grid that behaves like a list box
was a lot of work in earlier versions of VFP. In VFP 8, it’s ridiculously easy because of
some new grid properties: set HighlightStyle to 2-Current row highlighting enable with
visual persistence, HighlightBackColor and HighlightForeColor to the desired colors, and
AllowCellSelection to .F. The latter property is the key to a picklist-style grid: it prevents
the user from setting focus to any cell, thus making each row in the grid behave like a
single, multi-columned object.

Because picklists are often used in applications, I created a subclass of SFGrid called
SFPickListGrid (in SFCCtrls.VCX). Its properties are set as follows:

Property Value
AllowCellSelection .F.

DeleteMark .F.

HighlightStyle 2-Current row highlighting enable with visual persistence

RecordMark .F.

ScrollBars 2-Vertical

To provide incremental searching and allow the user to quickly move to the first or last
rows with the Home and End keys, the KeyPress method has the following code:

lparameters tnKeyCode, ;

 tnShiftAltCtrl

local lcAlias, ;

w w w . D e v T e a c h . c o m

 lcOrder, ;

 lnRecno, ;

 lcCurrNear, ;

 lcCurrExact, ;

 lcKey, ;

lcType

with This

* Get the cursor alias and current order.

 lcAlias = .RecordSource

 lcOrder = order(lcAlias)

 do case

* If we have a character keystroke and an order for the table, do an

* incremental search. First, save some other things and set them the

* way we want.

 case between(tnKeyCode, 32, 127) and not empty(lcOrder)

 lnRecno = iif(eof(lcAlias) or bof(lcAlias), 1, ;

 recno(lcAlias))

 lcCurrNear = set('NEAR')

 lcCurrExact = set('EXACT')

 set near on

 set exact off

* If the user pressed BackSpace, delete the last character from the

* search string (if there is one).

 do case

 case tnKeyCode = 127 and len(.cSearchString) > 0

 .cSearchString = left(.cSearchString, ;

 len(.cSearchString) - 1)

* If the user is entering characters within the "incremental search"

* time period, add them to the search string.

 case seconds() - .nKeyTime <= _incseek

 .cSearchString = .cSearchString + chr(tnKeyCode)

* The search string is just the character entered.

 otherwise

 .cSearchString = chr(tnKeyCode)

 endcase

 .nKeyTime = seconds()

 lcKey = key(tagno(lcOrder, '', lcAlias), lcAlias)

 lcType = type(lcKey)

 do case

* Look for the search string: if we can't find it, try seeking on the

* UPPER() function.

 case lcType = 'C'

 if not seek(.cSearchString, lcAlias, lcOrder) and ;

 not seek(upper(.cSearchString), lcAlias, lcOrder)

 go lnRecno in (lcAlias)

w w w . D e v T e a c h . c o m

 endif not seek(.cSearchString, ...

* Handle other data types for the SEEK.

 case lcType $ 'NFIYB'

 = seek(val(.cSearchString), lcAlias, lcOrder)

 case lcType = 'D'

 = seek(ctod(.cSearchString), lcAlias, lcOrder)

 case lcType = 'T'

 = seek(ctot(.cSearchString), lcAlias, lcOrder)

 endcase

* Set things back the way they were.

 if lcCurrExact = 'ON'

 set exact on

 endif lcCurrExact = 'ON'

 if lcCurrNear = 'OFF'

 set near off

 endif lcCurrNear = 'OFF'

* If the user pressed Home, move to the first record.

 case tnKeyCode = 1

 go top in (lcAlias)

* If the user pressed End, move to the last record.

 case tnKeyCode = 6

 go bottom in (lcAlias)

 endcase

endwith

This code uses two custom properties of SFPickListGrid: cSearchString, which contains
the string of characters to perform an incremental search on, and nKeyTime, which
contains the last time a key was pressed, used to clear cSearchString after a pause.

