
Role-Based Security, Part III
Doug Hennig

This month, Doug Hennig winds up his series on role-based security by examining a form class

responsible for maintaining users and roles.

In my previous two articles, I discussed issues related to role-based security and provided several classes

that together, make up a framework for application security. In this, the final article in the series, I’ll show

you a form class the administrators of your applications will use to manage which users can access the

application and what roles they belong to.

Before we look at this form class, you may want to run the sample application provided with this

month’s subscriber downloads. Run MAIN.PRG and, as prompted, login as the ADMIN user. Choose the

Maintain Users and Groups function from the File menu. The dialog shown in Figure 1 and Figure 2 show

this form in action.

Figure 1. The Users page of SFUsersForm allows an administrator to define what users can
access the application and what roles they belong to.

Figure 2. Define user groups and their members on the Groups page of SFUsersForm.

The form is based on the SFUsersForm class in SFSecurityUI.VCX. It consists of a “toolbar” (it isn’t a

real toolbar; it’s just a row of buttons on the form) and a pageframe. The pageframe has two pages: one for

users and one for roles. Note that roles are referred to as “groups” in the user interface elements of the form;

our users found “groups” easier to understand than “roles”, but you can easily change the wording to

something else if you wish.

Both pages are similar: they contain a listbox of the defined items, controls to edit attributes of the

selected item, and a TreeView. In the case of the Users page, the TreeView shows the defined roles, with

checkmarks in front of the roles the selected user belongs. For the Groups page, the TreeView shows the

defined users, with checkmarks in front of the members of the selected role. Thus, you can specify role

membership from the Users page (select a user and check or uncheck the roles the user belongs to) or from

the Groups page (select a role and check or uncheck the members of the role).

The textboxes on the Users page are bound to properties of the oUser member of the form. For

example, the User Name textbox is bound to Thisform.oUser.UserName. oUser contains a user object for

the selected user; we’ll see how oUser references the correct object later.

The Refresh methods of the toolbar buttons and listboxes disable the controls under certain conditions.

For example, the New button is only enabled if the form’s lCanAdd property is .T. and the listboxes are

only enabled if lCanNavigate is .T. We’ll see how these properties are controlled later.

Note that although security is actually stored in tables (USERS.DBF, ROLES.DBF, and

USERROLES.DBF in the case of user, roles, and the members of each role), SFUsersForm doesn’t access

these tables directly. Instead, it uses methods of the security manager class I discussed in the previous

articles in this series to add, edit, and delete users and roles.

Selecting a user or role
Listboxes are provided on the Users and Groups page as a navigation mechanism. Each listbox uses an

internal array property, aItems, as its RecordSource. This array is filled in the Requery method by calling

the GetArray method of the oUsers or oRoles member of the security object. Requery has some logic to

ensure that if an item was previously selected in the list, it will be reselected when the listbox is requeried. If

no item was selected, Requery sets ListIndex to 1. Requery then calls the SelectUser or SelectRole method

to set up the form to work with the chosen user or role. Here’s the code for lstUsers.Requery;

lstRoles.Requery is nearly identical.

lparameters tlNoAction

local liUser, ;

 laItems[1], ;

 lnItems, ;

 lnIndex

with This

 if not tlNoAction

 liUser = iif(vartype(Thisform.oUser) = 'O', ;

 Thisform.oUser.ID, 0)

 lnItems = oSecurity.oUsers.GetArray(@laItems)

 asort(laItems)

 dimension .aItems[lnItems, 2]

 acopy(laItems, .aItems)

 lnIndex = ascan(laItems, liUser, -1, -1, 2, 8)

 if lnIndex = 0 and between(.ListIndex, 1, lnItems)

 lnIndex = ascan(laItems, ;

 .aItems[.ListIndex, 2], -1, -1, 2, 8)

 endif lnIndex = 0 ...

 dodefault()

 do case

 case .ListCount = 0

 case lnIndex > 0 and lnIndex = .ListIndex

 Thisform.SelectUser(.aItems[.ListIndex, 2])

 case liUser = 0 or lnIndex = 0

 .ListIndex = 1

 Thisform.SelectUser(.aItems[.ListIndex, 2])

 otherwise

 .ListIndex = lnIndex

 Thisform.SelectUser(liUser)

 endcase

 endif not tlNoAction

endwith

As you may expect, SelectUser and SelectRole are very similar, so we’ll just look at SelectUser.

