
Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 1

Session E-WDNB

Practical Uses of

wwDotNetBridge to Extend Your

VFP Applications

Doug Hennig

Stonefield Software Inc.

Email: dhennig@stonefield.com

Corporate Web sites: www.stonefieldquery.com

www.stonefieldsoftware.com

Personal Web site: www.DougHennig.com

Blog: DougHennig.BlogSpot.com

Twitter: DougHennig

Overview
wwDotNetBridge lets you call just about any .NET code directly from VFP and helps
overcome most of the limitations of regular .NET COM interop. This library by Rick Strahl
allows you to provide .NET functionality to your VFP applications that wouldn't otherwise
be available. In this session, you'll see many practical examples that show how you can add
new capabilities to your applications that would be difficult or impossible to achieve
natively from VFP.

mailto:dhennig@stonefield.com
http://www.stonefieldquery.com/
file:///D:/Development/Writing/Sessions/DeployingVFPApps/www.stonefieldsoftware.com
http://www.doughennig.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

2 • E-WDNB (Group VFP) © 2017 Doug Hennig

Introduction
The Microsoft .NET framework has a lot of powerful features that aren’t available in VFP.
For example, dealing with Web Services is really ugly from VFP but is simple
in .NET. .NET also provides access to most operating system functions, including
functions added in newer versions of the OS. While these functions are also available
using the Win32 API, many of them can’t be called from VFP because they require
callbacks and other features VFP doesn’t support, and accessing these functions via .NET
is easier anyway.

Fortunately, there are various mechanisms that allow you to access .NET code from VFP
applications. For example, my “Creating ActiveX Controls for VFP Using .NET” white
paper, available at http://doughennig.com/papers/default.html, shows how to create
.NET components that can be used in VFP applications. However, these types of controls
suffer from a couple of issues: they have to be registered for COM on the customer’s
system and there are limitations in working with .NET Interop in VFP that prevent many
things from working correctly.

Rick Strahl created an open source project called wwDotNetBridge. You can read about
this project on his blog (http://tinyurl.com/cgj63yk). wwDotNetBridge provides an easy
way to call .NET code from VFP. It eliminates all of the COM issues because it loads the
.NET runtime host into VFP and runs the .NET code from there. I strongly recommend
reading Rick’s blog post and white paper to learn more about wwDotNetBridge and how
it works. I believe that wwDotNetBridge is the future of VFP.

Getting wwDotNetBridge
The first thing to do is download wwDotNetBridge from GitHub:
http://tinyurl.com/ce9trsm. If you’re using Git (open source version control software),
you can clone the repository. Otherwise, just click the “Download ZIP” button on that
page to download wwDotnetBridge-master.zip. Unzip this file to access all of the source
code or just pull out the following files from the Distribution folder:

 ClrHost.dll

 wwDotNetBridge.dll

 wwDotNetBridge.prg

Note that since wwDotNetBridge.dll is downloaded, you’ll likely have to unblock it to
prevent an “unable to load Clr instance” error when using wwDotNetBridge. Right-click
the DLL, choose Properties, and click the Unblock button shown in Figure 1.

There are other causes for the “unable to load Clr instance” error as well: see
http://tinyurl.com/yabovc3k for several solutions.

http://doughennig.com/papers/default.html
http://tinyurl.com/cgj63yk
http://tinyurl.com/ce9trsm
http://tinyurl.com/yabovc3k

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 3

Figure 1. Unblock wwDotNetBridge.DLL to prevent errors when using it.

Using wwDotNetBridge
Start by instantiating the wwDotNetBridge wrapper class using code like:

loBridge = newobject('wwDotNetBridge', 'wwDotNetBridge.prg', '', 'V2')

The last parameter tells wwDotNetBridge which version of the .NET runtime to load. By
default, it loads version 4.0; this example specifies version 2.0. Note that you can only
load one version at a time and it can’t be unloaded without exiting VFP. That’s why Rick
recommends instantiating wwDotNetBridge into a global variable in your applications
and using that global variable everywhere you want to use wwDotNetBridge. The easiest
way to do that is:

do wwDotNetBridge
loBridge = GetwwDotNetBridge()

GetwwDotNetBridge uses a public variable named __DOTNETBRIDGE to cache the
instantiated wwDotNetBridge object, only instantiating it if the variable doesn’t exist or
doesn’t contain an object.

The next thing you’ll likely do is load a custom .NET assembly (you don’t have to do this
if you’re going to call code in the .NET base library) and instantiate a .NET class. For
example, this code loads the SMTPLibrary assembly we’ll see later and instantiates the
SMTP class which lives in the SMTPLibrary namespace:

loBridge.LoadAssembly('SMTPLibrary.dll')
loMail = loBridge.CreateInstance('SMTPLibrary.SMTP')

Note that you need to specify the correct path for the DLL (for example,
“Samples\C#\SMTPLibrary\SMTPLibrary\bin\Debug\SMTPLibrary.dll” if the current
folder is the Samples folder included with the sample files for this document) and you
should check the lError and cErrorMsg properties of wwDotNetBridge to ensure
everything worked.

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

4 • E-WDNB (Group VFP) © 2017 Doug Hennig

Now you can access properties and call methods of the .NET class. The following code
sets some properties and calls a method:

loMail.MailServer = 'smtp.gmail.com'
loMail.Username = 'doug.o.hennig@gmail.com'
loMail.SendMail()

Some types of properties, such as properties that are collections or lists, can’t be
accessed directly. For those, use the GetPropertyEx method of wwDotNetBridge to get
the property’s value or SetPropertyEx to set it:

loTable = loBridge.GetPropertyEx(loDS, 'Tables[0]')

For a static property, use GetStaticProperty and SetStaticProperty.

To call a method that can’t be accessed directly, use InvokeMethod or
InvokeStaticMethod:

lcResult = loBridge.InvokeMethod(tuValue, 'ToString')
loProcesses = loBridge.InvokeStaticMethod('System.Diagnostics.Process', ;
 'GetProcesses')

How wwDotNetBridge works
wwDotNetBridge consists of the following components:

 wwDotNetBridge.prg: a program containing the wwDotNetBridge class. This
class mostly wraps the methods in the .NET wwDotNetBridge class in
wwDotNetBridge.dll, but also loads the .NET runtime contained in ClrHost.dll.
Include this PRG in your project so it’s built into the EXE.

 wwDotNetBridge.dll: a .NET DLL that handles all of the interop stuff. Distribute
this file with your application.

 ClrHost.dll: a custom version of the .NET runtime host. Distribute this file with
your application.

The architecture of wwDotNetBridge is shown in Figure 2, an updated version of the
diagram that appears in Rick’s documentation.

Figure 2. The architecture of wwDotNetBridge.

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 5

The first time you instantiate the wwDotNetBridge class in wwDotNetBridge.prg, it
loads ClrHost. ClrHost loads wwDotNetBridge.dll, creates an instance of the
wwDotNetBridge class in that DLL, and returns that instance to the calling code as a
COM object, stored in the oDotNetBridge member of the VFP wwDotNetBridge class.
When you call a method of the wwDotNetBridge wrapper class, such as GetPropertyEx,
it calls an equivalent method of the .NET wwDotNetBridge to do the actual work. For
example, the GetPropertyEx method has this simple code:

FUNCTION GetPropertyEx(loInstance,lcProperty)
RETURN this.oDotNetBridge.GetPropertyEx(loInstance, lcProperty)

Your code may also call methods or access properties of a .NET object directly once
you’ve created an instance of it using CreateInstance.

Debugging .NET code from VFP
Debugging COM objects is hard. Typically, you’ll do it the old fashioned way: add
statements to display the current value of variables or properties, run the code, see what
the values are, fix the code, run it again, … and so on.

Debugging .NET code called from VFP via wwDotNetBridge is easy (assuming you have
the source code):

 Open the .NET solution in Visual Studio.

 Set a breakpoint where desired.

 Start VFP.

 Choose Attach to Process from the Visual Studio Debug menu and choose
VFP.EXE.

 Execute the VFP code that calls the desired .NET method.

When the breakpoint in the .NET code is hit, the Visual Studio debugger kicks in. You can
do all the usual debugging things: step through the code, examine and change the values
of properties and variables, skip over code, etc. When you’re finished debugging, choose
Detach All from the Debug menu.

Note that if you typically copy the .NET DLL from the bin folder where it’s created into
the application folder, you also need to copy the associated PDB (debugging
information) file into the folder or debugging won’t work.

Now that we covered the basics, let’s look at some practical examples.

Writing to the Windows Event Log
Although I prefer to log diagnostic information and errors to text and/or DBF files, some
people like to log to the Windows Event Log, as system administrators are used to
looking there for issues. Doing that from a VFP application is ugly because the Win32
API calls are messy. Using .NET via wwDotNetBridge, on the other hand, is very easy.
The code in Listing 1, taken from WindowsEventLog.prg that accompanies this
document, shows how to do it in just a few lines of code.