Allowing the user to change how the list is sorted is a useful feature, so the
SetupColumns method, defined in SFGrid but overridden here, has code that goes
through each column and substitutes the header of any column displaying a field that
has a tag on it with an SFHeaderSortable object, which allows the user to click on the
header to sort on that field. (We won’t look at SFHeaderSortable, which is defined in
SFClasses.PRG; feel free to examine it yourself.)

local lcOrder, ;

 laTags[1], ;

 lnTags, ;

 llUseAdd, ;

 loColumn, ;

 lcField, ;

 lnI, ;

 lcTag, ;

 lcCaption

* Do the usual behavior first so all the columns are set up properly.

w w w . D e v T e a c h . c o m

dodefault()

* Get the current order for the table and a list of its tags, then go

* through each column, checking whether the field for the column is

* involved in a tag.

lcOrder = order(This.RecordSource)

lnTags = ataginfo(laTags, '', This.RecordSource)

llUseAdd = '\SFCLASSES.PRG' $ upper(set('PROCEDURE'))

for each loColumn in This.Columns

 lcField = loColumn.ControlSource

 for lnI = 1 to lnTags

* If this field is indexed, switch the header to an SFHeaderSortable

* object

 if atc(justext(lcField), laTags[lnI, 3]) > 0 or ;

 atc(lcField, laTags[lnI, 3]) > 0

 lcTag = laTags[lnI, 1]

 lcCaption = loColumn.Header1.Caption

 if llUseAdd

 loColumn.AddObject('ColHeader', 'SFHeaderSortable')

 else

 loColumn.NewObject('ColHeader', 'SFHeaderSortable', ;

 'SFClasses.prg')

 endif llUseAdd

* Set the properties of the new header. If the tag for this field is

* the main one for the table, set the picture of the header. Set the

* caption and order that this column uses.

 with loColumn.ColHeader

 .Picture = iif(lcOrder == lcTag, .cAscImage, '')

 .Caption = lcCaption

 .FontName = This.FontName

 .FontSize = This.FontSize

 .cOrder = laTags[lnI, 1]

 endwith

* If we're supposed to auto-fit, do so for the column since the picture

* could affect the width.

 if This.lAutoFit

 loColumn.AutoFit()

 endif This.lAutoFit

 exit

 endif atc(justext(lcField), laTags[lnI, 3]) > 0 ...

 next lnI

next loColumn

Rather than subclassing SFPickListGrid for each type of picklist, I decided to create a
generic form called SFPickListForm, also defined in SFCCtrls.VCX, which accepts some
parameters about what the picklist should contain. The Init method expects to be passed
the name of the table or view (including path or database name if necessary, since the
form has a private data session), the initial tag to use, a comma-delimited list of field

w w w . D e v T e a c h . c o m

names to display in the grid, the field or expression to return
if the user chooses OK, and the caption for the form.

lparameters tcTable, ;

 tcOrder, ;

 tcColumns, ;

 tcReturn, ;

 tcCaption

local lcOrder, ;

 lcAlias, ;

 lnColumns, ;

 lnI

with This

* Open the specified table using the specified order. If we can't, exit

* now.

 lcOrder = iif(empty(tcOrder), '', 'order ' + tcOrder)

 try

 use (tcTable) &lcOrder again shared noupdate

 catch

 endtry

 lcAlias = alias()

 if empty(lcAlias)

 return .F.

 endif empty(lcAlias)

* Set the RecordSource for the grid and ControlSource for each column

* to the specified alias and fields.

 .grdPickList.RecordSource = lcAlias

 lnColumns = alines(laColumns, tcColumns, .T., ',')

 .grdPickList.ColumnCount = lnColumns

 for lnI = 1 to lnColumns

 .grdPickList.Columns[lnI].ControlSource = lcAlias + '.' + ;

 laColumns[lnI]

 next loColumn

* Store the name of the return column and set the form caption.

 .cReturn = tcReturn

 if not empty(tcCaption)

 .Caption = tcCaption

 endif not empty(tcCaption)

* Finish off with the default behavior.

 dodefault()

endwith

The Show method sets up the columns and adjusts the width of the grid and form so
everything fits properly.

lparameters tnStyle

local lnWidth

with This

w w w . D e v T e a c h . c o m

* Set up the columns.