SelectUser passes the ID of the chosen user to the GetUserByID method of the oUsers member of the

security object and places the returned user object into the oUser property of the form. It then calls the

GetRolesForUser method of the security object to return a collection of roles the specified user is a member

of. SelectUser adds a node to the TreeView for each defined role and uses the collection of roles the user is

in to determine whether to turn on the Checked property for each node. Also, since we don’t want the user

to uncheck the Everyone role, we’ll make it look disabled by setting its ForeColor property appropriately.

Unfortunately, there isn’t a way to disable individual nodes of a TreeView, so the best we can do is make it

look disabled and then handle what happens if the user disregards that and unchecks the node anyway (we’’l

see that when we look at the Save method later). Finally, since the textboxes are bound to properties of the

form’s oUser member, SelectUser refreshes the form.

lparameters tiUserID

local loRoles, ;

 loRole, ;

 loNode

* Get an object for the specified user.

This.oUser = oSecurity.oUsers.GetUserByID(tiUserID)

* Fill the TreeView with the available roles and check

* off the ones the user is in.

loRoles = oSecurity.GetRolesForUser(tiUserID)

with This.pgfUsers.SFPage1.oRolesForUser

 .Nodes.Clear()

 for each loRole in oSecurity.oRoles

 loNode = .Nodes.Add(, 1, ;

 'R' + transform(loRole.ID), loRole.Name)

 loNode.Checked = loRoles.GetKey(loRole.Name) > 0

 loNode.ForeColor = ;

 iif(loRole.ID = oSecurity.oRoles.iEveryoneID, ;

 rgb(172,168,153), rgb(0, 0, 0))

 next loRole

endwith

* Refresh the form.

This.Refresh()

Adding a user or a group
The Click method of the New button in the toolbar calls the Add method of the form, which handles adding

either a user or a group, depending on which page is active. Add checks the lCanAdd property of the form;

if it’s .F., the user isn’t allowed to add a record, so the method returns .F. lCanAdd is normally .T., but you

could set it to .F. if you want to limit the number of users or groups available, perhaps for licensing reasons.

Add also checks the lChanged property; if it’s .T., something in the form changed, so Add calls the Save

method to ensure changes to the existing record are saved before a new one is added. If Save returns .F. for

some reason (for example, the user name was left blank), Add returns .F. so a new record cannot be added

yet.

If the User page is the current one, Add calls the NewUser method of the oUsers member of the

security object. NewUser returns an empty user object, which is based on Empty but with properties for the

user attributes. Add puts this object into the oUser member of the form. Add then goes through the nodes in

the roles TreeView on the Users page, setting each node’s Checked property to .F. except for the Everyone

node. This means new users are by default only members of the Everyone role. Add then sets focus to the

user name textbox on the Users page.

For the Groups page, Add does almost the same thing, except it puts an empty role object in the oRoles

member, unchecks all user nodes in the users TreeView (new roles have no users by default), and sets focus

to the role name textbox on the Groups page. (Note that Add refreshes the textbox first, because it’s

disabled for certain roles, and we must re-enable it before setting focus to it.)

After creating a new user or role, Add then sets the lCanNavigate, lCanAdd, and lCanDelete properties

to .F. and refreshes the form. This disables the New and Delete buttons and the users and roles listboxes so

the user must save or cancel the new record prior to performing any other tasks. Our users find this is less

confusing, but if you’d rather have all actions always available, simply comment out or delete the

appropriate lines of code.

local llReturn, ;

 loNode, ;

 liRole

with This

 do case

* If we're not allowed to add a new item or the user

* changed the selected object and we can't save it,

* return .F.

 case not .lCanAdd or (.lChanged and not .Save())

 llReturn = .F.

* Create a new user.

 case .pgfUsers.ActivePage = 1

 .oUser = oSecurity.oUsers.NewUser()

 with .pgfUsers.SFPage1

 for each loNode in .oRolesForUser.Nodes

 liRole = val(substr(loNode.Key, 2))

 loNode.Checked = ;

 liRole = oSecurity.oRoles.iEveryoneID

 next loNode

 .txtUserName.SetFocus()

 endwith

 llReturn = .T.