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

6 • E-WDNB (Group VFP) © 2017 Doug Hennig

Listing 1. wwDotNetBridge makes it easy to write to the Windows Event Log.

local loBridge, ;
 lcSource, ;
 lcLogType, ;
 lcClass, ;
 loValue

* Create the wwDotNetBridge object.

do wwDotNetBridge
loBridge = GetwwDotNetBridge()

* Define the source and log types.

lcSource = 'MyApplication'
lcLogType = 'Application'

* Put the name of the .NET class we'll use into a variable so we don't
* have to type it on every method call.

lcClass = 'System.Diagnostics.EventLog'

* See if the source already exists; create it if not.

if not loBridge.InvokeStaticMethod(lcClass, 'SourceExists', lcSource)
 loBridge.InvokeStaticMethod(lcClass, 'CreateEventSource', lcSource, ;
 lcLogType)
endif not loBridge.InvokeStaticMethod ...

* Create an information message.

loBridge.InvokeStaticMethod(lcClass, 'WriteEntry', lcSource, ;
 'Some application event that I want to log')

* For an error message, we need to use an enum. Normally we'd use this:

*loValue = loBridge.GetEnumValue('System.Diagnostics.EventLogEntryType.Error')

* However, that doesn't work in this case due to the way WriteEntry
* works, so we'll use this method instead.

loValue = loBridge.CreateComValue()
loValue.SetEnum('System.Diagnostics.EventLogEntryType.Error')
loBridge.InvokeStaticMethod(lcClass, 'WriteEntry', lcSource, ;
 'Error #1234 occurred', loValue, 4)

* Display the last 10 logged events.

loEventLog = loBridge.CreateInstance(lcClass)
loEventLog.Source = lcSource
loEventLog.Log = lcLogType
loEvents = loBridge.GetProperty(loEventLog, 'Entries')
lcEvents = ''
for lnI = loEvents.Count - 1 to loEvents.Count - 10 step -1
 loEvent = loEvents.Item(lnI)
 lcEvents = lcEvents + transform(lnI) + ': ' + loEvent.Message + chr(13)
next lnI
messagebox('There are ' + transform(loEvents.Count) + ' events:' + ;
 chr(13) + chr(13) + lcEvents)

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 7

This code calls static methods of the .NET System.Diagnostics.EventLog class. It starts by
checking whether the event source, which is usually an application name or something
equally descriptive, already exists or not; if not, it’s created using the specified type
(Application, Security, or System; Application in this case). It then calls the WriteEntry
method to write to the log. The first call to WriteEntry uses one of the overloads of that
method: the one expecting the name of the source and the message. The second call uses
a different overload: the one expecting the name of the source, the message, an enum
representing the type of entry, and a user-defined event ID (4 in this case). Note the
comment about how enums normally work but an alternative method that’s needed in
this case. Figure 3 shows how the log entries appear in the Windows Event Viewer.

Figure 3. The results of running WindowsEventLog.prg.

To display the log entries, the code creates an instance of System.Diagnostics.EventLog
and goes through the Entries collection.

Starting and stopping processes
The VFP RUN command allows you to run an external process but you don’t have much
control over it. For example, it only supports running an EXE, so you can’t just specify
the name of a Microsoft Word document to have it open that document; you have to
know the location of Word.exe and pass it the name of the document on the command
line. Lots of developers like to use the Win32 API ShellExecute function because it does
allow you to specify the name of a file to open that file in whatever application it’s
associated with. However, again you don’t have a lot of control, such as the ability to kill
the application once you’re done with it.

.NET’s System.Diagnostics.Process class makes it easy to do as the code in Listing 2,
taken from Processes.prg, illustrates.

Listing 2. .NET makes it easy to start and stop a process.

* Open a text file in Notepad.

do wwDotNetBridge
loBridge = GetwwDotNetBridge()

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

8 • E-WDNB (Group VFP) © 2017 Doug Hennig

lcClass = 'System.Diagnostics.Process'
loProcess = loBridge.CreateInstance(lcClass)
loBridge.InvokeMethod(loProcess, 'Start', 'text.txt')

* Find the process ID.

loProcesses = loBridge.InvokeStaticMethod(lcClass, 'GetProcesses')
lnID = -1
for lnI = 0 to loProcesses.Count - 1
 loProcess = loProcesses.Item(lnI)
 if loProcess.ProcessName = 'notepad'
 lnID = loProcess.ID
* We could kill it here but we'll do it a different way below.
* loProcess.Kill()
 exit
 endif loProcess.ProcessName = 'notepad'
next lnI

* If we found it, kill it.

if lnID > -1
 messagebox("Now we'll kill Notepad")
 loProcess = loBridge.InvokeStaticMethod(lcClass, 'GetProcessById', lnID)
 loProcess.Kill()
endif lnID > -1

* We can also do it this way, which has the advantage that we know the
* process ID without having to look for it.

loProcess = loBridge.InvokeStaticMethod(lcClass, 'Start', 'text.txt')
messagebox("Here's another instance that we'll also kill")
loProcess.Kill()

XML processing
While VFP is normally very fast at string handling, one thing that’s very slow is
converting XML into a cursor, using either XMLToCursor() or the XMLAdapter class,
when there are a lot of records in the XML. For example, People.xml, included with the
samples files for this document, contains 64,000 names and addresses. It takes a
whopping 995 seconds, or more than 16 minutes, to convert it to a VFP cursor using
XMLToCursor(). (Run TestXMLToCursor.prg to see for yourself.) Let’s see how
wwDotNetBridge can help.

One of the things I’ve learned over the past few years is that .NET’s XML parser is very
fast. It just takes a few lines of code to read an XML file into a DataSet. If you aren’t
familiar with a DataSet, it’s like an in-memory database consisting of one or more
DataTables. Each DataTable has a Columns collection providing information about the
columns, such as name, data type, and size, and a Rows collection that contains the
actual data. wwDotNetBridge.prg has a method called DataSetToCursors that takes a
DataSet returned from some .NET code and converts it to one or more VFP cursors.
However, in testing, I found it to be very slow as well. Looking at the code, it was obvious
why: DataSetToCursors uses XMLAdapter, which is what we’re trying to get away from.

I decided to try a different approach: have .NET read the XML into a DataSet and have
the VFP code create a cursor with the same structure as the first DataTable in the

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 9

DataSet (which we can get by going through the Columns collection) and fill the cursor
with the contents of each object in the Rows collection.

Listing 3 shows the code for the Samples class in Samples.cs. It has a single
GetDataSetFromXML method that, when passed the filename for an XML file, reads that
file into a DataSet and returns the DataSet. If something goes wrong, such as the XML not
being suitable for a DataSet, ErrorMessage contains the text of the error.

Listing 3. The Samples class loads an XML file into a DataSet.

public class Samples
{
 public string ErrorMessage { get; private set; }

 public DataSet GetDataSetFromXML(string path)
 {
 DataSet ds = new DataSet();
 FileStream fsReadXml = new FileStream(path, FileMode.Open);
 try
 {
 ds.ReadXml(fsReadXml);
 }
 catch (Exception ex)
 {
 ErrorMessage = ex.Message;
 }
 finally
 {
 fsReadXml.Close();
 }
 return ds;
 }
}

Listing 4 shows the VFP code, taken from TestXML.prg, that uses the C# class to do the
conversion of the XML into a DataSet, then calls the CreateCursorFromDataTable
function to create a VFP cursor from the first DataTable in the DataSet.

Listing 4. TestXML.prg loads the DataSet returned from the .NET class into a cursor.

local lnStart, ;
 loBridge, ;
 loFox, ;
 loDS, ;
 lnEnd1, ;
 loTable, ;
 lnEnd2

* Save the starting time.

lnStart = seconds()

* Create the wwDotNetBridge object.

do wwDotNetBridge
loBridge = GetwwDotNetBridge()

* Load our assembly and instantiate the Samples class.

loBridge.LoadAssembly('Samples.dll')

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

10 • E-WDNB (Group VFP) © 2017 Doug Hennig

loFox = loBridge.CreateInstance('Samples.Samples')

* Get a DataSet from the People.xml file, get the first table, and
* convert it to a cursor.

loDS = loFox.GetDataSetFromXML('people.xml')
lnEnd1 = seconds()
loTable = loBridge.GetPropertyEx(loDS, 'Tables[0]')
CreateCursorFromDataTable(loBridge, loTable, 'TEMP')

* Display the elapsed time and browse the cursor.

lnEnd2 = seconds()
messagebox(transform(lnEnd1 - lnStart) + ' seconds to create a ' + ;
 'DataSet from the XML and ' + transform(lnEnd2 - lnEnd1) + ;
 ' seconds to create a cursor, for a total of ' + ;
 transform(lnEnd2 - lnStart) + ' seconds.')
browse

function CreateCursorFromDataTable(toBridge, toTable, tcCursor, ;
 tnRecords)
local lnColumns, ;
 lcNull, ;
 lcCursor, ;
 laColumns[1], ;
 laMaxLength[1], ;
 lnI, ;
 loColumn, ;
 lcColumnName, ;
 lcDataType, ;
 lcType, ;
 lcAlias, ;
 lnRecords, ;
 lnRows, ;
 loRow, ;
 lnJ, ;
 luValue, ;
 lcError, ;
 laFields[1], ;
 lnFields, ;
 lnV, ;
 lcVrbl, ;
 lcFType, ;
 llSame, ;
 llError