 .grdPickList.SetupColumns()

* Determine the width of the grid and the form based on the column

* widths.

 lnWidth = 0

 for each loColumn in .grdPickList.Columns

 lnWidth = lnWidth + loColumn.Width

 next lnWidth

 .grdPickList.Width = lnWidth + sysmetric(5) + 6

 store .grdPickList.Width + .grdPickList.Left * 2 to .Width, ;

 .MinWidth, .MaxWidth

 .Resize()

endwith

The SelectRecord method, called if the user clicks on the OK button or presses Enter in
the grid, sets the cSelected property to the value of the return field for the current record
and hides the form so execution returns to the caller.

DemoPickList.PRG shows how this works. Try clicking in the header of either column,
typing a few letters to jump to the first customer with those letters, and choosing OK or
Cancel. Note that incremental searching is based on the index expression of a tag, so if
UPPER() isn’t used (as is the case for the Company field in this example), the search
will be case-sensitive.

Labeled Option Boxes

Some forms group related controls visually using a labeled option box. For example, the
Tools, Options dialog uses this type of box in several places. The image below shows
three of them: the Warning sound, Programming, and Data entry areas of the General
page.

w w w . D e v T e a c h . c o m

Creating a labeled option box is easy: simply add a label and a shape to a container and
position and size them correctly. However, to make it look good in Windows XP requires
a new feature in VFP 8: setting the Style property of each of the components to 3-
Themed. Even though it doesn’t seem like you need to, you must set the container’s
Style to 3-Themed as well. Otherwise, the labeled option box won’t appear correctly
when it’s on a page of a page frame. SFLabelledBox, in SFCCtrls.VCX, is an example of
such an object. To see an example of its use, run DemoLabelledBox.SCX.

One complication with using this control: when you size an instance of it at design time,
the shape inside it isn’t automatically sized. This means you have to drill into the
container and resize the shape as well. Also, you have to drill into the container to
change the caption of the label. This sounds like the perfect use for a builder, so set the
Builder property of SFLabelledBox, which defines the builder to use for this class, to
SFLabelledBoxBuilder.PRG. That PRG contains the following code, which simply
adjusts the size of the shape to match the container and prompts for the caption of the
label:

local laObjects[1], ;

 loObject, ;

w w w . D e v T e a c h . c o m

 lcCaption

aselobj(laObjects)

loObject = laObjects[1]

with loObject

 .shpBox.Width = .Width

 .shpBox.Height = .Height - .shpBox.Top

 lcCaption = inputbox('Caption:', 'Labeled Box Builder', ;

 .lblBox.Caption)

 if not empty(lcCaption)

 .lblBox.Caption = lcCaption

 endif not empty(lcCaption)

endwith

Dynamic Data Objects

Some people like to create “data” objects by specifying the NAME clause in the
SCATTER command. This creates an object of class Empty, which has no properties,
events, or methods (PEMs) at all, creates a property for each field in the current table,
and fills those properties with the current record (unless you specify the BLANK clause).
One reason to use such a data object is that it’s a very lightweight object you can easily
pass to anything, including non-VFP COM objects such as Microsoft Word and Excel.

However, one drawback of these data objects is that they are so lightweight, they
contain nothing but the properties matching the fields in the table. Sometimes, it’d be
useful to have an object that has behavior as well as data. For example, maybe you’d
like to perform some rudimentary validation for the properties. Unfortunately, since
SCATTER NAME always created a new object of class Empty, this wasn’t possible in
earlier versions of VFP.

Fortunately, VFP 8 has a great new clause in the SCATTER command: ADDITIVE. If
you specify this clause and an object with the name specified in the NAME clause
already exists, it’ll be used rather than creating a new Empty object. The object doesn’t
have to have property names that match the fields in the table; VFP will automatically
create new properties as necessary.