* Create a new role.

 otherwise

 .oRole = oSecurity.oRoles.NewRole()

 with .pgfUsers.SFPage2

 for each loNode in .oUsersForRole.Nodes

 loNode.Checked = .F.

 next loNode

 .txtRoleName.Refresh()

 .txtRoleName.SetFocus()

 endwith

 llReturn = .T.

 endcase

* If we're creating a new object, disable navigation,

* adding, and deleting for now.

 if llReturn

 .lCanNavigate = .F.

 .lCanAdd = .F.

 .lCanDelete = .F.

 .Refresh()

 endif llReturn

endwith

return llReturn

Notice that when you add a user or role, the Cancel button is enabled but the Save button is only

enabled once you’ve typed something in one of the textboxes. How is that done? If you remember my

October 2005 article, “Raise a Little Event of Your Own,” you know the answer. In case you missed it,

here’s a refresher. The InteractiveChange method of my textbox class (SFTextBox in SFCtrls.VCX) uses

RAISEEVENT() to raise the AnyChange event. If the lBindToFormAnyChange property of the textbox is

.T., which it is for all of the textboxes in this form, the Init method of the textbox uses BINDEVENT() to

bind the AnyChange event of the textbox to the AnyChange method of the form. The AnyChange method of

the form sets its lChanged property to .T. So, typing in any textbox automatically sets the lChanged

property of the form to .T.

Similarly, the Init method of my commandbutton class (SFCommandButton in SFCtrls.VCX) uses

BINDEVENT() to bind changes to the form’s lChanged property to the OnFormChange method of the

button if its lNotifyOnFormChange property is .T., which it is for the Save and Cancel buttons.

OnFormChange calls the Refresh method of the button, which has code to enable the button when the

lChanged property of the form is .T. (Cancel also checks lCanNavigate so it’s enabled as soon as you add a

user or role). So, typing in any textbox sets the lChanged property of the form to .T., which causes the

Refresh methods of the Save and Cancel buttons to fire, which enable those buttons. So, there very little

code in the form wiring up these events since that’s all handled in my base classes. All I had to do was set

the lBindToFormAnyChange property of the textboxes to .T., the lNotifyOnFormChange property of the

Save and Cancel buttons to .T., and fill in the appropriate code for the Refresh method of the buttons (which

I had to do anyway). The only wiring code is in the NodeCheck methods of the TreeView controls; they call

Thisform.AnyChange so changes in the TreeView enable the buttons as well.

Saving or canceling changes
Whether you add a user or role or edit an attribute of an existing one, the Save and Cancel buttons are

enabled as soon as you type something. The Click method of the Save button calls the Save method of the

form. Save checks that the role name, user name, and password have been filled in (the password can be left

blank if the lAllowBlankPassword property is .T.) and displays an appropriate error message if not. If

everything is OK, Save calls the SaveItem method of the oUsers or oRoles member of the security object,

depending on which page is selected, to save changes to the chosen user or role. Save then goes through the

nodes in the appropriate TreeView, calling either AddUserToRole or RemoveUserFromRole, depending on

whether a node is checked or not. In addition, AddUserToRole is called to ensure the chosen user is always

in the Everyone role (AddUserToRole is smart enough to do nothing if the user is already in the specified

role). Finally, Save calls the RestoreForm method, which restores the form to “non-edit” mode.

local llReturn, ;

 liUser, ;

 loNode, ;

 liRole

with This

 llReturn = .T.

 do case

* See if we have anything to do.

 case not .lChanged

* Ensure the role name was entered.

 case .pgfUsers.ActivePage = 2 and ;

 empty(.oRole.Name)

 .oMessage.ErrorMessage('ERR_BLANK_ROLENAME')

 .pgfUsers.SFPage2.txtRoleName.SetFocus()

 llReturn = .F.

 case .pgfUsers.ActivePage = 2

* Ensure the user name and password were entered.

 case empty(.oUser.UserName)

 .oMessage.ErrorMessage('ERR_BLANK_USERNAME')