* Figure out how many columns there are.

lnColumns = min(toBridge.GetPropertyEx(toTable, 'Columns.Count'), 254)
if lnColumns = 0
 return .F.
endif lnColumns = 0

* Store each column name in an array and create a CREATE CURSOR statement.

lcNull = set('NULL')
set null on
lcCursor = ''
dimension laColumns[lnColumns, 3], laMaxLength[lnColumns]
laMaxLength = 0
for lnI = 0 to lnColumns - 1

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 11

 loColumn = toBridge.GetPropertyEx(toTable, 'Columns[' + ;
 transform(lnI) + ']')
 lcColumnName = GetValidName(loColumn.ColumnName)
 lcDataType = toBridge.GetPropertyEx(loColumn.DataType, 'Name')
 do case
 case inlist(lcDataType, 'Decimal', 'Double', 'Single')
 lcType = 'B(8)'
 case lcDataType = 'Boolean'
 lcType = 'L'
 case lcDataType = 'DateTime'
 lcType = 'T'
 case lcDataType = 'Byte[]'
 lcType = 'W'
 case inlist(lcDataType, 'Int', 'Byte')
 lcType = 'I'
 case lcDataType = 'Guid'
 lcType = 'C(36)'
 case loColumn.MaxLength = -1
 lcType = 'M'
 otherwise
 lcType = 'C(' + transform(loColumn.MaxLength) + ')'
 endcase
 if inlist(upper(lcColumnName) + ' ', 'NULL ', 'NOT ', 'CHECK ', 'ERROR ', ;
 'AUTOINC ', 'NEXTVALUE ', 'STEP ', 'DEFAULT ', 'PRIMARY ', 'KEY ', ;
 'UNIQUE ', 'COLLATE ', 'REFERENCES ', 'TAG ', 'NOCPTRANS ')
 lcColumnName = '[' + lcColumnName + ']'
 endif inlist(upper(lcColumnName) ...
 lcCursor = lcCursor + iif(empty(lcCursor), '', ',') + lcColumnName + ;
 ' ' + lcType
 laColumns[lnI + 1, 1] = lcColumnName
 laColumns[lnI + 1, 2] = left(lcType, 1)
 laColumns[lnI + 1, 3] = lcDataType
 local &lcColumnName
 if len(lcCursor) > 8000
 exit
 endif len(lcCursor) > 8000
next lnI

* Create the cursor.

lcAlias = sys(2015)
lcCursor = 'create cursor ' + lcAlias + ' (' + lcCursor + ')'
&lcCursor

* Go through each row, get each column, and populate the cursor.

lnRecords = evl(tnRecords, 9999999999)
lnRows = toBridge.GetPropertyEx(toTable, 'Rows.Count')
for lnI = 0 to min(lnRows, lnRecords) - 1
 loRow = toBridge.GetPropertyEx(toTable, 'Rows[' + transform(lnI) + ']')
 for lnJ = 0 to lnColumns - 1
 luValue = toBridge.GetPropertyEx(loRow, 'ItemArray[' + ;
 transform(lnJ) + ']')
 do case
 case inlist(laColumns[lnJ + 1, 3], 'Object', 'Type')
 luValue = toBridge.InvokeMethod(luValue, 'ToString')
 laMaxLength[lnJ + 1] = max(laMaxLength[lnJ + 1], len(luValue))
 case laColumns[lnJ + 1, 3] = 'Guid'
 luValue = luValue.GuidString
 laMaxLength[lnJ + 1] = 36
 case vartype(luValue) = 'C' or laColumns[lnJ + 1, 2] $ 'CM'
 luValue = transform(luValue)

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

12 • E-WDNB (Group VFP) © 2017 Doug Hennig

 laMaxLength[lnJ + 1] = max(laMaxLength[lnJ + 1], len(luValue))
 endcase
 store luValue to (laColumns[lnJ + 1, 1])
 next lnJ
 try
 insert into (lcAlias) from memvar
 catch

* If we have a data type issue, indicate which column.

 lcError = ''
 lnFields = afields(laFields)
 for lnV = 1 to lnFields
 lcVrbl = 'M.' + laFields[lnV, 1]
 lcFType = laFields[lnV, 2]
 lcType = type(lcVrbl)
 llSame = lcType = lcFType or ;
 (lcType = 'N' and lcFType $ 'NFIBY') or ;
 (lcType $ 'CMV' and lcFType $ 'CMV') or ;
 empty(lcType)
 if not llSame
 lcError = lcError + lcVrbl + ' Variable type: ' + lcType + ;
 ' Field type: ' + lcFType + chr(13)
 endif not llSame
 next lnV
 llError = .T.
 endtry
 if llError
 exit
 endif llError
next lnI

* Do a final select to get the correct column lengths.

if not llError
 lcCursor = ''
 for lnI = 1 to alen(laColumns, 1)
 lcColumnName = laColumns[lnI, 1]
 lcType = laColumns[lnI, 2]
 if lcType $ 'CM' and laMaxLength[lnI] < 255
 lcType = 'C(' + transform(max(laMaxLength[lnI], 1)) + ')'
 endif lcType $ 'CM' ...
 lcCursor = lcCursor + iif(empty(lcCursor), '', ',') + lcColumnName + ;
 ' ' + lcType
 if len(lcCursor) > 8000
 exit
 endif len(lcCursor) > 8000
 next lnI
 lcCursor = 'create cursor ' + tcCursor + ' (' + lcCursor + ')'
 &lcCursor
 append from dbf(lcAlias)
 go top
endif not llError
if lcNull = 'OFF'
 set null off
endif lcNull = 'OFF'
use in (lcAlias)
if llError
 error lcError
endif llError
return not llError

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 13

function GetValidName(tcName)
local lcIllegal, ;
 lcDelimiters, ;
 lcName

* Decide what are illegal characters and the usual suspects for field
* delimiters.

lcIllegal = [~!@#$%^&*()-+=-/?{}|<>,:;\.']
lcDelimiters = '"[]`'

* Convert illegal characters to _ and strip out delimiters.

lcName = chrtran(lcName, lcIllegal, replicate('_', len(lcIllegal)))
lcName = chrtran(lcName, lcDelimiters, '')
lcName = iif(isdigit(left(lcName, 1)), 'A', '') + lcName
return lcName

On my machine, this code takes just 1.6 seconds to load the XML into a DataSet and then
14.8 seconds to convert the first DataTable in the DataSet into a VFP cursor, for a total
time of 16.4 seconds. That’s 60 times faster than using XMLToCursor()! I love taking out
the slow parts to make my code faster!

File dialogs
VFP developers have relied on GETFILE() and PUTFILE() for years to display file
selection dialogs. However, these dialogs have several shortcomings:

 You don’t have much control over them: you can specify the file extensions, the
title bar caption, and a few other options, but these functions hide most of the
settings available in the native Windows dialogs. For example, you can’t specify a
starting folder or default filename for GETFILE().

 These functions return file names in uppercase rather than the case the user
entered or the file actually uses.

 GETFILE() returns only a single filename even though the native dialogs
optionally support selecting multiple files.

The most important issue, however, is that the dialogs displayed are from the Windows
XP era and don’t support new features available in more modern versions. Figure 4
shows the dialog presented by GETFILE(). Although this dialog does have quick access
buttons at the left, it still looks like a dialog from an older operating system.

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

14 • E-WDNB (Group VFP) © 2017 Doug Hennig

Figure 4. The VFP GETFILE() function is an older-looking dialog.

As you can see in Figure 5, the Windows 10 open file dialog not only has a more modern
interface, it has several features the older dialog doesn’t, including back and forward
buttons, the “breadcrumb” folder control, and access to Windows Search.

Figure 5. The Windows 10 open file dialog looks modern and has features the older dialog doesn’t.

Again, wwDotNetBridge to the rescue. The Dialogs class in Dialogs.cs, shown in Listing
5, has a ShowOpenDialog method that sets the properties of the native file dialog based
on properties of the class you can set, such as InitialDir and MultiSelect, displays the
dialog, and returns the path of the selected file (multiple files are separated with
carriage returns) or blank if the user clicked Cancel.

Listing 5. The Dialogs class provides modern, native file dialogs.

public class Dialogs
{
 public string DefaultExt { get; set; }
 public string FileName { get; set; }
 public string InitialDir { get; set; }
 public string Title { get; set; }
 public string Filter { get; set; }

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 15

 public int FilterIndex { get; set; }
 public bool MultiSelect { get; set; }

 public string ShowOpenDialog()
 {
 string fileName = "";
 OpenFileDialog dialog = new OpenFileDialog();
 dialog.FileName = FileName;
 dialog.DefaultExt = DefaultExt;
 dialog.InitialDirectory = InitialDir;
 dialog.Title = Title;
 dialog.Filter = Filter;
 dialog.FilterIndex = FilterIndex;
 dialog.Multiselect = MultiSelect;

 if (dialog.ShowDialog() == DialogResult.OK)
 {
 if (dialog.FileNames.Length > 0)
 {
 foreach (string file in dialog.FileNames)
 {
 fileName += file + "\n";
 }
 }
 else
 {
 fileName = dialog.FileName;
 }
 }
 else
 {
 fileName = "";
 }
 return fileName;
 }
}

Listing 6 shows some VFP code, taken from TestOpenFile.prg, which uses the Dialogs
class. It sets the initial folder to the FFC\Graphics folder in the VFP home directory and
turns on MultiSelect so you can select multiple files.