Here’s a simple example, taken from DemoDataObject.PRG, which shows a data object
that splits a single contact name into its component first, middle, and last names. The
access methods for the FirstName, MiddleName, and LastName properties retrieve the
appropriate part of the Contact property (which isn’t defined in this class but will
automatically be added by a SCATTER command), and the assign methods update the
Contact property appropriately.

use _samples + 'data\customer'

browse

loCustomer = createobject('CustomerObject')

scatter name loCustomer additive

messagebox('Contact: ' + loCustomer.Contact + chr(13) + ;

 'First name: ' + loCustomer.FirstName + chr(13) + ;

 'Middle name: ' + loCustomer.MiddleName + chr(13) + ;

 'Last name: ' + loCustomer.LastName)

loCustomer.FirstName = 'Sue'

loCustomer.MiddleName = 'Ellen'

messagebox('Contact: ' + loCustomer.Contact + chr(13) + ;

w w w . D e v T e a c h . c o m

 'First name: ' + loCustomer.FirstName + ;

 chr(13) + ;

 'Middle name: ' + loCustomer.MiddleName + ;

 chr(13) + ;

 'Last name: ' + loCustomer.LastName)

define class CustomerObject as Custom

 FirstName = ''

 MiddleName = ''

 LastName = ''

 function FirstName_Access

 This.FirstName = getwordnum(This.Contact, 1)

 return This.FirstName

 endfunc

 function FirstName_Assign(tcValue)

 This.FirstName = tcValue

 This.BuildName()

 endfunc

 function MiddleName_Access

 local lcContact, ;

 lnWords, ;

 lnPos

 lcContact = This.Contact

 lnWords = getwordcount(lcContact)

 do case

 case lnWords > 3

 lnPos = at(' ', lcContact) + 1

 This.MiddleName = substr(lcContact, lnPos, ;

 rat(' ', lcContact) - lnPos)

 case lnWords = 3

 This.MiddleName = getwordnum(lcContact, 2)

 otherwise

 This.MiddleName = ''

 endcase

 return This.MiddleName

 endfunc

 function MiddleName_Assign(tcValue)

 This.MiddleName = tcValue

 This.BuildName()

 endfunc

 function LastName_Access

 This.LastName = getwordnum(This.Contact, ;

 getwordcount(This.Contact))

 return This.LastName

 endfunc

 function LastName_Assign(tcValue)

 This.LastName = tcValue

 This.BuildName()

 endfunc

 function BuildName

w w w . D e v T e a c h . c o m

 This.Contact = This.FirstName + ' ' + ;

 iif(empty(This.MiddleName), '', ;

 This.MiddleName + ' ') + ;

 This.LastName

 endfunc

enddefine

Parameters Objects

If you have a function that requires a large number of parameters, or needs to return
more than a single value, a “parameters” object can be useful. A parameters object is
simply one that contains the values of input and output parameters as properties. You
create a parameters object, set the properties for input parameters appropriately, pass it
to a function or method, and upon return, read the values of the output properties.

Until VFP 8, you had to do one of two things to use a parameter object: predefine a class
with the appropriate properties, or instantiate a base class object that supports the
AddProperty method and add the properties dynamically at runtime. VFP 8 provides a
more lightweight object that’s perfect for this: the Empty base class. As we saw in the
previous section, Empty has actually existed for a long time in VFP, but until VFP 8, we
couldn’t create an Empty object directly.

Since Empty has no PEMs, it doesn’t support the AddProperty method, so how do you
add the properties you want? Using the new ADDPROPERTY() function.

DemoParametersObject.PRG shows an example of a parameters object. This PRG calls
a form (Reindex.SCX) in which the user can select which tables should be reindexed,
and whether they should also be packed and sorted. So, the form really has four return
values: whether the user chose OK or Cancel, which tables they chose, and whether the
Pack and Sort options were checked. Since you can only have one return value, a
parameters object provides a way to return all four of these.

The code first creates an Empty object and adds the desired properties to it. Note that
oTables is actually a collection. In previous versions of VFP, this would have been an
array, but collections are often more convenient to work with than arrays. The collection
is filled with Empty objects, each containing the name of a table in the TESTDATA
database and a flag indicating whether the table should be reindexed. After running the
Reindex form, the various properties of the parameters object are examined to see what
choices the user made.

* Create a parameters object and add the parameters properties to it.

loParameters = createobject('Empty')

addproperty(loParameters, 'oTables', createobject('Collection'))

addproperty(loParameters, 'lPack', .T.)

addproperty(loParameters, 'lSort', .F.)

addproperty(loParameters, 'lReindex', .F.)