 .pgfUsers.SFPage1.txtUserName.SetFocus()

 llReturn = .F.

 case not .lAllowBlankPassword and ;

 empty(.oUser.Password)

 .oMessage.ErrorMessage('ERR_BLANK_PASSWORD')

 .pgfUsers.SFPage1.txtPassword.SetFocus()

 llReturn = .F.

 endcase

 do case

 case not llReturn or not .lChanged

* If we're working with users, save the user and its

* roles. Ensure the user is in the Everyone role.

 case .pgfUsers.ActivePage = 1

 oSecurity.oUsers.SaveItem(.oUser)

 liUser = .oUser.ID

 with .pgfUsers.SFPage1.oRolesForUser

 for each loNode in .Nodes

 liRole = val(substr(loNode.Key, 2))

 if loNode.Checked

 oSecurity.AddUserToRole(liUser, liRole)

 else

 oSecurity.RemoveUserFromRole(liUser, ;

 liRole)

 endif loNode.Checked

 next loNode

 endwith

 oSecurity.AddUserToRole(liUser, ;

 oSecurity.oRoles.iEveryoneID)

* If we're working with roles, save the role and its

* users.

 otherwise

 oSecurity.oRoles.SaveItem(.oRole)

 liRole = .oRole.ID

 with .pgfUsers.SFPage2.oUsersForRole

 for each loNode in .Nodes

 liUser = val(substr(loNode.Key, 2))

 if loNode.Checked

 oSecurity.AddUserToRole(liUser, liRole)

 else

 oSecurity.RemoveUserFromRole(liUser, ;

 liRole)

 endif loNode.Checked

 next loNode

 endwith

 endcase

* Flag that we can navigate again, refresh the form,

* and requery the lists.

 if llReturn

 .RestoreForm()

 endif llReturn

endwith

return llReturn

The Cancel method, called from the Click method of the Cancel button, is very simple: it calls the

RestoreForm method, the same method called by Save to reset the form. Here’s the code for that method:

with This

 .lCanNavigate = .T.

 .lCanAdd = .T.

 .lCanDelete = .T.

 .lChanged = .F.

 .RefreshForm()

endwith

Deleting users or roles
The Click method of the Delete button calls the Delete method of the form. This method simply calls the

RemoveUser or RemoveRole method of the security object if you confirm the user or role should be

deleted. Why not call the Remove method of the oUsers or oRoles members of the security object directly?

While those methods would remove the specified user or role, they would leave orphaned records in the

USERROLES and SECURITY tables. The RemoveUser and RemoveRole methods ensure all traces of the

user or role are removed.

local llReturn

with This

 llReturn = .oMessage.YesNo('MSG_DELETE_RECORD')

 do case

 case not llReturn

* If we're working with users, remove the user.

 case .pgfUsers.ActivePage = 1

 oSecurity.RemoveUser(.oUser.ID)

 .RestoreForm()

* If we're working with roles, remove the role.

 otherwise

 oSecurity.RemoveRole(.oRole.ID)

 .RestoreForm()

 endcase

endwith

return llReturn

Summary
For the past three articles, I’ve discussed a framework for role-based security. We looked at classes that

manage collections of users and roles, a security manager object responsible for all security-related tasks in

an application, how to log users in and out, providing password encryption, and maintaining users and roles.

The one piece we didn’t look at is managing the rights roles have to secured elements in an application;

that’s left as an exercise for you.

Doug Hennig is a partner with Stonefield Systems Group Inc. He is the author of the award-winning Stonefield

Database Toolkit (SDT) and Stonefield Query, and the MemberData Editor, Anchor Editor, New Property/Method

Dialog, and CursorAdapter and DataEnvironment builders that come with VFP. He is co-author of the “What’s New

in Visual FoxPro” series and “The Hacker’s Guide to Visual FoxPro 7.0,” all from Hentzenwerke Publishing. Doug

has spoken at every Microsoft FoxPro Developers Conference (DevCon) since 1997 and at user groups and developer

conferences all over the world. He is a long-time Microsoft Most Valuable Professional (MVP), having first been

honored with this award in 1996. Web: www.stonefield.com and www.stonefieldquery.com Email:

dhennig@stonefield.com