Listing 6. TestOpenFile.prg uses Dialogs to display a file dialog.

local loBridge, ;
 loFox, ;
 lcFile

* Create the wwDotNetBridge object.

do wwDotNetBridge
loBridge = GetwwDotNetBridge()

* Load our assembly and instantiate the Dialogs class.

loBridge.LoadAssembly('FileDialog.dll')
loFox = loBridge.CreateInstance('FileDialog.Dialogs')

* Set the necessary properties, then display the dialog.

loFox.FileName = 'add.bmp'
loFox.InitialDir = home() + 'FFC\Graphics'

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

16 • E-WDNB (Group VFP) © 2017 Doug Hennig

loFox.Filter = 'Image Files (*.bmp, *.jpg, *.gif)|*.bmp;*.jpg;' + ;
 '*.gif|All files (*.*)|*.*'
loFox.Title = 'Select Image'
loFox.MultiSelect = .T.
lcFile = loFox.ShowOpenDialog()
if not empty(lcFile)
 messagebox('You selected ' + lcFile)
endif not empty(lcFile)

The dialog displayed when you run this program is based on the operating system.
Under Windows XP, it’ll look like an XP dialog. Under Windows 10, it’ll look like a
Windows 10 dialog.

Encryption
Many applications need encryption to store things like connection strings, user names
and passwords, and so on. I’ve used Craig Boyd’s VFPEncryption library for many years
with great success. However, recently we had a U.S. federal government department as a
potential customer who insisted that we use FIPS-compliant encryption or they wouldn’t
legally be able to use our software. FIPS (Federal Information Processing Standards) 140
(https://en.wikipedia.org/wiki/FIPS_140-2) has numerous requirements, all of which
we were able to implement except one: VFPEncryption.fll isn’t certified for FIPS.

It turns out several .NET encryption classes are FIPS 140-certified, including
AesCryptoServiceProvider. So, it was a simple matter (thanks to Stack Overflow,
http://tinyurl.com/ybjvs9cy) to create a small .NET DLL that uses
AesCryptoServiceProvider to encrypt and decrypt strings. Listing 7 shows a partial
listing (most of the code is omitted; see Encryption.cs in the samples accompanying this
document for details).

Listing 7. Encryption.cs (without the code details) provides FPS 140-compliant encryption.

using System;
using System.Text;
using System.Security.Cryptography;

namespace Encryption
{
 public class Encryption
 {
 public static string Encrypt(string toEncrypt, string key, string IV)
 {
 AesCryptoServiceProvider provider = new AesCryptoServiceProvider();
 // Rest of code omitted for brevity
 }

 public static string Decrypt(string toDecrypt, string key, string IV)
 {
 AesCryptoServiceProvider provider = new AesCryptoServiceProvider();
 // Rest of code omitted for brevity
 }
 }
}

The Encrypt and Decrypt methods expect three parameters:

 The string to encrypt or decrypt.

https://en.wikipedia.org/wiki/FIPS_140-2
http://tinyurl.com/ybjvs9cy

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 17

 The encryption key.

 The initialization vector (IV); see http://tinyurl.com/cp3tpsw for a description.

Because these are static methods, they’re easy to call from VFP using wwDotNetBridge
using InvokeStaticMethod.

One problem with switching encryption mechanisms is what do you do with existing
customers? Their existing encrypted strings can’t be correctly decrypted using the new
encryption library. So, I decided to add a flag character, CHR(1), to the end of strings
encrypted with the new mechanism. If that character is there, use the new library to
decrypt the string. If not, use the old.

EncryptString.prg (Listing 8) encrypts a string using the .NET Encryption.dll. We don’t
worry about whether or not to use VFPEncryption.fll here; all new encryption is done
using the new library.

Listing 8. EncryptString.prg uses Encryption.dll to encrypt a string.

lparameters tcString, ;
 tcKey

* Handle a blank string or key.

if empty(tcString) or empty(tcKey)
 return tcString
endif empty(tcString) ...

* The new code uses Encryption.DLL to do the encrypting. Add a CHR(1) to the
* end so Decrypt can tell whether a string was encrypted with new or old code.

return oBridge.InvokeStaticMethod('Encryption.Encryption', 'Encrypt', ;
 trim(tcString), tcKey, chr(102) + chr(57) + chr(110) + chr(73) + ;
 chr(73) + chr(71) + chr(97) + chr(89) + chr(70) + chr(51) + chr(54) + ;
 chr(97) + chr(69) + chr(55) + chr(48) + chr(68)) + chr(1)

DecryptString.prg (Listing 9), on the other hand, has to determine which mechanism
was used to encrypt a string and use the same one to decrypt it. If the right-most
character is CHR(1), it strips that off and uses Encryption.dll; otherwise, it uses
VFPEncryption.fll.

Listing 9. DecryptString.prg uses either VFPEncryption.fll or Encryption.dll to decrypt a string.

lparameters tcString, ;
 tcKey
local lcString

* Handle a blank string or key.

if empty(tcString) or empty(tcKey)
 return tcString
endif empty(tcString) ...

* If the right-most character of the encrypted string is CHR(1), the string
* was encrypted using Encryption.dll, so use that to decrypt it.

lcString = trim(tcString)
if right(lcString, 1) = chr(1)
 lcString = left(lcString, len(lcString) - 1)

http://tinyurl.com/cp3tpsw

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

18 • E-WDNB (Group VFP) © 2017 Doug Hennig

 return nvl(oBridge.InvokeStaticMethod('Encryption.Encryption', 'Decrypt', ;
 lcString, tcKey, chr(102) + chr(57) + chr(110) + chr(73) + chr(73) + ;
 chr(71) + chr(97) + chr(89) + chr(70) + chr(51) + chr(54) + chr(97) + ;
 chr(69) + chr(55) + chr(48) + chr(68)), '')

* The string was encrypted using VFPEncryption.fll, so use that to decrypt it.

else
 if not 'vfpencryption.fll' $ lower(set('LIBRARY'))
 lcLibrary = 'VFPEncryption.fll'
 set library to (lcLibrary) additive
 endif not 'vfpencryption.fll' $ lower(set('LIBRARY'))
 return Decrypt(lcString, tcKey, 1024)
endif right(lcString, 1) = chr(1)

One thing to note about both EncryptString.prg and DecryptString.prg is that neither
stores the initialization vector in a memory variable. Instead, it’s passed directly to the
method as a series of bytes. The same is true for the decrypted result in
DecryptString.prg. This helps minimize hacking.

Both EncryptString.prg and DecryptString.prg expect that oBridge contains a reference
to wwDotNetBridge and that the Encryption.dll assembly was loaded.

TestEncryption.prg (Listing 10) tests EncryptString and DecryptString, including a
string previously encrypted with VFPEncryption.fll. Note that I do not recommend using
SYS(2015) as the key for encryption and decryption, since it changes every time it’s
called; the same key has to be used to encrypt and decrypt a string. It’s just used here for
demo purposes.

Listing 10. TestEncryption.prg shows how EncryptString and DecryptString are called.

* Set up wwDotNetBridge.

do wwDotNetBridge
oBridge = GetwwDotNetBridge()
oBridge.LoadAssembly('Encryption.dll')

* Test encryption.

lcOriginal = 'The quick brown fox'
lcKey = sys(2015)
lcEncrypted = EncryptString(lcOriginal, lcKey)
lcDecrypted = DecryptString(lcEncrypted, lcKey)
messagebox('Original: ' + lcOriginal + chr(13) + ;
 'Encrypted: ' + lcEncrypted + chr(13) + ;
 'Decrypted: ' + lcDecrypted)

* Test decrypting a string previously encrypted with VFPEncryption.dll.

lcKey = '_5100P6KGM'
lcEncrypted = '†ËM*¯Äp$ŸêvQ9:i€Á»Ÿ'
lcDecrypted = DecryptString(lcEncrypted, lcKey)
messagebox('Original: ' + lcOriginal + chr(13) + ;
 'Encrypted: ' + lcEncrypted + chr(13) + ;
 'Decrypted: ' + lcDecrypted)

Encryption.cs could be enhanced to add additional encryption-related functionality, such
as hashing and checksum calculations if desired.

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 19

Email
Being able to send an email from an application is often very useful: emailing error
information to the developer, sending invoices to customers, emailing payroll stubs to
employees, etc. As with encryption, I’ve used a third-party library (West Wind Client
Tools) for many years to provide email services to my applications. However, the
version of the library I had didn’t support using SSL to send emails (newer versions do
but I needed this feature before that was supported), something that’s required if you
want to use Gmail or other servers that require it. So, once again, I decided to create a
small .NET library that provides the features I need for sending email from a VFP
application.