* Get a list of the tables in the TESTDATA database and add "table"

* objects to the collection in the parameters object.

open database _samples + 'data\testdata'

lnTables = adbobjects(laTables, 'Table')

w w w . D e v T e a c h . c o m

for each lcTable in laTables

 loTable = createobject('Empty')

 addproperty(loTable, 'cName', lcTable)

 addproperty(loTable, 'lReindex', .F.)

 loParameters.oTables.Add(loTable, lcTable)

next lcTable

* Call the reindex form, passing it the parameters object.

do form Reindex with loParameters

* If the user chose OK, go through each table and see what we're

* supposed to do with it.

if loParameters.lReindex

 lcMessage = 'The following tables will be reindexed, ' + ;

 iif(loParameters.lPack, '', 'not ') + 'packed, and ' + ;

 iif(loParameters.lSort, '', 'not ') + 'sorted:' + chr(13)

 for each loTable in loParameters.oTables

 if loTable.lReindex

 lcMessage = lcMessage + chr(13) + loTable.cName

 endif loTable.lReindex

 next loTable

 messagebox(lcMessage)

else

 messagebox('You clicked on Cancel')

endif loParameters.lReindex

The Init method of the Reindex form saves the passed parameters object to a property
and fills the list box with the names of the tables:

lparameters toParameters

with This

 .oParameters = toParameters

* Fill the list of tables from the collection.

 for each loTable in toParameters.oTables

 .lstTables.AddItem(loTable.cName)

 next loTable

 .lstTables.Requery()

endwith

w w w . D e v T e a c h . c o m

The pack and sort check boxes are bound to the lPack and
lSort properties of Thisform.oParameters. The Click method
of the OK button sets the lReindex properties of the
parameters object and the table objects in the tables collection:

local lnI, ;

 lcTable

with Thisform

 .oParameters.lReindex = .T.

 for lnI = 1 to .lstTables.ListCount

 lcTable = .lstTables.List[lnI]

 .oParameters.oTables(lcTable).lReindex = .lstTables.Selected[lnI]

 next lnI

endwith

Thisform.Release()

The only drawback of Empty is that it can’t be subclassed, so you can’t predefine a
parameters object class. So, you have to use a series of ADDPROPERTY() statements
each time you create a parameters object. However, other than that minor limitation,
Empty is a great class to use.

Summary

VFP 8 has so many new features that simply going over a list of them may be quite
overwhelming. This document took a practical look at some of the new features to either
do things we couldn’t do before or we could but using a lot of ugly, hard-to-maintain
code. I hope you find the classes included with this document useful!

Biography

Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the
award-winning Stonefield Database Toolkit (SDT), the award-winning Stonefield Query,
and the CursorAdapter and DataEnvironment builders that come with Microsoft Visual
FoxPro 8. Doug is co-author of “What’s New in Visual FoxPro 8.0”, “The Hacker’s Guide
to Visual FoxPro 7.0”, and “What’s New in Visual FoxPro 7.0”. He was the technical
editor of “The Hacker’s Guide to Visual FoxPro 6.0” and “The Fundamentals”. All of
these books are from Hentzenwerke Publishing (http://www.hentzenwerke.com). Doug
writes the monthly “Reusable Tools” column in FoxTalk. He has spoken at every
Microsoft FoxPro Developers Conference (DevCon) since 1997 and at user groups and
developer conferences all over North America. He is a Microsoft Most Valuable
Professional (MVP) and Certified Professional (MCP).

http://www.hentzenwerke.com/

w w w . D e v T e a c h . c o m

Copyright © 2003 Doug Hennig. All Rights Reserved

Doug Hennig
Partner
Stonefield Systems Group Inc.
1112 Winnipeg Street, Suite 200
Regina, SK Canada S4R 1J6
Phone: (306) 586-3341 Fax: (306) 586-5080
Email: dhennig@stonefield.com
Web: www.stonefield.com
Web: www.stonefieldquery.com

mailto:dhennig@stonefield.com
http://www.stonefield.com/
http://www.stonefieldquery.com/