Listing 11 shows the code for SMTPLibrary.cs. The SMTP class in this file has two public
methods: AddAttachment, which adds the specified filename as an attachment, and
SendMail, which sends the email using the properties shown in Table 1.

Listing 11. SMTPLibrary.cs provides email capabilities.

using System;
using System.Collections.Generic;
using System.Net;
using System.Net.Mail;

namespace SMTPLibrary
{
 /// <summary>
 /// Sends email via SMTP.
 /// </summary>
 public class SMTP
 {
 public string MailServer { get; set; } = "";
 public int ServerPort { get; set; } = 25;
 public string SenderEmail { get; set; } = "";
 public string SenderName { get; set; } = "";
 public string Recipients { get; set; } = "";
 public string CCRecipients { get; set; } = "";
 public string BCCRecipients { get; set; } = "";
 public string Subject { get; set; } = "";
 public string Message { get; set; } = "";
 public string UserName { get; set; } = "";
 public string Password { get; set; } = "";
 public bool UseHtml { get; set; }
 public bool UseSsl { get; set; }
 public int Timeout { get; set; } = 30;
 public string ErrorMessage { get; private set; } = "";
 private List<string> _attachments = new List<string>();

 public bool SendMail()
 {
 // Set up the host.
 NetworkCredential basicCredential = new NetworkCredential(UserName,
 Password);
 SmtpClient smtpClient = new SmtpClient();
 smtpClient.Host = MailServer;
 smtpClient.UseDefaultCredentials = false;
 smtpClient.Credentials = basicCredential;
 smtpClient.Timeout = Timeout * 1000;
 smtpClient.Port = ServerPort;
 smtpClient.EnableSsl = UseSsl;

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

20 • E-WDNB (Group VFP) © 2017 Doug Hennig

 // Set up the mail message.
 MailMessage message = new MailMessage();
 message.From = new MailAddress(SenderEmail, SenderName);
 message.Sender = message.From;
 message.IsBodyHtml = UseHtml;
 message.Body = Message;
 message.Subject = Subject;

 // Handle addresses.
 foreach (var address in Recipients.Split(new[] { ";" },
 StringSplitOptions.RemoveEmptyEntries))
 {
 message.To.Add(address);
 }
 foreach (var address in CCRecipients.Split(new[] { ";" },
 StringSplitOptions.RemoveEmptyEntries))
 {
 message.CC.Add(address);
 }
 foreach (var address in BCCRecipients.Split(new[] { ";" },
 StringSplitOptions.RemoveEmptyEntries))
 {
 message.Bcc.Add(address);
 }

 // Handle attachments.
 foreach (string attachment in _attachments)
 {
 message.Attachments.Add(new Attachment(attachment));
 }

 // Try to send the message.
 bool result = false;
 ErrorMessage = "";
 try
 {
 smtpClient.Send(message);
 result = true;
 }
 catch (Exception ex)
 {
 ErrorMessage = ex.Message;
 }
 message.Dispose();
 return result;
 }

 public void AddAttachment(string fileName)
 {
 _attachments.Add(fileName);
 }
 }
}

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 21

Table 1. The properties of the SMTP class.

Property Type Description

MailServer String The mail server address.

UserName String The user name for the server.

Password String The password for the server.

ServerPort Int The port to use (the default is 25).

SenderEmail String The email address for the sender.

SenderName String The name of the sender.

Recipients String A semi-colon delimited list of recipients.

CCRecipients String A semi-colon delimited list of CC recipients.

BCCRecipients String A semi-colon delimited list of BCC recipients.

Subject String The subject.

Message String The body of the message.

UseHtml Bool True if the body contains HTML.

UseSsl Bool True to use SSL.

Timeout Int The timeout in seconds (the default is 30).

ErrorMessage String The text of any error that occurred.

TestEmail.prg (Listing 12) shows how to use the SMTP class, in this case specifically
with Gmail. For demo purposes, this code gets the password from an encrypted text file;
in a real application, it would likely be stored in a table or some other location (although
also encrypted for security; hence loading Encryption.dll). The email sent by this
program contains formatted HTML and has an image file as an attachment.

Listing 12. TestEmail.prg shows how the SMTP class is used.

* Set up wwDotNetBridge.

do wwDotNetBridge
oBridge = GetwwDotNetBridge()
oBridge.LoadAssembly('Encryption.dll')
oBridge.LoadAssembly('SMTPLibrary.dll')

* Send an email.

loMail = oBridge.CreateInstance('SMTPLibrary.SMTP')
loMail.MailServer = 'smtp.gmail.com'
loMail.Username = 'doug.o.hennig@gmail.com'
loMail.Password = DecryptString(filetostr('DontDeploy\password.txt'), ;
 filetostr('DontDeploy\key.txt'))
loMail.ServerPort = 587
loMail.SenderEmail = 'doug.o.hennig@gmail.com'

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

22 • E-WDNB (Group VFP) © 2017 Doug Hennig

loMail.SenderName = 'Doug Hennig'
loMail.Recipients = 'dhennig@stonefield.com'
loMail.Subject = 'Test email'
loMail.Message = 'This is a test message. ' + ;
 'This is bold text. ' + ;
 'This is red text'
loMail.UseSsl = .T.
loMail.UseHtml = .T.
loMail.AddAttachment('koko.jpg')
llReturn = loMail.SendMail()
if not llReturn
 messagebox(loMail.ErrorMessage)
endif not llReturn

Sending SMS messages
Some applications, such as scheduling programs for medical offices or hair stylists, need
to send text (SMS) messages to mobile devices. Although there are services such as
Twilio that can do this (and there’s a VFPX project, https://github.com/VFPX/TwilioX,
that makes it easy to use Twilio from VFP), a simple way to send an SMS message is to
send an email to the user’s carrier prefixed with the mobile device number and “@” (for
example 2049995555@mycarrier.com). That requires knowing the email address of the
carrier. Fortunately, a GitHub project
(https://github.com/cubiclesoft/email_sms_mms_gateways) provides a list of email
addresses for carriers as a JSON list. So, sending an SMS message means determining the
email address to use for a specific carrier by downloading the latest version of the JSON
file, converting the JSON to something VFP can easily access, finding the carrier, and then
sending an email to their address. All three of these capabilities (downloading,
converting JSON, and sending emails) are built into .NET, so I created a wrapper
program to make it easy to call from VFP. I adapted the wrapper from code written by
Rod Stephens (https://tinyurl.com/ybmr3hmy).

Listing 13 shows the code for SMS.cs. The main method in the SMSLibrary class in this
file is SendMessage. To call it, set the properties shown in Table 2 and pass it the name
and mobile number of the recipient, the carrier’s email address, and the subject and
body of the message.

Listing 13. SMS.cs provides SMS capabilities.

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Net;
using System.Net.Mail;
using System.Web.Script.Serialization;

namespace SMS
{
 /// <summary>
 /// Adapted from http://csharphelper.com/blog/2018/01/how-to-send-an-sms-text-
 /// message-in-c/
 /// </summary>
 public class SMSLibrary
 {
 public string ErrorMessage { get; set; } = "";
 public string SenderName { get; set; }

https://github.com/VFPX/TwilioX
https://github.com/cubiclesoft/email_sms_mms_gateways
https://tinyurl.com/ybmr3hmy

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 23

 public string SenderEmail { get; set; }
 public string Password { get; set; }
 public string Server { get; set; }
 public int Port { get; set; } = 25;
 public bool UseSSL { get; set; } = false;
 public string[] Countries
 {
 get
 {
 if (_countryInfos.Count == 0)
 {
 GetInfo();
 }
 return _countryInfos.Select(c => c.Value.CountryName).ToArray();
 }
 }

 private Dictionary<string, CountryInfo> _countryInfos =
 new Dictionary<string, CountryInfo>();

 /// <summary>
 /// Returns a list of carriers for the specified country.
 /// </summary>
 /// <param name="country">
 /// The country to get carriers for.
 /// </param>
 /// <returns>
 /// An array of carriers for the specified country or a blank array for
 /// a non-existent country.
 /// </returns>
 public string[] GetCarriersForCountry(string country)
 {
 string[] carriers;
 try
 {
 CountryInfo countryInfo = _countryInfos[country];
 carriers = countryInfo.Carriers.Select(c => c.Key).ToArray();
 }
 catch (Exception)
 {
 ErrorMessage = "Country not found";
 carriers = new string[0];
 }
 return carriers;
 }

 /// <summary>
 /// Returns a list of emails for the specified carrier in the specified
 /// country.
 /// </summary>
 /// <param name="country">
 /// The country the carriers belongs to.
 /// </param>
 /// <param name="carrier">
 /// The carrier to get emails for.
 /// </param>
 /// <returns>
 /// An array of emails for the specified carrier in the specified country
 /// or a blank array for a non-existent country or carrier.
 /// </returns>
 public string[] GetEmailsForCarrier(string country, string carrier)
 {

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

24 • E-WDNB (Group VFP) © 2017 Doug Hennig

 string[] emails;
 try
 {
 CountryInfo countryInfo = _countryInfos[country];
 try
 {
 CarrierInfo carrierInfo = countryInfo.Carriers[carrier];
 emails = carrierInfo.Emails.ToArray();
 }
 catch (Exception)
 {
 ErrorMessage = "Carrier not found";
 emails = new string[0];
 }
 }
 catch (Exception)
 {
 ErrorMessage = "Country not found";
 emails = new string[0];
 }
 return emails;
 }

 /// <summary>
 /// Send an SMS message.
 /// </summary>
 /// <param name="name">
 /// The recipient's name.
 /// </param>
 /// <param name="phone">
 /// The recipient's phone number.
 /// </param>
 /// <param name="subject"></param>
 /// <param name="body"></param>
 public void SendMessage(string name, string phone, string carrierEmail,
 string subject, string body)
 {
 // Strip unwanted characters from the phone number and create the
 // email address to use.
 string toPhone = phone.Trim().Replace("-", "").
 Replace("(", "").Replace(")", "").Replace("+", "");
 string toEmail = toPhone + "@" + carrierEmail;

 // Create the mail message.
 MailAddress from_address = new MailAddress(SenderEmail, SenderName);
 MailAddress to_address = new MailAddress(toEmail, name);
 MailMessage message = new MailMessage(from_address, to_address);
 message.Subject = subject;
 message.Body = body;

 // Get the SMTP client.
 SmtpClient client = new SmtpClient()
 {
 Host = Server,
 Port = Port,
 EnableSsl = UseSSL,
 UseDefaultCredentials = false,
 Credentials = new NetworkCredential(from_address.Address,
 Password),
 };

 // Send the message.

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 25

 client.Send(message);
 }

 /// <summary>
 /// Gets the SMS information for the library.
 /// </summary>
 private void GetInfo()
 {
 // Get the data file.
 const string url =
"https://raw.github.com/cubiclesoft/email_sms_mms_gateways/master/sms_mms_gateways
.txt";
 string serialization = GetTextFile(url);

 // Deserialize it.
 JavaScriptSerializer serializer = new JavaScriptSerializer();
 Dictionary<string, object> dict = (Dictionary<string,
 object>)serializer.DeserializeObject(serialization);

 // Get the countries.
 Dictionary<string, object> countries =
 (Dictionary<string, object>)dict["countries"];
 Dictionary<string, CountryInfo> countriesByAbbrev =
 new Dictionary<string, CountryInfo>();
 foreach (KeyValuePair<string, object> pair in countries)
 {
 CountryInfo country_info = new CountryInfo()
 { CountryAbbreviation = pair.Key,
 CountryName = (string)pair.Value };
 _countryInfos.Add(country_info.CountryName, country_info);
 countriesByAbbrev.Add(country_info.CountryAbbreviation,
 country_info);
 }

 // Get the SMS carriers.
 Dictionary<string, object> sms_carriers =
 (Dictionary<string, object>)dict["sms_carriers"];
 foreach (KeyValuePair<string, object> pair in sms_carriers)
 {
 // Get the corresponding CountryInfo.
 CountryInfo country_info = countriesByAbbrev[pair.Key];

 // Get the country's carriers.
 Dictionary<string, object> carriers =
 (Dictionary<string, object>)pair.Value;
 foreach (KeyValuePair<string, object> carrier_pair in carriers)
 {
 // Create a CarrierInfo for this carrier.
 CarrierInfo carrier_info = new CarrierInfo()
 { CarrierAbbreviation = carrier_pair.Key };
 object[] carrier_values = (object[])carrier_pair.Value;
 carrier_info.CarrierName = (string)carrier_values[0];
 for (int email_index = 1; email_index < carrier_values.Length;
 email_index++)
 {
 string email = (string)carrier_values[email_index];
 carrier_info.Emails.Add(email.Replace("{number}@", ""));
 }
 country_info.Carriers.Add(carrier_info.CarrierName,
 carrier_info);
 }
 }

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

26 • E-WDNB (Group VFP) © 2017 Doug Hennig

 }

 /// <summary>
 /// Get the text file at the specified URL.
 /// </summary>
 /// <param name="url">
 /// The URL for the file to retrieve.
 /// </param>
 /// <returns>
 /// The content of the file or an empty string if it failed.
 /// </returns>
 private string GetTextFile(string url)
 {
 string result = "";
 try
 {
 url = url.Trim();
 if (!url.ToLower().StartsWith("http"))
 {
 url = "http://" + url;
 }
 WebClient web_client = new WebClient();
 MemoryStream image_stream =
 new MemoryStream(web_client.DownloadData(url));
 StreamReader reader = new StreamReader(image_stream);
 result = reader.ReadToEnd();
 reader.Close();
 }
 catch (Exception ex)
 {
 ErrorMessage = "Error downloading file " + url + '\n' +
 ex.Message;
 }
 return result;
 }
 }
}

Table 2. The properties of the SMSLibrary class.

Property Type Description

Server String The mail server address.

Password String The password for the server.

Port Int The port to use (the default is 25).

SenderEmail String The email address for the sender.

SenderName String The name of the sender.

UseSSL Bool True to use SSL.

Countries String[] An array of valid countries.

ErrorMessage String The text of any error that occurred.

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 27

There are a couple of helper methods:

 GetCarriersForCountry: access the Countries property to get a list of supported
countries, then call GetCarriersForCountry, passing it the name of the country to
get a list of carriers for.

 GetEmailsForCarrier: pass this method the name of a country and a valid carrier
in that country, obtained from the list returned by GetCarriersForCountry, to get
a list of the email addresses for that carrier.

TestSMS.prg (Listing 14) shows how to use the SMS class, in this case specifically with
Gmail. For demo purposes, this code gets the password from an encrypted text file; in a
real application, it would likely be stored in a table or some other location (although also
encrypted for security; hence loading Encryption.dll). This program shows the list of
countries supported, the list of carriers for Canada, and the list of email addresses
(there’s actually only one) for my carrier. Note the code uses GetPropertyEx and
InvokeMethod since the values are .NET arrays and these methods automatically
convert them into something VFP can use (see https://tinyurl.com/y7xb2aub for
details). It then sends a text message to my cell phone.

A production application would store the preferences for each person it sends a text
message to. For example, there may be a form with a combobox of countries. When the
user chooses a country, a combobox of carriers for that country is populated. When the
user chooses a carrier, a combobox of email addresses for that carrier is populated. The
user’s choices are saved in that person’s record.

Listing 14. TestSMS.prg shows how the SMS class is used.

* Set up wwDotNetBridge.

do wwDotNetBridge
oBridge = GetwwDotNetBridge()
oBridge.LoadAssembly('Encryption.dll')
oBridge.LoadAssembly('SMS.dll')

* Set the SMS properties.

loSMS = oBridge.CreateInstance('SMS.SMSLibrary')
loSMS.Server = 'smtp.gmail.com'
loSMS.Port = 587
loSMS.SenderName = 'Doug Hennig'
loSMS.SenderEmail = 'doug.o.hennig@gmail.com'
loSMS.Password = DecryptString(filetostr('DontDeploy\password.txt'), ;
 filetostr('DontDeploy\key.txt'))
loSMS.UseSSL = .T.

* Display a list of countries.

loCountries = oBridge.GetPropertyEx(loSMS, 'Countries')
lcCountries = ''
for lnI = 0 to loCountries.Count - 1
 lcCountry = loCountries.Item(lnI)
 lcCountries = lcCountries + lcCountry + chr(13)
next lnI
messagebox(lcCountries, 0, 'Countries')

* Display the carriers for Canada.

https://tinyurl.com/y7xb2aub

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

28 • E-WDNB (Group VFP) © 2017 Doug Hennig

loCarriers = oBridge.InvokeMethod(loSMS, 'GetCarriersForCountry', 'Canada')
lcCarriers = ''
for lnI = 0 to loCarriers.Count - 1
 lcCarrier = loCarriers.Item(lnI)
 lcCarriers = lcCarriers + lcCarrier + chr(13)
next lnI
messagebox(lcCarriers, 0, 'Carriers for Canada')

* Get the emails for MTS.

loEmails = oBridge.InvokeMethod(loSMS, 'GetEmailsForCarrier', 'Canada', ;
 'Manitoba Telecom/MTS Mobility')
lcEmails = ''
for lnI = 0 to loEmails.Count - 1
 lcEmail = loEmails.Item(lnI)
 lcEmails = lcEmails + lcEmail + chr(13)
next lnI
messagebox(lcEmails, 0, 'Emails for MTS')

* Send a text message.

lcPhone = filetostr('DontDeploy\phone.txt')
llReturn = loSMS.SendMessage('Doug Hennig', lcPhone, ;
 'text.mtsmobility.com', 'FoxCon', 'SMS sent by VFP')
if not llReturn
 messagebox(loSMS.ErrorMessage)
endif not llReturn

Formatting strings
The VFP TRANSFORM() function converts Date, DateTime, numeric, and other values to
an optionally formatted string. However, the formats available are somewhat limited,
especially for Date and DateTime values; see Table 3 for the formats available. To make
matters more complicated, the value returned depends on the settings of SET CENTURY,
SET HOURS, and SET MARK for Date/DateTime values (although not for all formats as
you can see in Table 3) and SET POINT, SET SEPARATOR, SET CURRENCY, and SET
DECIMALS for numeric values, except if SET SYSFORMATS ON is used, in which case all
of those are ignored and the system settings are used (which is normally the safest
approach).

Table 3. Date/DateTIme formats available.

Format Description Example (12 hours) Example (24 hours)

@D Converts to current SET DATE format 10/05/2017 02:25:00 PM 10/05/2017 14:25:00

@E Converts to BRITISH date format 05/10/2017 02:25:00 PM 05/10/2017 14:25:00

@YL Uses Long Date system setting Thursday, October 5,
2017, 2:25:00 PM

same

@YS Uses Short Date system setting 10/05/2017 2:25:00 PM same

It’s even more complicated if you just want to display the time: you have to use
SUBSTR() to pull out just the time part, but you can’t hard-code the starting position

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 29

because it depends on how the user’s system formats dates. Instead, you have to use
something like:

lcTime = substr(transform(ltValue), at(' ', transform(ltValue)) + 1)

.NET has a similar method to the TRANSFORM() function: ToString. However, ToString
has a lot more formats available for Date, DateTime, and numeric values. For example, a
format string of HH:mm:ss shows just the time part of a DateTime value in 24-hour
format, such as 14:20:00. Also, it automatically respects the user’s regional settings, so it
displays day and month names in the correct language and uses the correct separators
for thousands and decimal places. See the following URLs for the different formats
available:

 Standard numeric format strings: http://tinyurl.com/y86clj9k

 Custom numeric format strings: http://tinyurl.com/ydgw5zml

 Standard datetime format strings: http://tinyurl.com/y7nfeook

 Custom datetime format strings: http://tinyurl.com/ycwh45af

Eric Selje wrote a StringFormat function (http://saltydogllc.com/string-format-for-
visual-foxpro/) that simulates what ToString does. However, using wwDotNetBridge, we
can call ToString directly.

FormatValue.prg (Listing 15) is a wrapper for ToString written by Rick Strahl. Pass it a
value and optionally a format string to format the value as desired. Note that unlike
DecryptString.prg and EncryptString.prg, FormatValue.prg doesn’t require you to set up
wwDotNetBridge first or load any assembly.

Listing 15. FormatValue.prg formats values as desired.

lparameters tuValue, ;
 tcFormatString
local loBridge, ;
 lcResult
if isnull(tuValue)
 return 'null'
endif isnull(tuValue)
do wwDotNetBridge
loBridge = GetwwDotNetBridge()
if empty(tcFormatString)
 lcResult = loBridge.InvokeMethod(tuValue, 'ToString')
else
 lcResult = loBridge.InvokeMethod(tuValue, 'ToString', tcFormatString)
endif empty(tcFormatString)
return lcResult

TestFormatValue.prg (Listing 16) shows how FormatValue works with both DateTime
and numeric values.

Listing 16. TestFormatValue.prg shows how FormatValue works.

* First show VFP date/datetime formats.

ltNow = datetime(2017, 10, 5, 14, 20, 0)
lcMessage = 'No format: ' + transform(ltNow) + chr(13) + ;
 '@D: ' + transform(ltNow, '@D') + chr(13) + ;

http://tinyurl.com/y86clj9k
http://tinyurl.com/ydgw5zml
http://tinyurl.com/y7nfeook
http://tinyurl.com/ycwh45af
http://saltydogllc.com/string-format-for-visual-foxpro/
http://saltydogllc.com/string-format-for-visual-foxpro/

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

30 • E-WDNB (Group VFP) © 2017 Doug Hennig

 '@E: ' + transform(ltNow, '@E') + chr(13) + ;
 '@YL: ' + transform(ltNow, '@YL') + chr(13) + ;
 '@YS: ' + transform(ltNow, '@YS')
messagebox(lcMessage, 0, 'VFP formats')

* Now show .NET date/datetime formats.

lcMessage = 'No format: ' + FormatValue(ltNow) + chr(13) + ;
 'MMM dd, yyyy: ' + FormatValue(ltNow, 'MMM dd, yyyy') + chr(13) + ;
 'MMMM dd, yyyy: ' + FormatValue(ltNow, 'MMMM dd, yyyy') + chr(13) + ;
 'HH:mm:ss: ' + FormatValue(ltNow, 'HH:mm:ss') + chr(13) + ;
 'h:m:s tt: ' + FormatValue(ltNow, 'h:m:s tt') + chr(13) + ;
 'MMM d @ HH:mm: ' + FormatValue(ltNow, 'MMM d @ HH:mm') + chr(13) + ;
 'r (RFC format): ' + FormatValue(ltNow, 'r') + chr(13) + ;
 'u (Universal sortable): ' + FormatValue(ltNow, 'u')
messagebox(lcMessage, 0, '.NET formats')

* .NET numeric formats.

lnValue = 1233.2255
lnInt = int(lnValue)
lcMessage = 'No format: ' + FormatValue(lnValue) + chr(13) + ;
 'c2: ' + FormatValue(lnValue, 'c2') + chr(13) + ;
 'n2: ' + FormatValue(lnValue, 'n2') + chr(13) + ;
 'd7: ' + FormatValue(lnInt, 'd7') + chr(13) + ;
 'p1: ' + FormatValue(lnInt/1000, 'p1')
messagebox(lcMessage, 0, '.NET formats')

Another utility by Rick, FormatString.prg (Listing 17), makes it easy to replace
placeholders in a string with specified values. For example, to display information about
an error in an error handler, you might use code like this (taken from
TestFormatString.prg):

lcMessage = 'Error #' + transform(tnError) + ' occurred in line ' + ;
 transform(tnLineNo) + ' of ' + justfname(tcProgram) + ' on ' + ;
 transform(datetime())

That requires concatenating numerous strings and having to use TRANSFORM() on
certain values if necessary. Compare that with the following, which uses FormatString:

lcMessage = FormatString('Error #{0} occurred in line {1} of {2} on ' + ;
 '{3:MMMM d, yyyy HH:mm:ss}', tnError, tnLineNo, justfname(tcProgram), ;
 datetime())

No need to worry about whether a value is character or not; FormatString handles the
conversion automatically.

FormatString.prg uses the static Format method of the .NET String class to do the work.
Format expects a format string containing placeholders such as {0} for the first one
(since .NET is zero-based), {1} for the second, and so on. Placeholders can contain a
format string, such as {3:MMMM d, yyyy HH:mm:ss} to format a DateTime value as
specified. Format has numerous overloads that accept a different number of parameters,
so the code uses a CASE statement to pass only those parameters actually passed to the
function to the Format method.

Listing 17. FormatString.prg replaces placeholders in a string (some code omitted for brevity).

lparameters tcFormat, ;
 tuValue1, ;

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 31

 tuValue2, ;
 tuValue3, ;
 tuValue4, ;
 tuValue5, ;
 tuValue6, ;
 tuValue7, ;
 tuValue8, ;
 tuValue9, ;
 tuValue10
local lnParms, ;
 loBridge
lnParms = pcount()
do wwDotNetBridge
loBridge = GetwwDotNetBridge()
do case
 case lnParms = 2
 return loBridge.InvokeStaticMethod('System.String', 'Format', ;
 tcFormat, tuValue1)
 case lnParms = 3
 return loBridge.InvokeStaticMethod('System.String', 'Format', ;
 tcFormat, tuValue1, tuValue2)
 case lnParms = 4
 return loBridge.InvokeStaticMethod('System.String', 'Format', ;
 tcFormat, tuValue1, tuValue2, tuValue3)
 case lnParms = 5
 return loBridge.InvokeStaticMethod('System.String', 'Format', ;
 tcFormat, tuValue1, tuValue2, tuValue3, tuValue4)
* Rest of cases omitted for brevity
 otherwise
 throw 'Too many parameters for FormatString'
endcase

“Humanizing” strings
There may be times when you need to format text in more friendly, “humanized” ways.
For example, you may wish to display the steps in a process as ordinals: first, second,
third, or 1st, 2nd, 3rd, etc. While you can write some VFP code to handle this for you in one
language, it becomes much more cumbersome if you need to handle multiple languages.

The Humanizer .NET library handles many types of humanizing tasks such as:

 Converting Date and DateTime values to expressions such as “yesterday” or “2
hours from now.”

 Converting numbers to words, such as “fifteen” for 15.

 Converting nouns to their plural or singular equivalents. It’s smart enough to
know that the plural of an English word doesn’t always have an “s” suffix; for
example, it knows “people” is the plural of “person.”

Humanizer is also culture-sensitive, so it knows not only the correct language to use but
also the rules of that language.

Humanizer methods are implemented as extension methods. That means they extend a
data type and make it appears as the methods belong to that type. For example, in
Figure 6, you can see that IntelliSense in Visual Studio indicates that there’s a
ToOrdinalWords method available for integers. That isn’t a built-in .NET method; it’s
provided by the Humanizer library.

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

32 • E-WDNB (Group VFP) © 2017 Doug Hennig

Figure 6. Humanizer methods are implemented as extension methods.

Extension methods can’t be called from wwDotNetBridge, so Rick created a wrapper
class named FoxHumanizer that provides some of the Humanizer methods. I’ve
extended the class a bit, adding some additional methods and removing a couple that I
didn’t find that useful (such as TruncateString) because VFP provides that functionality
natively.

FoxHumanizer has regular methods rather than static ones, which means the class has
to be instantiated to use it. That’s simply so the syntax for calling the methods is a little
cleaner:

loHuman = loBridge.CreateInstance('FoxHumanizer.FoxHumanizer')
loHuman.Method(value)

instead of:

loBridge.InvokeStaticMethod('FoxHumanizer.FoxHumanizer', 'Method', value)

The FoxHumanizer class is shown in Listing 18. This class only wraps some of the
functionality of the Humanizer library; see https://github.com/Humanizr/Humanizer
for details on the capabilities of this library.

Listing 18. The FoxHumanizer class is a wrapper for the Humanizer library.

using System;
using Humanizer;
namespace FoxHumanizer
{
 public class FoxHumanizer
 {
 public string HumanizeDate(DateTime date)
 {
 return date.Humanize(false);
 }

 public string HumanizeDateForCulture(DateTime date,
 System.Globalization.CultureInfo culture)
 {
 return date.Humanize(false, null, culture);
 }

 public string Humanize(string text)
 {
 return text.Humanize();
 }

 public string NumberToWords(int number)
 {
 return number.ToWords();
 }

 public string NumberToOrdinal(int number)
 {

https://github.com/Humanizr/Humanizer

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 33

 return number.Ordinalize();
 }

 public string NumberToOrdinalWords(int number)
 {
 return number.ToOrdinalWords();
 }

 public string ToQuantity(string single, int qty)
 {
 return single.ToQuantity(qty, ShowQuantityAs.Words);
 }

 public string Pluralize(string single)
 {
 return single.Pluralize(true);
 }

 public string Singularize(string pluralized)
 {
 return pluralized.Singularize(true);
 }

 public string ToByteSize(int byteSize)
 {
 return byteSize.Bytes().Humanize("#.##");
 }
 }
}

Obviously, this class requires the Humanizer library. The simplest way to get a copy of
that library is to choose NuGet Package Manager, Manage NuGet Packages for Solution…
from the Tools menu in Visual Studio, search for Humanizer, and install it. When you
deploy an application using FoxHumanizer, you have to include FoxHumanizer.dll,
Humanizer.dll, plus folders containing resources for the cultures your users might use
(for example, the “de” folder contains the resource for German).

TestHumanizer.prg (Listing 19) shows how the various methods in FoxHumanizer
work.

Listing 19. TestHumanizer.prg shows how FoxHumanizer works.

* Set up wwDotNetBridge and instantiate the FoxHumanizer class.

do wwDotNetBridge
loBridge = GetwwDotNetBridge()
loBridge.LoadAssembly('FoxHumanizer.dll')
loHuman = loBridge.CreateInstance('FoxHumanizer.FoxHumanizer')

* Humanize dates.

messagebox('date() - 1: ' + loHuman.HumanizeDate(date() - 1) + chr(13) + ;
 'datetime() - 2 * 60 * 60: ' + ;
 loHuman.HumanizeDate(datetime() - 2 * 60 * 60) + chr(13) + ;
 'gomonth(date(), -1): ' + loHuman.HumanizeDate(gomonth(date(), -1)))

* Handle a non-current culture (German in this case).

loCulture = loBridge.CreateInstance('System.Globalization.CultureInfo', ;
 'de-DE')

24
th

 European Visual FoxPro DevCon 2017Practical Uses of wwDotNetBridge to Extend Your VFP Applications

34 • E-WDNB (Group VFP) © 2017 Doug Hennig

messagebox('For German, date() - 1 displays as ' + ;
 loHuman.HumanizeDateForCulture(date() - 1, loCulture))

* Humanize numbers.

messagebox('NumberToOrdinal(3): ' + loHuman.NumberToOrdinal(3) + chr(13) + ;
 'NumberToOrdinalWords(3): ' + loHuman.NumberToOrdinalWords(3) + chr(13) + ;
 'ToByteSize(13122): ' + loHuman.ToByteSize(13122) + chr(13) + ;
 'ToByteSize(1221221): ' + loHuman.ToByteSize(1221221) + chr(13) + ;
 'NumberToWords(15): ' + loHuman.NumberToWords(15))

* NumberToWords only handles integers so we'll split up dollars and cents.

lnAmount = 12345.67
lnDollars = int(lnAmount)
lnCents = (lnAmount - lnDollars) * 100
messagebox('12345.67: ' + FormatString('{0} dollars and {1} cents', ;
 loHuman.NumberToWords(lnDollars), loHuman.NumberToWords(lnCents)))

* Humanize strings.

messagebox("ToQuantity('dollar', 3): " + loHuman.ToQuantity('dollar', 3) + ;
 chr(13) + ;
 "Pluralize('speaker'): " + loHuman.Pluralize('speaker') + chr(13) + ;
 "Pluralize('person'): " + loHuman.Pluralize('person') + chr(13) + ;
 "Singularize('mice'): " + loHuman.Singularize('mice') + chr(13) + ;
 "Humanize('PascalCaseString'): " + loHuman.Humanize('PascalCaseString') + ;
 chr(13) + ;
 "Humanize('Underscored_String'): " + ;
 loHuman.Humanize('Underscored_String'))

References
Here are links to articles and documentation about wwDotNetBridge:

 wwDotNetBridge home page: http://www.west-
wind.com/wwDotnetBridge.aspx

 wwDotNetBridge documentation: http://tinyurl.com/ltagjhk

 wwDotNetBridge white paper: http://tinyurl.com/lclaflx

 “Calling async/await .NET methods with wwDotnetBridge”:
http://tinyurl.com/yd2wlpa8

Summary
wwDotNetBridge makes it easy to call .NET code from VFP. It eliminates the need to add
special directives to the .NET code so it can be used with COM and the need to register
the component on the user’s system. It also takes care of the differences between .NET
and VFP in dealing with arrays and other data types. This means you can create
small .NET classes that accomplish tasks difficult to do or that run slowly in VFP and
easily call them in your applications to add new capabilities or speed up processing.
Download wwDotNetBridge and try it out for yourself.

http://www.west-wind.com/wwDotnetBridge.aspx
http://www.west-wind.com/wwDotnetBridge.aspx
http://tinyurl.com/ltagjhk
http://tinyurl.com/lclaflx
http://tinyurl.com/yd2wlpa8

Practical Uses of wwDotNetBridge to Extend Your VFP Applications24
th

 European Visual FoxPro DevCon 2017

© 2017 Doug Hennig (Group VFP) E-WDNB • 35

Biography
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-
winning Stonefield Database Toolkit (SDT); the award-winning Stonefield Query; the
MemberData Editor, Anchor Editor, and CursorAdapter and DataEnvironment builders
that come with Microsoft Visual FoxPro; and the My namespace and updated Upsizing
Wizard in Sedna.

Doug is co-author of VFPX: Open Source Treasure for the VFP Developer, Making Sense
of Sedna and SP2, the What’s New in Visual FoxPro series, Visual FoxPro Best Practices
For The Next Ten Years, and The Hacker’s Guide to Visual FoxPro 7.0. He was the
technical editor of The Hacker’s Guide to Visual FoxPro 6.0 and The Fundamentals. All of
these books are from Hentzenwerke Publishing (http://www.hentzenwerke.com). He
wrote over 100 articles in 10 years for FoxTalk and has written numerous articles in
FoxPro Advisor, Advisor Guide to Visual FoxPro, and CoDe. He currently writes for
FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the annual Southwest Fox and Southwest Xbase++ conferences
(http://www.swfox.net). He is one of the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was a Microsoft Most Valuable
Professional (MVP) from 1996 through 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award (http://tinyurl.com/ygnk73h).

http://www.hentzenwerke.com/
http://www.foxrockx.com/
http://www.swfox.net/
http://vfpx.codeplex.com/
http://tinyurl.com/ygnk73h
http://www.hentzenwerke.com/catalog/hackfox7.htm
http://www.hentzenwerke.com/catalog/newin7.htm
http://www.hentzenwerke.com/catalog/wnvfp8.htm
http://www.hentzenwerke.com/catalog/wnvfp9.htm
http://www.hentzenwerke.com/catalog/vfpbp10.htm
http://www.hentzenwerke.com/catalog/makingsos.htm
http://www.stonefieldquery.com/sdt.html
http://www.stonefieldquery.com
http://vfpx.codeplex.com/
http://www.swfox.net
http://www.foxrockx.com/seite.htm

	Introduction
	Getting wwDotNetBridge
	Using wwDotNetBridge
	How wwDotNetBridge works
	Debugging .NET code from VFP
	Writing to the Windows Event Log
	Starting and stopping processes
	XML processing
	File dialogs
	Encryption
	Email
	Sending SMS messages
	Formatting strings
	“Humanizing” strings
	References
	Summary
	Biography

